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Kajian Tentang Fabrikasi dan pencirian Penderia Gas 

Filem Nipis Terpercik ZnO Terdop Cr 

 

ABSTRAK 

 
Filem nipis zink oksida (ZnO) dan ZnO terdop kromium (Cr) telah berjaya 

dihasilkan melalui percikan bersama  frekuensi radio secara reaktif dari sasaran 

logam kromium dan zink berketulenan tinggi. Kepekatan  Cr berada dalam julat  

peratusan atom (1 - 4). Pembelauan sinar- X mendedahkan bahawa filem ZnO 

mempunyai struktur polihabluran dengan fasa dominan (002) tumbuh sepanjang 

paksi c dari struktur heksagon ZnO tersebut. Puncak (002) teranjak sedikit ke sudut  

Bragg lebih tinggi ketika Cr menggantikan Zn dalam hablur ZnO. Filem 

mempamerkan butiran nano tertabur seragam  dengan struktur  turus.  

Penderia gas berasaskan filem  ZnO  tak terdop dan terdop Cr difabrikasikan 

yang merangkumi platinum / tantalum sebagai elektrod dan elemen pemanas. Ciri-

ciri dan prestasi penderia gas diukur dan dinilai melalui pengukuran arus – voltan, 

sambutan rintangan – masa dan  spektroskopi impedans di bawah persekitaran gas 

yang berbeza (oksigen, hidrogen dan sebatian organik meruap sperti aseton, etanol, 

dan isopropanol. Penderia gas berasaskan ZnO terdop Cr mempamerkan sambutan 

lebih tinggi pada suhu operasi yang lebih rendah 250 
o
C bagi oksigen dan 300 

o
C 

bagi wap VOC berbanding dengan yang ditunjukkan oleh ZnO tak terdop suhu 

operasi adalah 350 
o
C bagi okigen dan 400 

o
C bagi wap VOC. Keputusan ini 

dijelaskan dan dibincangkan dalam kaitannya dengan struktur permukaan penderia 

gas dan kesan selanjutnya pada prestasi penderia tersebut. Spektroskopi impedans 

dari penderia mendedahkan bahawa sambutan penderia boleh dikaitkan dengan 

rintangan sempadan butiran yang sekali lagi mencadangkan pentingnya kereaktifan 

permukaan penderia dalam penderiaan gas.  

Akhirnya, penderia menunjukkan kestabilan yang baik dengan prestasi boleh 

ulang semula dalam kepekatan gas yang berbeza.  Penderia gas ZnO terdop Cr 

mempamerkan sambutan lebih tinggi dan masa sambutan lebih pantas berbanding 

dengan yang dipamerkan penderia gas ZnO tak terdop. 
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A Study on the Fabrication and Characterization of 

Sputtered Cr doped ZnO Thin Film Gas Sensors 

 

ABSTRACT 

 
Zinc oxide (ZnO) and chromium (Cr) doped ZnO thin films were successfully 

produced by reactive radio frequency co-sputtering of high purity zinc and chromium 

metal targets. The Cr concentrations were in the range of (1 – 4) atomic percentage.  

The X – ray diffraction revealed that the ZnO films possessed a polycrystalline 

structure with a (002) dominant phase grown along the c-axis of the hexagonal 

structure of the ZnO. The (002) peak was slightly shifted toward higher Bragg angles 

when the Cr substitutionally replaced the Zn in the ZnO crystals. The films exhibited 

a uniformly distributed nano grains with a columnar structure.  

Gas sensors based on the undoped and Cr doped ZnO films were fabricated 

that incorporated platinum/tantalum as electrodes and heating element. The 

characteristics and performance of the gas sensors were measured and evaluated 

through current – voltage, resistance – time response and impedance spectroscopy 

measurements under different gas environment oxygen, hydrogen and volatile 

organic compound such as acetone, ethanol and isopropanol. The gas sensor based 

on Cr doped ZnO exhibited higher response at lower operating temperature (250 
o
C 

and 300 
o
C for oxygen and VOC vapors respectively) as compared to that of the 

undoped ( the operating temperatures were 350 
o
C and 400 

o
C for oxygen and VOC 

vapors respectively). The result was explained and discussed in relation to the gas 

sensor’s surface structure and its subsequent effect on the sensor’s performance. 

Impedance spectroscopy of the sensor revealed that the sensor’s response was 

attributed to the grain boundary’s resistance which again suggests the significance of 

the sensor’s surface reactivity in the gas sensing. 

