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PEMEGUNAN SERBUK TiO2 PADA PLAT KACA MELALUI KAEDAH 

PENYADURAN CELUP MENGGUNAKAN ADUNAN POLIMER ENR-

50/PVC SEBAGAI PELEKAT DAN APLIKASI 

PEMFOTOMANGKINANNYA 

 

ABSTRAK 

 Kajian ini bertujuan untuk menghasilkan serbuk TiO2 terpegun pada plat kaca 

yang boleh digunasemula berulang kali dengan menggunakan adunan polimer 

sebagai pelekat untuk penguraian pemfotomangkinan larutan akueus metilena biru 

(MB). Serbuk TiO2 (99 % anatase) dipegunkan secara terus pada plat kaca 

menggunakan adunan polimer getah asli terepoksi (ENR-50) / poli vinil klorida 

(PVC) sebagai pelekat melalui kaedah penyaduran celup mudah. Kecekapan 

pemfotomangkinan serbuk TiO2 yang dipegunkan pada plat kaca diuji dengan 

penguraian larutan akueus MB di bawah penyinaran lampu pendafluor 45 W. Nisbah 

optimum ENR-50 kepada PVC yang didapati adalah 1:3. Kecekapan 

pemfotomangkinan TiO2/ENR/PVC yang dipegunkan pada plat kaca dalam 

penguraian larutan akueus MB adalah lebih baik berbanding dengan kebolehan 

pemfotomangkinan serbuk TiO2 dalam mod penyebaran. Muatan mangkin yang 

optimum adalah sebanyak 1.0 mg cm
-2

 dan kadar penguraian pemfotomangkinan MB 

adalah paling tinggi pada pH 12. Kehadiran aliran udara sebagai sumber oksigen 

meningkatkan kadar penguraian MB. Kebocoran UV daripada lampu pendafluor 

memainkan peranan yang penting dalam keberkesanan TiO2 yang terpegun pada plat 

kaca. Kebolehgunaan dan kebolehulangan aktiviti TiO2/ENR/PVC terpegun 

meningkat sejajar dengan keamatan kebocoran UV daripada sumber lampu. Pemalar 

kadar purata pseudo kinetik tertib pertama untuk penguraian MB bagi 10 kali kitaran 

aplikasi berulangan 90 min menggunakan lampu pendafluor dengan kebocoran UV 
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sebanyak 1.67, 4.35 dan 6.30 Wm
-2

 adalah masing-masing 0.0174 ± 0.0072, 0.0381 

± 0.0039 dan 0.0577 ± 0.0027 min
-1

. Analisa menggunakan SEM-EDX, TGA dan 

FTIR menunjukkan berlakunya penguraian adunan polimer yang digunakan sebagai 

pelekat selepas digunasemula mengakibatkan penghasilan keperluan oksigen kimia 

(COD). Penguraian ENR-50 didapati berlaku lebih pantas berbanding penguraian 

PVC. Sebanyak 50 % daripada MB berkepekatan sebanyak 20 mg L
-1

 

dimineralisasikan selepas rawatan pemfotomangkinan selama 4 jam menggunakan 

plat TiO2 terpegun yang ‘dibersihkan’. Tahap mineralisasi adalah selari dengan 

peratusan penguraian warna MB. Kehadiran komponen tak organik seperti SO4
2-

. 

NO3
-
, Cl

-
 dan perubahan pH dalam larutan terawat menunjukkan MB telah 

dimineralisasikan. TiO2 yang dipegunkan pada penyokong polimer seperti PVC, 

akrilik dan PET kesemuanya menunjukkan aktiviti foto dalam penguraian larutan 

MB walaupun pada kadar yang lebih rendah. Secara keseluruhan, pemegunan serbuk 

TiO2 melalui teknik penyaduran celup mudah ini adalah ringkas, berkesan, 

menjimatkan dan mempunyai kebolehulangan yang baik.       
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IMMOBILISATION OF TiO2 POWDER ONTO GLASS PLATES VIA DIP-

COATING TECHNIQUE USING ENR-50/PVC POLYMER BLEND AS 

ADHESIVES AND ITS PHOTOCATALYTIC APPLICATION 

 

ABSTRACT 

 

The objective of this work is to produce a reusable immobilised TiO2 on glass 

plate utilizing polymer blend as adhesives for the photocatalytic degradation of 

methylene blue (MB) in aqueous solution. TiO2 powder (99% anatase) was directly 

immobilised onto glass plates using epoxidised natural rubber (ENR-50)/ poly 

(vinyl) chloride (PVC) polymer blend as adhesives via simple dip-coating technique. 

The photocatalytic characterization of the immobilised TiO2 powder was assessed 

using MB in aqueous solution as the model pollutant under the irradiation of 45W 

fluorescent lamp. The optimum ratio of ENR-50 to PVC for the immobilisation of 

TiO2 was determined as 1:3. The photocatalytic efficiency of the immobilised 

TiO2/ENR/PVC was better than the TiO2 in slurry mode. The optimum catalyst 

loading was determined as 1.0 mg/cm
2
 and the photocatalytic degradation rate of MB 

was highest at pH 12. The presence of aeration as oxygen source promoted the 

photocatalytic removal of MB. The photocatalytic degradation of MB was mainly 

governed by the UV residuals emanated from the 45 W fluorescent lamp. Reusability 

and reproducibility of the immobilised TiO2/ENR/PVC improved proportionally with 

the intensity of UV irradiances from the light sources. The average pseudo first order 

rate constant of MB degradation for 10 cycles of 90 min repeated applications of the 

immobilised TiO2 using light sources with UV irradiances of 1.67, 4.35 and 6.30 

Wm
-2

 were 0.0174 ± 0.00072, 0.0381 ± 0.0039 and 0.0577 ± 0.0027 min
-1

, 

respectively. Subsequent analysis using SEM-EDX, TGA and FTIR revealed that the 

reliability of the immobilised TiO2/ENR/PVC was however plagued by the 
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degradation of polymer blend used as adhesives upon recycled applications which 

resulted in the production of chemical oxygen demand (COD). The degradation of 

ENR-50 was faster than the elimination of PVC in the coating formulation. 50 % 

mineralization of 20 mg L
-1

 MB was achieved after 4 hours of photocatalytic 

treatment using the ‘cleaned’ immobilised TiO2. The degree of mineralization 

corresponded positively with the percentage of MB colour removal. The presence of 

inorganic compounds such as SO4
2-

, NO3
-
, Cl

-
 and the changes of pH in the treated 

solution represented the mineralized products of the model pollutants. The 

immobilised TiO2/ENR/PVC on polymer supports such as PVC, acrylic and PET 

exhibited photo-activity in the degradation of MB albeit at lower degradation rate. 

Overall, the immobilization of TiO2 powder via this technique is simple, effective, 

economical and reproducible.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.0  General 

 Basically, water pollution can be defined as the contamination of water 

bodies such as lake, sea, groundwater with various pollutants due to humans 

activities, which does not only endanger the inhabitants in these water bodies but 

also the consumers of the water. As of today, water pollution is a major global issue 

that needs to be addressed seriously, notably in fast developing countries. With the 

rapid growth of population as well as industries, it is inevitable that the demand for 

clean water also increases. Nevertheless, due to the escalating numbers of industrial 

and agricultural activities in most countries, effluents containing intolerable level of 

both organic and inorganic substances are being discharged into water bodies on a 

daily basis. Statistically, based on a report done by Malaysia’s Department of 

Environment (DOE) in 2004, out of a record of 17,991 water pollution sources in 

Malaysia, 54% (8,414) of the sources originated from sewage treatment plant, 38 % 

(8,203) of the sources initiated from manufacturing industries and 3 % (504) came 

from agro-based industries [1]. Law enforcements and policy prescriptions on the 

management of industrial wastewater have long been executed extensively to combat 

water contamination but concurrently, efficient and cost effective water treatment 

technologies have to be adopted and developed in order to sustain cleaner water 

resources for the well-being of all.   

 

 Water treatment can be well described as the process of eliminating the 

presence of contaminants or decreasing the concentration of existing pollutants in 

water to an acceptable level for the purpose of desired end-use such as for industrial 
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processes and even as drinking water. Accordingly, an ideal water treatment system 

should be able to totally mineralize contaminants in polluted water without leaving 

behind any harmful intermediates or by products. Apart from that, the process should 

be economically sustainable and possibly, time-saving. Due to the recalcitrant nature 

of most pollutants, many existing water treatment methods have yet to attain this 

ideal condition.  

 

 Physical-chemical treatments such as coagulation, adsorption, membrane 

processes and reverse osmosis methods have been employed to a varying extent of 

effectiveness in removing pollutants from water. Nonetheless, these methods are 

non-destructive since they merely operate by transferring the pollutant from one 

phase to another phase or initiate secondary pollution by concentrating the 

contaminants [2]. This can lead to possible problems since many environmental 

enforcement agencies may classify the used sludge or adsorbents as harmful 

materials which require post-treatment. Further treatment of these solid wastes is 

often considered expensive and sophisticated. On the other hand, destructive 

wastewater treatment methods such as biological treatment, in both anaerobic and 

aerobic conditions, have proven to be effective but the presence of toxic organic 

contaminants can stifle the development of the active microorganisms the 

consequence of which inevitably reduces their degradation efficiency [3]. The 

maintenance of these bacteria can also be very costly and complicated. In appropriate 

situations, the destruction of organic pollutants and solid wastes can also be carried 

out via incineration but this may lead to the production of hazardous organics such as 

dioxins and furans [4]. Subsequently, these drawbacks have prompted intensive 

works on novel water treatment technologies which possess better efficiency and 
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consume fewer resources. This leads to the study of advanced oxidation processes 

(AOPs), a water cleaning technology which typically involved the formation of very 

powerful oxidizing radicals that leads to highly effective oxidation processes. 

 

1.1 Advanced Oxidation Processes (AOPs) 

 AOPs can be generally defined as one type of water treatment technology that 

mainly involves the generation of very powerful oxidizing radicals (normally 

hydroxyl radicals with standard reduction potential, Eº = 2.80V vs. SHE) which can 

unselectively initiate oxidative dissociation of organics or under certain 

circumstances, inorganic contaminants in aqueous effluents. Hydroxyl radicals are 

the most powerful oxidizing species after fluorine which possesses Eº = 3.03 vs. 