 Finally, the sensors showed a good stability with reproducible performance in 

different gas concentration. The Cr doped ZnO gas sensor exhibited a higher 

response and faster response time as compared to that of the undoped ZnO gas 

sensor. 
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CHAPTER 1 – INTRODUCTION 

INTRODUCTION 

 

1.1 Introduction 

 The development of gas sensors to monitor the toxic and combustible gases is 

imperative due to the concerns for environmental pollution and the safety 

requirements for the industry. The sensors and sensors arrays are also used in 

medical applications, automotive and process control. In general, sensors provide an 

interface between the electronic equipment and the physical world typically by 

converting non electrical of physical or chemical quantities into electrical signals. 

Recently, gas sensors based on the semiconducting metal-oxides (they also are 

known as resistive or chemoresistive sensors) such as tin dioxide (SnO2), zinc oxide 

(ZnO) and tungsten trioxide (WO3) were found to be very useful for detecting the 

toxic, harmful and hydrocarbons gases [1-7]. 

 Volatile organic compound (VOC) vapors are the primary sources of indoor 

environmental pollutants and are considered seriously harmful to the human body [8, 

9]. Notable correlations between VOC emissions and different kinds of cancers have 

been reported [10]. Therefore more work is needed concerning the vapors effects  

and its detection process [10-14]. Among the VOC, acetone is widely used in many 

applications, notably as biomarker for diabetes since it can be found in the exhaled 

breath of the diabetes patient.  

 Gas chromatography and mass spectrometry are the most prevalent among the 

available techniques for analyzing VOCs in the air [15]. However, they are 

expensive, bulky, and unable to perform in situ and continuous measurements. 
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Table 1.1 presented some flammable gases of interest in air mixtures [7, 16]. 

 Table 1.1 Show some flammable gases of interest [7, 16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The fundamental sensing principle relies on the change of conductivity of the 

sensing material when they are exposed to certain target gases at certain 

temperatures. The change is usually proportional to the concentration of the gas. 

There are two types of metal oxide sensors: n-type such as ZnO, SnO2, titanium 

dioxide (TiO2) and ferric oxide (Fe2O3) and p-type such as nickel oxide (NiO), cobalt 

oxide (Co2O3). Both types of sensors may  response to reducing and oxidizing gases 

[7, 17].  

  Metal oxide gas sensors were discovered a long time ago, where the effect of 

the ambient atmosphere on the electrical conductance of semiconductors was 

described  by pioneers such as Barttain and Bardeen [18], Heiland [19] and Seiyama 

and co-workers [20]; the discovery of these behaviors became commercialized at the 

beginning of 1960s by  Taguchi [21] .  

Since then researches and technical developments have been extensively applied to 

enhance the sensing properties of the produced metal oxide gas sensors.  

Gas Lower explosive 

limit (LEL) (vol%) 

Hydrogen 4.0 

Ethane 3.0 

Propane 2.1 

Butane 1.8 

Ethanol 5.5 

Kerosene 0.7 
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 The understanding of the sensing phenomena has been approached from 

different views that have been summarized [22-24]. First by the basic research 

scientists that applied different techniques to determine the simplified model of the 

sensor operation, second by the developers who empirically optimize the preparation 

and test procedures and lastly by the users of the sensors who test and described the 

sensors' parameters (sensitivity, selectivity and stability).  In these steps different 

instrumentations have been applied, some of them were simples such as digital 

multimeter, others are more complicated, which needs more consumable time such as 

spectrometers. 

 In spite of many researches involve in the improvement of the metal oxide 

semiconductors' gas sensors, still there is a need to reduce the operating temperature 

and enhance both the sensitivity and selectivity of the sensors. 

 The most analyzed gas sensors in the past was based SnO2 [25-28] and ZnO 

[29-33]. These semiconducting metal-oxides exhibit good sensitivity to oxidizing 

and / or reducing gases, but they also present unsatisfactory selectivity, 

reproducibility, thermal stability and durability. Many other metal oxide 

semiconductors have also been studied extensively and their behaviors could be 

found in many published articles [7]. 

 The sensors consist mainly of sensing semiconductor material coated over a 

suitable electrodes, an insulator substrate such as a thick alumina substrate or a 

silicon wafer with an insulator layer of silicon dioxide (SiO2) or silicon nitride (SiNx) 

and a suitable heater that is isolated from the electrode [22]. 