SHE. Contrary to other conventional water treatment method such as adsorption 

processes, AOPs are capable of converting hazardous materials in wastewater 

effluents into water and carbon dioxide, or otherwise, into other innocuous by-

products. Furthermore, these ‘destructive’ chemical oxidative processes are able to 

mineralize wide range of contaminants and this has, in particular prevented the 

accretion of end-products. Major types of AOPs include the employment of ultra-

violet (UV) light, hydrogen peroxide (H2O2), ozone (O3), vacuum (V) and 

semiconductors such as titanium dioxide (TiO2) [5]. Major AOPs can be summarized 

as shown in Figure 1.1. 
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Figure 1.1: Major advanced oxidative processes (AOPs) processes and their various 

systems [5] 
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1.1.1 Processes of AOPs 

 Direct photolysis involves the interaction of UV light with pollutants in water 

to bring about their dissociation into intermediates which are eventually transformed 

to harmless by-products in the presence of light. In this process, the organic 

pollutants undergo absorption of UV light whereby its high energy radiation can 

result in the breakdown of chemical bonds and consequently, destruction of the 

organic compounds. Direct photolysis is deemed insufficient and inefficient for the 

degradation of persistent pollutants such as chlorinated and nitrated aromatics in 

water [6, 7]. The energy of UV light solely is inadequate to breakdown the chemical 

bonds of some organic species thus some contaminants are not degraded rapidly or 

effectively. This was confirmed by comparative studies which had also shown that 

the practice of direct UV photolysis in degradation of contaminants, namely 

chlorophenols, azo dyes, diuron and monocrotophos appeared to be less effective  

compared to other AOPs where irradiation was combined with hydrogen peroxide or 

ozone, and when homogeneous or heterogeneous catalysis was utilized [8 – 11]. The 

combination of notably short wavelength UV light with highly reactive chemical 

species such as hydrogen peroxide and ozone increases the degradation rate by 

multiple times due to the synergistic effect of efficient generation of hydroxyl 

radicals and the photon energy from the light.  

 

 During the UV based AOPs, organic contaminants are decomposed in two 

ways. The first way involves the direct photolysis of organic pollutants as mentioned 

earlier. The addition of H2O2 to the process initiates the AOPs conditions by 

generating OH· radicals. This often increases the destruction rate of pollutants 

considerably. In another route, H2O2 undergoes UV photolysis and a series of 
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propagation as well as termination reactions to produce OH· radicals. Subsequently, 

the generated OH· radicals will destroy the contaminants via OH· radical oxidation. 

Formation of OH· radicals in this process, therefore, determines the degree of 

pollutants removal. Hence, large dosages of H2O2 and long exposure of UV light are 

required in order to sustain the efficiency of this decontamination method. Another 

H2O2 induced AOPs involves the utilization of Fenton reagents to produce OH· 

radicals by means of addition of H2O2 to Fe
2+

 ions as catalyst. Simultaneously, this 

also generate Fe
3+

 ions due to the oxidation of Fe
2+ 

ions. This process works on the 

fact that the iron catalyst is very easily acquired and it is a non toxic material. 

However, this process does not operate on the basis of the sole oxidation reaction 

only since the adoption of suitable pH value (2.7-2.8) can further catalyzed this 

reaction by initiating the reduction of Fe
3+

 in order to regenerate Fe
2+

. The overall 

reaction is known as the Fenton process. Given that this reversible mechanism occurs 

at appropriate rate, the decomposition of pollutant via this method can be a 

sustainable process [12]. Photo assisted Fenton process is an extension of the Fenton 

process which manipulates the presence of UV light to cause photolysis of Fe
3+

 

complexes to allow the reformation of Fe
2+

. Decontamination of pollutants via H2O2 

based AOPs  however suffers from several drawbacks, namely the usages of 

expensive reactants such as H2O2, the requirement of rigid controlled pH values  and 

the generation  of sludge which creates disposal problem. 

  

Another type of AOPs which generates OH· radicals is known as ozonation.  

This is an oxidation process which the applications have also been tested with the 

combination of UV light and/or H2O2. During ozonation, the dissolved organic 

contaminants are oxidized directly by O3 which is a powerful oxidant itself. This is 
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due to the study that the decomposition of ozone in aqueous solution occurs through 

the generation of OH·, which consecutively oxidize the pollutants. Evidently, when 

H2O2 is added to the ozonation process, the breakdown of O3 is accelerated with the 

presence of more OH· radicals.  Furthermore, the adoption of UV light into O3/H2O2 

system could improve the decontamination rate via photochemical generation of OH· 

radicals. However, this AOPs process is plagued with the low solubility of O3 in 

water and the need of strict pH control since the O3 decomposition mechanism 

involves the use of conjugated base [5].  

  

Heterogeneous photocatalysis is another constituent of AOPs which has been 

studied extensively to decompose refractory compounds in wastewater effluents. 

This process is a photo-induced reaction that is based on the photocatalytic ability of 

a semiconductor to produce electron-hole pairs under irradiation which generates 

free radicals, namely hydroxyl radicals in order to initiate secondary reactions to 

remove the pollutants. Some of the semiconductors which are normally applied as 

photocatalyst are TiO2, ZnO and CdS [2, 6].  

 

1.1.2 Environmental applications of AOPs 

 In conjunction with insufficient treatment brought by conventional and 

biological water purification methods, many AOPs induced studies have been carried 

out in the search of more sustainable water treatment technologies [8 - 10]. AOPs, 

despite their different pathways of processes, are merged by one similarity which is 

the presence of the highly reactive species such as the hydroxyl radicals in their 

overall mechanisms. These reactive radicals would lead to oxidative decompositions 
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of recalcitrant and non-biodegradable contaminants to harmless by-products or inert 

end products.  

  

Over the years, apart from the research and development of water and 

wastewater treatment technologies, AOPs have also initiated other environmental 

applications such as soil treatment [13], groundwater remediation [14], conditioning 

of solid sludge [15] as well as treatments of volatile and semi volatile organic 

compounds [16, 17]. Environmental applications of AOPs on water and wastewater 

treatment have already been studied on wastewater effluents originated from diverse 

industries, namely textiles, pharmaceuticals, electronics, cosmetics, plastics, 

pesticides and so on which contain perilous and less biodegradable  compounds such 

as cyanides, phenols, antibiotics, xenobiotics, ketones, chlorinated compounds, 

alcohols, aromatic compounds and acetates [18 - 22]. 

  

By considering the degree of pollution in effluents and the targeted 

treatments, AOPs can be applied solely or as feasible supports to the traditional 

biological and physicochemical treatments methods via combined processes. The 

combined processes practically offers better treatment results as compared to 

individual processes due to the synergistic or coupling effect permits by respective 

methods. Subsequently, AOPs can be engaged either at the pre-treatment stage, in 

which initial contaminants are converted into biodegradable intermediates ready for 

biological or physical treatments or at post-treatment level, whereby the ecological 

content of the pollutants are first removed and/or degraded before being treated by 

AOPs. As such, investigations on the application of Fenton oxidation process 

followed by aerobic biological treatment for the remediation of wastewater 
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containing recalcitrant and persistent compounds such as azo dyes have been 

documented [23 - 25]. Alternatively, pre-treatment of wastewater from paper 

industry by customary coagulation-flocculation methods as a preparatory step for 

subsequent treatment via heterogeneous photocatalysis has been reported [26].    

   

However, amidst various AOPs processes, heterogeneous photocatalysis 

appears to be more effective and popular due to several advantages. The main 

advantages of heterogeneous photocatalysis are as the following: 

i. Semiconductors for the applications of photocatalysis are easily 

acquired and relatively inexpensive. 

ii. Most of the photocatalysts, especially TiO2 (anatase) required for this 

technique are chemically and biologically stable. 

iii. Photocatalysts are reusable and many on-going studies are conducted 

to improve the reproducibility of the catalyst for long term use. 

iv. Oxidation processes under heterogeneous photocatalysis are capable 

of mineralizing wide ranges of persistent pollutants unselectively. 

v. Supplementary of expensive oxidants are redundant in this method 

because atmospheric oxygen from air pump is sufficient to be utilized 

as oxidant.  

vi. This process produces environmental friendly final products or by-

products such as CO2 and H2O or other mineralized acids. 

vii. Water treatment via this method can be operated under the 

illumination of solar light as the photocatalyst can be stimulated under 

low energy light sources. 
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viii. Under heterogeneous photocatalysis, oxidation and reduction can 

occur simultaneously, and therefore this process does not only have 

the ability to initiate reactions for the initial pollutants but also has 

large capabilities in purifying intermediates or by-products which are 

generated by the process.   

 

1.2 Heterogeneous photocatalysis 

1.2.1 Overview  

 While the subject of heterogeneous photocatalysis for both fundamental and 

applied perspectives has been immensely investigated, the definition of 

heterogeneous photocatalysis is still relatively ambiguous due to its rather 

complicated mechanism and diverse processes. As stated in an article by Herrmann 

[27], heterogeneous photocatalysis covers a large variety of reactions, namely 

oxidation, dehydrogenation, hydrogen transfer, isotopic exchange, metal deposition, 

water remediation, gaseous pollutant control and so on. Heterogeneous 

photocatalysis has found itself as an emerging AOP for environmental cleanups 

applications, especially when this fascinating process can be accomplished in various 

phases such as aqueous solution, pure organic liquid and even in gaseous state. 

 

 Similar to the established heterogeneous catalysis, this process mainly 

engages the migration of reactants in a liquid or a gaseous phase to the surface of the 

photocatalyst, followed by the adsorption of one or more of the reactants onto the 

surface and reactions at the adsorbed phase. Subsequently, this process persists on 

with the desorptions of the reactants and/or products of the reactions and finally, the 

elimination of products from the interface. The only dissimilarity that separates 
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heterogeneous photocatalysis from the other conventional catalytic processes is the 

photocatalytic reaction at the adsorbed stage. The catalyst or rather the photocatalyst 

in heterogeneous photocatalysis is stimulated via light energy instead of hydro or 

thermal energy at this stage. The photo activation process only takes place at the 

adsorbed phase although photoadsorption and photodesorption of reactants may 

possibly occur [27]. 