 Commercially, companies still used a thick alumina as a substrate [34, 35], and 

many research centers are trying to use the silicon as it can be used in the IC 
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manufacturing process [36, 37]. Figure 1.1 depicts different type of gas sensors as 

commercially product and research prototypes.  

 

 

 

 

 

 

Figure 1.1 Commercially available gas sensor and research prototypes gas sensors [34, 

36] 

  

 Previous work revealed that gas sensors based on thin films ZnO were 

operating at high temperatures [38, 39]. For power saving, longer life time and 

reliability of the operation, low operating temperature of the gas sensors is desirable. 

Doping ZnO with various metals was shown to reduce the sensor’s operating 

temperature and improved its response [40-42].    

1.2 The objective 

 In view of the need for the a better gas sensor, the main objective of this study 

is to fabricate the Cr doped ZnO thin film gas sensors by co- reactive RF sputtering 

of high – purity Zn and Cr metal targets. To the best of our knowledge, we believe 

that the effect of Cr doping on the RF sputtering ZnO thin films for gas sensing 

applications has not been published before. 

Embarking as this objective, the structural properties of the films will be studied in 

relation to their electrical properties upon subjected to gas (O2, H2 and VOC) 

environments. Extensive impedance measurement will be performed to elucidate the 

contribution of different components of the gas sensors towards the observed 

electrical response in these gases atmosphere.    

(b) Research prototypes  (a) Commercial product 
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CHAPTER 2 - FUNDAMETALS OF 

ZINC OXIDE GAS SENSORS 

FUNDAMETALS OF ZINC OXIDE GAS SENSORS 

 

2.1 Introduction 

 Zinc oxide (ZnO) became a material of interest for a variety of electronic 

applications. It can be used in a large number of areas and unlike many of the 

materials with which it competes, ZnO is inexpensive, relatively abundant, 

chemically stable, easy to prepare, and non-toxic. Most of the doping materials that 

are used with ZnO are also readily available. According to a new report from 

NanoMarkets [43], devices and materials based on ZnO are expected to create major 

new opportunities for the electronics industry over the next few years ranging from 

enhanced antistatic coatings to high-value-added products such as solid-state lighting 

and display backplanes. The report predicts that revenues from the leading ZnO 

related electronics applications will reach about US $ 860 million in 2012, rising to 

US $ 2.3 billion in 2016, which was around US $ 500 million in 2009 -2010 

according to the same report. The study also stresses that despite the economic 

recession, ZnO electronics will generate new business revenues, because it addresses 

real world problems in a cost effective way. ZnO is a unique material that combines 

the virtues of a material that is easily and inexpensively obtained and whose basic 

properties are well understood with the ability to serve in important future 

applications within electronics and optoelectronics. 

 ZnO is an inorganic material and belongs to II-VI compound semiconductors. 

It is considered a wide band semiconductor with a direct band gap of approximately 

3.3 eV at 300K, i.e. near the ultraviolet (UV) region of the electromagnetic spectrum, 
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for a hexagonal (wurtzite) type structure. It exists in nature by mineral name of 

“zincite” with yellow to red color depending on the amount of the impurities, 

specially the manganese (Mn). Due to its large band gap, ZnO is colorless and clear. 

The material is considered to be an n-type; this behavior is attributed to the oxygen 

deficiency in the material structure [44, 45].  

 ZnO has attracted the research interest since the 1930s, and then peaked around 

the end of the 1970s and the beginning of the 1980s. The interest then faded away, 

partly because it was impossible to dope ZnO with both n and p-type, and partly 

because of the interest moved to other compounds such as gallium nitride (GaN) and 

gallium arsenide (GaAs), that have been used in low dimensional structures 

applications such as quantum wells. The research on ZnO first initially focused on 

the bulk samples of ZnO such as growing process, doping, band structures and 

electrical transport [46-48]. 

 Another interesting wave of ZnO began in the mid of the 1990s, where it was 

documented in conference, workshops and symposia that more than 2000 related 

papers were published in 2005 as compared to 100 publications in the 1970s [47]. 

The number of these papers exceeds 2000 per year during the last 5 to 10 years as 

indicated e.g. by the databases INSPEC or web of science [48].  