 

1.2.2 Background 

 The birth of heterogeneous photocatalysis three decades ago was provoked by 

Fujishima and Honda’s 1972 discovery of photo-induced water splitting on TiO2 

electrodes. Back in late 1960s, the water splitting study was executed with a small 

electrochemical system in which an n-type TiO2 semiconductor (rutile) was 

connected to a platinum black counter electrode through an electrical load. Upon the 

illumination of the TiO2 electrode to near UV light ( λ < 415 nm), electrons flowed 

from TiO2 electrode to the platinum counter electrode through the external circuit, 

revealing that an oxidation reaction (oxygen gas evolution) has occurred at the TiO2 

electrode and a reduction reaction (hydrogen gas evolution) has taken place at the 

platinum electrode. This finding simply proved that water decomposition into oxygen 

and hydrogen may be possible under the presence of UV-visible light without the 

application of external electrical supply [28]. 

 

 Since then, extensive studies had been initiated on the utilization of solar 

irradiation for the production of hydrogen as fuel source from water. Later, the water 

splitting study was further investigated without the use of external circuit and this 

marked the beginning of the phenomenal process by the name of heterogeneous 



12 
 

photocatalysis. Some years later in 1977, researchers Frank and Bard began to 

examine the possibilities of governing the redox reactions initiated by the illuminated 

semiconductor TiO2 for the decomposition of cyanide in water and  this has 

prompted many intensive works on the environmental purposes of heterogeneous 

photocatalysis  until today [29]. 

 

1.2.3. Semiconductor mediated heterogeneous photocatalysis 

 As suggested by its term, ‘photocatalysis’, this process refers to the chemical 

transformation reactions initiated by the presence of light energy and catalyst. The 

catalysts required in this process correspond to semiconductors which are responsive 

to illuminations of light. Such reactions are due to the particular changes in the 

monomeric numbers N in the electronic structure of a semiconductor from atomic 

orbital to clusters. The band electronic structure of a semiconductor consists of the 

highest filled band (the valence band) and the lowest unfilled band (the conduction 

band) which are separated by a band gap, Ebg, a region depicting energy level in a 

perfect crystallite form and is normally valued in unit of electronvolts, eV. For the 

purpose of photo-induced reactions, the activation of a semiconductor photocatalyst 

can be achieved via the absorption of a photon of ultra-band gap energy, resulting in 

the transition of an electron, e
-
 from the valence band to the conduction band with the 

simultaneous generation of hole, h
+
 in the valence band. The photo-generated 

electron-hole pairs are mainly involved in two processes, namely the reactions with 

electron donor or acceptors via different interfacial processes and major inhibition 

process concerning the recombination of electrons and holes. For a semiconductor to 

be efficient, these two mentioned processes must compete with one another 
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effectively [30]. These processes can be represented in Equations 1.1, 1.2, 1.3 and 

1.4 [31]: 

 

Absorption of light       Semiconductor                     e
-
cb + h

+
vb                       (1.1) 

Recombination               e
-
cb + h

+
vb                                      Heat            (1.2) 

Oxidation                       D    + h
+
                                    D

.+ 
                                  (1.3) 

Reduction                      A    + e
-
                                     A

.-    
                                (1.4) 

 

As illustrated in Figure 1.2, the valence and conduction band positions of 

various semiconductors are different. The reactivity of a photo-induced process is 

very much dependant on the valence and conduction band positions. Therefore, in an 

oxidation photocatalytic reaction, the redox potential of the photo-generated valence 

band hole must be adequately positive to generate the highly oxidizing radicals, 

hydroxyl radicals for the oxidation of pollutants to occur. On the other hand, for a 

semiconductor to perform as a photocatalyst in a reduction reaction, the redox 

potential of the photo-generated conduction band must be negative enough to initiate 

the reduction of molecular oxygen into superoxide. The production of electron-hole 

pairs are governed by the intensity and the photon energy of the light source used for 

the activation of a semiconductor.  

 

According to Taghizadeh et al. [32], photochemical induced process 

concerning semiconductors can be divided into two significant categories: (i) the 

formation of highly reactive radicals resulted from the oxidation of hydroxide ions 

and reduction of oxygen which would initiate reactions with the pre-adsorbed 

  hv > Ebg 
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substrates at the solution interface and (ii) direct oxidation or reduction of the 

compounds that diffuse from the batch solution to the semiconductor particle surface.  

 

 

Figure 1.2: Valence and conduction band positions of some the most commonly used 

semiconductor photocatalysts at pH = 0 [30]. 

 

Similarly, in environmental applications, semiconductor photocatalysis 

essentially involves the irradiation of semiconductors with photon of energies greater 

than the band-gap energy in order to excite electrons from the valence band to the 

conduction band, leaving behind the positive holes. The positive valence band 

gradually generates hydroxyl radicals whereas the negative conduction band initiates 

the reduction of molecular oxygen or metal ions, which often serves as the oxidizing 

agent. Hence, the formation of highly oxidizing agents such as hydroxyl and 

superoxide radicals would attack the contaminants at or near the surface of the 
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semiconductor photocatalysts, resulting in the detoxification of pollutants via 

concurrent redox reactions [33]. In photocatalytic water remediation, oxidation 

reactions are applied to mineralize dissolved organic substances whereas reduction 

reactions are utilized for the removal of inorganic compounds such as heavy metal 

ions.  

 

Some of the commercially acquired semiconductors that have been actively 

researched in photoctalytic studies for environmental cleanup are TiO2 [29, 34], ZnO 

[35, 36], ZnS [37], Fe2O3 [38], WO3 [39], CdS [40] and ZrO2 [41]. In some works, 

two or more semiconductors are combined and modified with the aim of enhancing 

the photo-induced reactions [42-44] for better removal of pollutants. Despite of the 

many other semiconductors, most of the photocatalytic studies are dominated by the 

application of TiO2 as the photocatalyst.  

 

1.3 Titanium dioxide (TiO2) 

1.3.1 General 

 A member of the first transition series metals, titanium has the electronic 

structure of 3d
2
4s

2
. Discovered in 1791 in England by Reverend William Gregor who 

recognised the new element in ilmenite, titanium is the world’s fourth most abundant 

metal after aluminium, iron and magnesium and the ninth most abundant element 

comprising about 0.63 % of the earth’s crust. Ilmenite is one of the main ores for 

titanium and is widely used as a source of titanium metal. Several years later, 

titanium was rediscovered by a German chemist by the name of Martin Heinrich 

Klaporth who named the element after the Titans of the Greek mythology. Titanium 

metal is usually found bounded to other elements in nature. The element occurs 
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primarily in minerals, especially rutile, ilmenite and leucoxene, and can also be 

found in rocks, coal, ash, soils and even in human bodies. Titanium commonly 

appears as impure compounds found in minerals in the form of TiO2, in which rutile 

constitutes 93 % to 96 % of TiO2, ilmenite contains 44 % to 70% of TiO2 and 

leucoxene may comprise up to 90 % of TiO2. Titanium can also appear in the form of 

titanium tetrachloride (TiCl4) [45]. 

 

 A metallic element, titanium is usually recognised for its high strength to 

weight ratio and its excellent resistance to corrosions. Titanium is also a strong metal 

which has low density and is relatively flexible. The melting point of titanium is 

1668 ºC and chemically, titanium is one of the few elements exist that burns in pure 

nitrogen gas at 800 ºC to form titanium nitride. It is also able to withstand the attack 

of diluted acids and bases. Titanium dissolves in hot HCI giving Ti (III) chloro 

complexes and in HF or HNO3 and HF to form fluoro complexes. Heated in HNO3 

will result in the formation of hydrous oxide [46]. 

 

 It is estimated that approximately 98 % of the world’s titanium production is 

meant for the refinement into TiO2, the white permanent pigments, while only the 

remaining 2 % is used for making titanium metals, rods, fluxes and other products. 

Due to its two most beneficial features, its resistance to corrosion and strength to 

weight ratio, titanium is widely applied in chemical industries, aircraft and marine 

equipments and turbine engines [45].  

 

 Titanium dioxide, also known as titanium (IV) oxide or titania, belongs to the 

family of transition metal oxides. The mass production of TiO2 began in early 20
th
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century when TiO2 started substituting hazardous lead oxides as white pigments in 

paint. Since then, TiO2 is utilized actively as white pigments in paint, paper and 

plastics industries, which make up the major sectors of TiO2 usages [45]. The 

applications of TiO2 as pigments have expanded over the years in some sectors such 

as textile, food, pharmaceuticals, cosmetics, leather and mixed oxides. Due to its 

high refractive index, TiO2 has also found itself as anti-reflection coating in solar 

cells and in optical devices. Furthermore, TiO2 is also applied as gas sensors, 

biomaterials, catalysts, additives, carrier for metal and metal oxides and dielectric 

materials [45].  

 

 On an industrial scale, TiO2 may be synthesised by either using the sulphate 

or the chlorine process. Briefly, the sulphate process involves the transformation of 

ilmenite to metal sulphates after reactions with sulphate acids followed by 

appropriate steps of hydrolysis, filtration and calcinations according to the desired 

crystallite forms of TiO2. On the other hand, the chlorine process employs rutile, 

which is obtained from ilmenite via Becher process. In Becher process, iron oxide 

found in ilmenite is reduced to metallic iron and later is reoxidised to iron oxide, 

unravelling out the TiO2 as synthetic rutile of 91-93 % purity. Later on, the produced 

rutile is reacted with chlorine to produce TiCl4, which is purified and reoxidized to 

yield highly pure TiO2. Even though both methods are applicable to produce TiO2, 

factors such as the accessibility of raw materials, waste management costs, 

transportation and environment are fairly put into consideration in deciding to use 

one method instead of the other [45].  
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1.3.2 Crystal structures of TiO2 

 Titanium dioxide has three main polymorphs in nature, namely rutile 

(tetragonal), anatase (tetragonal) and brookite (orthorhombic). These three crystallite 

structures comprise of distorted octahedral (TiO
6-

2) that are linked differently by 

vertices and edges. Anatase can be seen as a zigzag structure in which each 

octahedron shares four edges with the other four octahedral. As for rutile, two 

octahedral edges are shared to build linear chains along the direction of 001 plane 

and the octahedral chains that are connected to one another via vertices shared 

bonding electrons. In brookite, each octahedron shares three edges and the 

octahedrals assembly leads to a crystalline structure with tunnels along the c-axis 

[47]. The three crystal structures of TiO2 are illustrated in Figure 1.3 and their 

physical properties are summarized in Table 1.1. 