 The recent interesting development of the ZnO is based on the possibility to 

grow the compound by epitaxial layers, quantum wells, nanorods, quantum dots and 

related objects, where research were focused on the applications of the ZnO as [44, 

45, 48, 49]: 

 A blue/UV optoelectronics, including light emitting diodes, laser diodes 

instead of using the GaN and SiC based structures.       
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 A ferromagnetic material by doping it with cobalt (Co), manganese (Mn), 

Iron (Fe), vanadium (V), etc. for semiconductor spintronics. 

 Highly transparent conducting oxides by doping with aluminum (Al), gallium 

(Ga), indium (In), etc. as an alternative to In-SnO (indium tin oxide ITO). 

 ZnO has been used commercially as varistors that constitute hundreds of 

millions of dollars business a year. ZnO based surface wave acoustic devices are also 

regularly used in mobile phones [43]. 

 For the above applications, many published works deal with the preparation of 

undoped and doped ZnO that has led to the research been focused on the 

nanostructures (structures with a reduced dimension) emphasizing on the electrical 

and optical properties. The large exiton energy of the ZnO (about 60 meV) 

comparing to the GaN (26 meV) and ZnSe (22 meV) [50] has given more advantage 

to this compound in the optoelectronic applications, at room temperature and higher 

temperatures. 

 Figure 2.1 shows the hexagonal wurtzite type structure of the ZnO. The c-axis 

is chosen to be parallel to z, while the a and b – axis is laid in the x-y plane with 

equal length and an angle of 120
o
. One Zn ion is surrounded tetrahedrally by four O 

ions and the similarly for the oxygen ions. Each primitive unit cell is consisting of 

two formula unit of ZnO. The value of the lattice constant at room temperature is a = 

b ~ 0.3249 nm while for the c is about 0.5206 nm. The ZnO grows preferably in the 

hexagonal type structure. However, the compound may be grown as a zincblend 

cubic structure on a suitable cubic substrate, and a rocksalt structure under high 

pressure. The later structures are both form the face cubic center (fcc), but with 

different atoms arrangements [44, 48]. 
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 ZnO is an ionic bond compound. According to the ionic bound of the ZnO, the 

bottom of the conduction band is formed from the 4s levels of the Zn
2+

 and the top of 

the valance band from the 2p levels of the O
2-

. The gap between the bottom of the 

conduction band and the top of the valance band is around 3.437 eV at low 

temperatures [51]. 

 

 

Figure 2.1 Unit cell of the ZnO crystal structure [47] 

 

2.1.1 Growing of ZnO 

 For scientific and technical applications many growing methods had been used 

to prepare high quality of ZnO single crystals, thick films as well as thin films [44, 

49, 52], such as molecular beam epitaxy, hydrothermal growth for single crystal and 

screen printing for thick films. Thin films form of ZnO had been most attractive 

since they led to the size reduction of the prepared device. These methods include 

spin coating, chemical vapor deposition (CVD) and pulse laser deposition (PLD). 

One of the most popular growth techniques during the early ZnO investigations was 

the sputtering (direct current (DC) sputtering, radio frequency (RF) magnetron 
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sputtering and reactive sputtering) [49, 52]. The sputtering methods draw the 

attention of many research groups for many reasons such as low cost, simplicity, and 

low operating temperature. The quality of the resulted films appears to be reasonably 

good. Here we focused on the RF reactive sputtering since it is the process that had 

been used in this study. The RF sputtering yield reproducible thin films 

characterizations.    

 RF reactive sputtering is considered as one of the physical vapor deposition 

(PVD) since in this method, there is no chemical reaction as a starting material. The 

sputtering process usually works at moderate vacuum around 2 x 10
-2

 millibar (mbar) 

where the pressure of the sputtering gas is maintained stable. The unit is consisting of 

the following main components as it is shown in Figure 2.2. The target is fixed with 

the material to be used on the cooled surface of the anode. The substrate holder is 

where the substrate to be coated is fixed. The radio frequency generator is used to 

ignite the plasma inside the chamber at a constant frequency of typically 13.56 MHz 

[52].  

 Argon (Ar) is used as a sputtering gas, since it is inert; in the process the atom's 

gas is ionized and bombarded target’s material. The different potential between the 

target (anode) and the substrate holder (cathode) make the sputtered ions causes 

towards the substrate. This process can be used to sputter the material from metals 

and insulators. 