 

(a)                                         (b)                                           (c) 

                                                                  

Figure 1.3: The representative crystals structures of (a) anatase, (b) rutile and           

(c) brookite [48]. 

 

Based on thermodynamic calculations, rutile is the most stable of all three 

crystalline forms of TiO2 at all temperature and pressure up to 60 Kbar. Anatase and 

brookite are metastable and are prone to transformation when heated. However, the 
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slight discrepancy in Gibbs free energy (4-20 KJ/mole) among these three phases 

shows that anatase and brookite are just as stable as rutile at ambient temperature and 

pressure [45]. 

 

The conversion of anatase to rutile has been studied for mechanical as well as 

application purposes, especially in photocatalytic driven field, whereby the phase of 

TiO2 play a major role in determining the reactivity of the process. At room 

temperature, anatase is kinetically stable and the phase transition of anatase to rutile 

occurs during calcinations from 600 ºC to 1100 ºC. The transformation of anatase to 

rutile is basically due to the increase in pressures and temperatures, in which these 

two factors are governed by primary particle size as well as the methods, used during 

preparation [49]. 

 

Anatase and rutile phases have been studied most extensively in 

photocatalytic induced activity whereas another phase of TiO2, brookite is difficult to 

prepare and amorphous TiO2 is not reactive towards light energy [49]. In most 

photocatalytic studies, however, anatase phase is preferred over the rutile phase 

because anatase exhibits better electron mobility, lower dielectric constant, less 

dense and lower deposition temperature which allows  the applications of low 

thermally resistance materials as supports in its immobilisation process. 
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Table 1.1: Physical properties of anatase, rutile and brookite [45] 

____________________________________________________________________ 

Form         Crystal  Space group  Lattice constants (nm) 

       __________________________ 

                                         a          b  c   c/a   

____________________________________________________________________ 

Anatase       Tetragonal D
19

4h- I41/amd        0.3733     -        0.937       2.51 

Rutile         Tetragonal D
14

4h-P42/mmm      0.4584     -        0.2953     0.644   

Brookite      Orthorohombic D
15

2h-Pbca              0.5436  0.9166       -         0.944  

 

Density (kg m
-3

)  Band gap (eV)         Refractive index    ng            np 

Anatase 3830  3.26                                                      2.5688      2.6584 

Rutile  4240  3.05                                                      2.9467      2.6506 

Brookite 4170                                                                             2.8090      2.677 

 

Dielectric properties Frequency (Hz)       Temperature (K)     Dielectric constant   

Rutile, perpendicular 10
8
           290-295         86 

to optical c-axis 

Rutile, parallel  -          290-295       170  

to optical c-axis 

Rutile, along c-axis 10
7 

         303       100 

Anatase, average 10
4
          298         55 

____________________________________________________________________ 

 

1.4 TiO2 as semiconductor photocatalyst 

 The application of semiconductor in photocatalysis for water and wastewater 

treatment technology has attracted attention globally. One of the most crucial factor 

in determining the effectiveness and efficiency of the pollutants treatment process is 

the choice of the semiconductor used as the photocatalyst in the treatment system.  

 

 The photo-activation of a semiconductor to generate electron-hole pairs for 

redox reactions is determined by the band gap energy between its valence band and 

its conduction band. Therefore, the band gap energy is basically used as a benchmark 

when choosing compatible semiconductors for photocatalytic studies. Table 1.2 

depicts the band gap energies of some of the most used photocatalysts and their 

threshold wavelengths. Although semiconductors with lower band gap energy are 
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preferred for photocatalysis, especially when solar irradiation is applied, the 

utilization of semiconductor such as CdS is unfavourable as it is susceptible to 

photodecomposition. Subsequently, this leads to the leaching of cadmium, a 

specifically toxic metal itself, into the treated water [31].  

 

Table 1.2: The band positions of some common semiconductors in aqueous solution 

at pH 1 [31]. 

____________________________________________________________________ 

Semiconductor  Band gap (eV)    Wavelength (nm) 

____________________________________________________________________ 

TiO2    3.2     380  

SnO2    3.9     318 

ZnO    3.2     390 

ZnS    3.7     336 

WO2    2.8     443 

CdSi2    2.5     491 

CdSe    1.7     730 

GaAS    1.4     887 

GaP    2.3     540 

____________________________________________________________________ 

        

Ideally, a semiconductor photocatalyst must be photoactive, biologically and 

chemically inert, applicable in visible and/or UV light region, stable towards light, 

able to unselectively degrade wide ranges of pollutants, easily acquired, easy to 

handle, inexpensive and does not pose risks or hazards to both environment and 

humans. Among the available semiconductors, TiO2 satisfies most of the ideal 

criteria.  