In the reactive sputtering method, the main gas (Ar) is accompanied by other gas, 

which is known as a reactive gas such as oxygen or nitrogen where there will be a 

reaction between the sputtered material and the reactive gas. This process is used in 

producing ZnO from the sputtering of the Zn metal with the reactive oxygen gas. It is 
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believed as preferable method since the stoichiometry of the prepared compound can 

be better controlled [49, 53].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Most of the published works of the ZnO prepared by reactive RF sputtering 

showed high quality samples and highly preferred c-axis orientation of the (002) 

phase of the hexagonal wurtzite structure as detected by the X ray diffraction [52, 

54]. 

Figure 2.2 The schematic of a typical RF sputtering unit. 
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2.2 A Review of ZnO Gas Sensor    

 ZnO has some interesting properties that is able to create opportunities as a 

component for gas sensor and biosensor [49, 55]. It has been studied extensively for 

gas sensing application, since Heiland [19] reported the influence of ambient gas on 

the electrical conductivity of  a ZnO single crystal. Seiyama et al. [20] reported for 

the first time the gas sensing behavior of a thin film form of ZnO. Later, many 

published works reported on this application and recently on the ZnO nanostructure 

as a successful candidate for gas sensing applications [56-59]. Despite many 

published works on this subject, ZnO gas sensor appears to show a high operating 

temperature as well as low response, which may not be as attractive as 

commercialized tin oxide (SnO2) gas sensor. Nevertheless, ZnO is still a good 

candidate for gas sensor applications since it is readily fabricated into thin film by 

various techniques. 

 ZnO gas sensor has been fabricated by different methods in different forms 

(single crystals, thick films and thin films), namely sputtering DC and RF sputtering 

[56, 60], Sol-gel [57], pulse laser deposition [61], and metal organic chemical vapor 

deposition (MOCVD) [62]. 

 Different gases such as hydrogen (H2) [60, 63], hydrocarbons such as ethanol 

(C2H6O), methanol (CH3OH), Methane (CH4) liquefied petroleum gas (LPG)) [7], 

ammonia (NH3) [64], and carbon monoxide (CO) [31], which are considered as 

reducing gases; another type of gases, which consider as oxidizing gas such as ozone 

(O3) [65], nitrous (NOx) [66] and oxygen (O2) [67] have also been investigated as 

testing gas for these gas sensors.   
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 Weichsel et al. [62] prepared ZnO single crystal on GaAs substrate by 

MOCVD and palladium was used to form a Schottky contact. The current at reverse 

bias was found to increase as the ambient atmosphere switched to H2 gas, indicating 

a detectable response to H2 gas. The device was able to recover fully to the initial 

state at room temperature after 17 hours. Kim et al. [68] used commercial ZnO single 

crystal to prepare a Schottky diode with platinum (Pt) contact. The current–voltage (I 

–V) behavior under different H2 concentration was studied, and it showed an increase 

in the measured current as the H2 concentration was increased. Here, the behavior 

was non-reversible, suggesting that the H2 was introduced as shallow donors into the 

ZnO. The electrical conductivity of ZnO single crystals have been investigated by 

Bott et al. [69] in response to CO, methane (CH4), and H2 in air mixtures at 

temperature range from 300° to 500 °C. The ZnO single crystal showed a response to 

H2 and CO with the maximum response at the temperature of around 400 °C with a 

response time of about 2 minutes, but it was insensitive to CH4.   

 Thin films of ZnO are attractive since they are low cost, reproducible and 

compatible with the modern IC technology process. ZnO thin films for gas sensors 

have been studied by many groups to sense different gases such as H2 [39, 60], 

C2H6O, CH3OH, CH4, LPG [7], NH3 [64], and CO [31], O3 [65], NOx [66] and O2 

[67].   

 The gas sensing properties of ZnO thin films deposited on a glass slide by sol 

gel was studied by Musat et al. [57]. The gas sensor response towered O3 gas was 

activated by UV light, thus allowing the sensor to work at room temperature. The 

work revealed that gas-sensing response was strongly depended on the porosity and 

the grain size of the polycrystalline films. Min et al. [39] prepared ZnO gas sensors 

on silicon (Si) substrates where the effect of the different ratio of the reactive to the 
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sputtered gas was studied. The operating temperature of the sensor in detecting gases 

such as H2, NO2 and CO were found to fall in the range of 350 to 450 
o
C         

 The improvement of ZnO gas sensor sensitivity had been achieved by the 

addition of dopants such as aluminum (Al), indium (In), copper (Cu), iron (Fe), tin 

(Sn), antimony (Sb) and bismuth (Bi) into the ZnO thin film. The amount and the 

type of dopant were found to modify the sensitivity of the sensor, especially due to 

Sn and Al [70, 71].  The improvement of gas sensing properties and the operating 

temperature of the ZnO have also been demonstrated by using the metal catalysts 

such as palladium (Pd), Pt, rhenium (Rh), silver (Ag) and gold (Au) [72].  The use of 

metal catalyst raises a problem of the diffusion of those metals into the platform 

(silicon substrate) of the sensors. For example, Pt can introduce deep level traps in 

the band gap of silicon that act as efficient recombination centers, causing high 

junction leakage to the outside boundary of the devices [64, 73]. 

 The enhancement of the ZnO response was also demonstrated through the 

change in the surface states of the ZnO material as reported by  Law and Thong [64] 

who suggested a way of increasing the sensitivity of a ZnO nanowire by reducing the 

carrier concentration. The carrier concentration was controlled through reducing and 

oxidizing gas plasma. Al-Hardan et al. [29] proposed an alternative low cost method 

to reduce the carrier concentration of ZnO thin films. By controlling the oxidation 

time of Zn thin film, the electronic surface states were modified and the electron 

concentration could be varied. The study demonstrated the increased response of the 

sensor for low concentration of H2 gas. 

 The most important factors affecting sensing properties, especially the response 

is the grain size [74-78]. The response of ZnO nanostructure gas sensor was 
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relatively high that was attributed to the grain-size effect. That increases the surface 

area of the sensor. Recent studies were focused on the correlation of surface and 

interface topology with deposition parameters and physical properties of the sensing 

materials [3, 79]. Thus understanding the correlation of microstructure with the 

electrical properties of ZnO thin films is essential. 

 Various structures of ZnO had been grown by different methods and their 

physical properties have been studied extensively. The effect of different types of 

nanostructures such as Nanobelts  [80, 81] nanowires [82], tetrapods [83], nanorods 

and nanopillar [84] of ZnO has been studied for gas sensing applications. Choopun et 

al. [80] prepared nanobelts of ZnO by RF sputtering and studied their response 

towards ethanol sensing at operating temperatures in the range of 200
  o

C to 290 
o
C. 

A single crystal nanobelt was prepared by Xu et al. [81] to detect NH3 by I-V 

measurement and impedance spectroscopy techniques. Pd was used to form a 

Schottky contact that showed non linear I-V behavior. Hongsith et al. [82] prepared 

ZnO gas sensor from nanowires by oxidation of Zn metal powder and doped with 

Au. The prepared sensor was tested for C2H6O at optimum operating temperature of 

around 240 
o
C. A three-dimensional network of ZnO tetrapods was fabricated by 

Delaunay et al. [83], through thermal oxidation of Zn powder and was used for 

C2H6O sensing at various concentration with optimum operating temperature of 400 

o
C. ZnO nanopillar gas sensor was used in sensing C2H6O and H2 with optimum 

operating temperature of 400 
o
C [84]. Sol gel ZnO nanocrystalline based gas sensor 

showed the highest sensitivity towards C2H6O at operating temperature of 250 
o
C 

[85].   
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2.3 Energy Band Structure of Metal Oxide 

 Metal Oxide Semiconductors (MOS) such as ZnO and SnO gas sensors are 

considered as semiconductor materials, characterized with a moderate electrical 

conductivity. To contribute to the conductivity, electrons should overcome the 

amount of energy equivalent to the energy band gap (Egap) 

gap CB VBE = E - E                                                                                                          (2.1)  

 

where ECB, the bottom of the conduction band energy level and EVB, is the upper of 

the valence band energy level. 

 Metal such as Al, Cu and Pt has high electrical conductivity, since its 

conduction band is partially filled or overlaps the valance band. The uppermost 

electrons in the valance band can move to the next band freely with just a small 

amount of energy. For the insulator material that is known to have a wide energy 

band gap such as diamond and silicon dioxide (SiO2), the electrons occupied the 

valance band  are highly bonded to the band, whereas the conduction band is totally 

empty of electrons. At high external energy (thermal or electric filed) the electrons 

may move to the empty conduction bands through the large energy band gap but the 

current of the electrons can be considered negligible. For semiconductor materials 

with the conductivity lies between that of metal and insulator, the conduction band is 

partially occupied by the electrons at room temperature where the thermal energy is 

sufficient to excite the weak bounded electrons from the upper valance band to the 

bottom of the conduction band. This is because of the narrow energy band gap of the 

semiconductor materials which in the case of Si is about 1.1 eV and for the ZnO, it is 

3.37 eV. The simplified schematic energy band structure is shown in Figure 2.3. 
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Figure 2.3 The schematic of band structure in (a) metal, (b) semiconductor and (c) 

insulators [86]. 