 

Solar irradiation which contains about 3-5 % UV of wavelength, λ < 380 nm 

can be used as a light source to activate TiO2. The application of sunlight as a light 

source is encouraged as it is a renewable source of energy. Therefore, this has 

prompted many works on the modification of TiO2 to respond to visible light ( about 

45 % of the solar spectrum) in order to achieve better photocatalytic efficiency under 
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sunlight [50]. Some of the modification approaches that have been taken are non-

metals doping [51-52] and metal oxide mixing [43-44, 50]. Yang et al., [51] 

synthesised carbon and nitrogen co-doped TiO2 and found out that due to the 

increased surface area and optical shift governed by the dopants, the photocatalytic 

efficiency of the doped catalyst was enhanced as compared with pure TiO2 under 

both visible light and UV exposure. In a study conducted by Pavasupree et al., [50], 

TiO2-CeO2 nanopowders with limiting amount of 5 % mol of CeO2 was produced 

using modified sol-gel processes and it was observed that the mixed metal oxides 

demonstrated 2-3 times better photocatalytic activity as compared with pure TiO2 

under visible light. 

 

1.5 General mechanism pathway of TiO2 photocatalysis 

 The common process of TiO2 photocatalysis involves the excitation of an 

electron from the valence band to the conduction band when it is exposed with UV 

light (λ < 380 nm), leaving a hole in the valence band. Detailed mechanism of TiO2 

photocatalysis have been discussed in literatures [27, 34, 53] and summarized here 

[54]. As TiO2 is irradiated with light energy of equal or more than its band gap 

energy (3.2 eV for anatase phase), electrons in conduction band (e
-
CB ) and holes in 

valence band (h
+

VB) are produced according to Equation 1.5: 

 

TiO2 + hv                   h
+

VB + e
-
CB               (1.5) 

 

These photo generated species undergo charge transfers with adsorbate such as 

oxygen, hydroxyl ions or organic substrates on the surface of TiO2. The charge 

transfer process is continuous and direct decomposition of the organic substrate is 
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possible. The trapping of the electrons at the conduction band by charge carriers is 

faster (100 ps) than the trapping of the hole (10 ns) [53]. The trapped holes react with 

the surrounding water molecules or hydroxyl ions, leading to the formation of highly 

reactive radicals, namely hydroxyl radical 
.
OH. The holes may also initiate direct 

oxidization of the contaminating species (R). These processes are shown in 

Equations 1.6, 1.7 and 1.8: 

 

h
+

VB + H2O                       ˙OH + H
+
                                                                      (1.6) 

 

h
+

VB + OH
-
     ˙OHad               (1.7) 

 

h
+

VB + Rads     R
+
                                                                                 (1.8) 

 

 The excited electrons react with electron acceptors such as the oxygen 

adsorbed or dissolved in the water as represented in Equation 1.9: 

 

e
-
 CB + O2   O˙2

-
                                                                           (1.9) 

 

It is believed that the hydroxyl radicals (˙OH) and superoxide radical anions (O˙2
-
) 

are the major oxidizing agents in the photocatalytic reactions [54-55]. Some other 

oxidizing species that may be produced are reported as H2O2 and HOO˙ [56]. 

Without the presence of electron acceptors and donors, there is also a possibility that 

the electrons and holes may recombine either on surface or in the bulk of TiO2, as 

shown in Equation 1.10: 
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e
-
CB + h

+
VB TiO2                                                                 (1.10) 

 

These processes can be illustrated as in Figure 1.4. 

 

 

Figure 1.4: General mechanism pathway of TiO2 photocatalysis [54]. 

 

1.6 Langmuir-Hinshelwood process 

 Direct photocatalytic reactions pathway discussed earlier in Section 1.5 can 

be well described as the Langmuir-Hinshelwood process. This process follows the 

formation of electrons and holes upon the photo excitation of a catalyst. As explained 

previously, the hole is trapped by the adsorbed substrates and subsequently generates 

highly reactive radicals. This reactive species then decays via two ways, namely 

recombination with the photo generated electrons or undergo chemical reactions, 
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yielding the product of the reactions. This process can be accessed and evaluated 

quantitatively using the Langmuir-Hinshelwood kinetic model [5]. 

 

Initially studied for the quantification of gaseous-solid reactions, the 

Langmuir-Hinshelwood kinetic model is presently used to describe the reactions 

between liquid and solids. Based on this kinetic model, the rate of the reaction 

corresponds linearly with the portion of surface (r) covered by the substrate (Ɵ) as 

shown in the following Equation 1.11 (adapted from Valente et al., [57]): 

 

r = dC/dt = kƟ                (1.11) 

 

Langmuir’s model that ascertains adsorption on solid substrate can be described as in 

Equation 1.12. Therefore the previous Equation 1.11 becomes proportional to the 

Equation 1.13:  

 

Ɵ = KC / (1+KC)               (1.12) 

 

r = dC/dt = kƟ = kKC / (1+KC)                                                         (1.13) 

  

In Equation 1.13, k is the true rate constant which covers a number of operational 

parameters such as mass transfer, aeration rate and so on, whereas K is the constant 

of adsorption equilibrium in Langmuir-Hinshelwood. For photocatalytic studies, the 

value K is attained empirically through kinetic study in the presence of light and is 

better than that obtained during adsorption studies. C is the concentration of the 

substrate at time t.  