 

 In semiconductor materials, the electrons mostly have the probability of 

occupying an energy level that lies in the middle of the energy gap, known as Fermi 

level (EF) [87, 88]. The level is raised to beneath the conduction band for the n-type 

semiconductors or above the valance band in the case of the p – type semiconductors.  

2.4 Metal – Semiconductor Contacts 

 The metal – semiconductor contact may be rectifying or non-rectifying, which 

will depend on the barrier height at the interface between the semiconductor and the 

metal been used. For simplicity, here an n-type semiconductor will be considered, 

since the ZnO is an n-type semiconductor [44, 45, 49]. A metal – semiconductor 

junction can be formed by depositing a metal over the semiconductor or depositing 
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the semiconductor over the pre-coated metal. Figure 2.4 shows the ideal energy band 

diagrams of a metal and an n-type semiconductor before and after contact. 

 The metal – semiconductor contacts may form ether an Ohmic contact where 

the current flows equally in both directions of the contacts or Schottky contact where 

there will be a rectification. Those behaviors depend on the energy band 

configuration between the two components.  Energy of m (metal work function) 

and s (semiconductor work function) is required to free an electron from the metal 

and the semiconductor respectively.  The energy required for removing an electron 

from the bottom of the conduction band of a semiconductor is known as electron 

affinity (S). 

 For Schottky contact with an n-type semiconductor, the work function of the 

metal is higher than that of the semiconductor. When the metal and the 

semiconductor are brought together, the Fermi level of these materials will be at the 

same level in equilibrium. If the work function difference of the two materials is 

significant, the barrier heights of the metal - semiconductor contact is significant. 

The contact is known as Schottky contact that shows a rectification current behavior. 

On the other hand if the work function difference is not significant, the current will 

show an Ohmic behavior. The mechanism for carrier transport at the junctions is 

known as thermionic emission if the contact is Schottky contact and as tunneling and 

field emission if it is Ohmic contact. It is to be noted also that the doping 

concentration plays a significant role in determining the behavior of the currents.  
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Figure 2.4 Energy band diagrams of a metal and n-type semiconductor before and after 

contact [89] (a) Schottky contact, (b) Ohmic contact. 

(b) 

(a) 

(b) 
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2.5 The effect of oxygen chemisorptions on the surface states 

 The charge transfer in a chemisorptions process is very important in the 

understanding of gas sensing mechanisms as most of the process occurs at the 

surface of a MOS. The surface between the MOS and a gas is referred to as a free 

surface or just a surface, while the surface between the MOS and another solid is 

usually referred to as an interface [2, 4, 7]. 

 The concept can be clarified as follow and is shown schematically in Figure 

2.5. Initially, a neutral surface state is shown in Figure 2.5. At the surface of the 

MOS, the periodicity of the crystal structure is broken, leading to dangling bonds, 

which are unsaturated sites. This will result in the generation of new energy levels, 

known as surface states [4, 7]. Figure 2.5a shows the MOS surface is in flat band 

condition, which there is no charge exchange between the surface states and the 

semiconductor [90].  These sites can act as a donor or acceptor type. The position of 

the surface state relative to the Fermi level of the MOS depends on its affinity to the 

electrons, and for the n-type MOS this will be high and the surface state act as 

acceptors. After oxygen molecules from the atmosphere are chemisorbed, it will 

attracts the electrons from the conduction band and the band bending occurs that will 

create the surface barrier (known also as Schottky barrier height) of qVs (Figure 

2.5b), and an electron depleted layer is formed, which is also known as a space 

charge layer xo. This will lead to a reduction in the conductivity (increasing the 

resistivity) of the MOS surface. The band edge bending of the conduction band and 

of the valance band is related to the change of the surface charges. It is to be noticed 

that the adsorbed oxygen species do not only come from the gas phase, but could 
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also emerge from the lattice sites, as thermal decomposition of the MOS may lead to 

the co- existence of the vacancies and adsorbed species. [91]. 

The band bending can be described by means of 1D Poisson equation [4, 23] 

[Appendix A]. 
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Figure 2.5 The band model of the MOS before the oxygen adsorption (a), and after the 

equilibrium state of the oxygen adsorption (b) [4, 7, 90].   

 

Captions:    Evac is the vacuum level 

ECB, EVB are the conduction and the valance band energy level of the 

MOS bulk 

ECS, EVS are the conduction and the valance band energy level of the 

MOS surface  

EF is the Fermi level 

o and  are the work function and the electron affinity. 

The (-) and (+) represents the electrons and the donor sites respectively   
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where V(x) the electric potential, ρ the charge density in the bulk,  x a distance from 

the surface into the bulk and εS  is the permittivity of the semiconductor. Since the 

position of the surface state for the n-type MOS is below the Fermi level (acceptor 

levels), this will cause the extraction of the electrons by the oxygen molecules from 

the MOS, and the space charge region is formed at the surface. The band bending 

leads to the limitation of oxygen adsorption on the surface, as the surface acceptor 

(oxygen) reached the electrochemical potential of the bulk that caused no further 

chemisorption process. This equilibrium process is known as “Weisz limitation”, 

which describes the equilibrium between the Fermi level and the energy of the 

surface adsorbed sites. Thus the energy levels of the surface state are limited with a 

value (qVs) of approximately 0.5-1.0 eV which depends on the surface charge [92]. 

By solving Equation (2.2), it is possible to calculate the general surface barrier; 

2 (  - )                                                                                                   (2.3)
2

 d
x o

S

qN
V x x  

where Nd  represent the bulk donor density. By replacing Nd  xo by Ns (the density of 

electronic charge on the surface ) the surface barrier will be, 

2

                                                                                                           (2.4)
2
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which determines the electron energy required to reach the surface to be adsorb by 

oxygen [4]. 

From Equation (2.3), the width of the space charge region can be calculated from; 
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The above result confirms that the space charge layer increase as the density of donor 

is decreased. The space charge region in also known as Debye length (D) [93]. 

2.6 The Sensing Mechanisms 

 Two type of sensing mechanisms for semiconductors gas sensor has been 

suggested [6]. One that involves the change occurs in the bulk conductions, while the 

other includes the change in the surface conductions. The gas sensor that undergoes 

change in the bulk conduction is useful in the control of combustion process by 

measuring the oxygen partial pressure. This kind of sensors is usually works at high 

temperature (> 600 
o
C). 

In this work, the second mechanism will be used to explain and model the results 

obtained, which could be briefly described as follows. 

 According to Barsan and Weimar [23, 24], the gas reaction with the metal 

oxide semiconductors can take place at different sites of the structure depending on 

the surface morphology. In the compact layer, the interaction with the gas takes place 

only on the surface of the semiconductor.  This kind of layer can be realized through 

film deposition process such as sputtering and thermal evaporation. The second type 

of surface structure is the porous layer where the volume of the layer is accessible to 

the test gas. In this case the effective surface area is much higher than that of the 

former. This layer is the characteristic of the thick films which can be prepared by 

screen printing or by rheotaxial growth and thermal oxidation. 

 Properties of the metal oxide semiconductors depend on the chemical defects 

vacancies and interstitials. The vacancy refers to an empty (unoccupied) site of a 
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crystal lattice, i.e. a missing atom or vacant atomic site. The interstitial refers to an 

extra atom that may be lodged within the lattice of the crystal structure.  

ZnO and other metal oxide semiconductors are well known as materials of high 

defects due to such as oxygen vacancies, zinc interstitial, zinc vacancies, and oxygen 

interstitial, where most of their electrical and optical properties are determined by 

these defects. Defects due to oxygen deficient is known to produce n-type electrical 

conductivity of the ZnO [44, 45, 49]. 

The defects must be in an equilibrium state, obeying mass, site and charge balance, 

where the ratio of anions (the oxygen in the case of ZnO) to cation of the crystal 

must be preserved, although the total number of sites can be increased or decreased, 

thus [16, 94]; 

X "
Zn ZniZn Zn V                                                                                                  (2.6)   

where the left hand side of the reaction represents the initial state and the right hand 

side is the interstitial ( iZn ) and vacancy ( "
ZnV  ) of the zinc. The valance state of the 

defects may vary; for the case of Zn interstitial in the ZnO, this can be i i,Zn Zn  and 

X
iZn . The same applies to the oxygen vacancies.  

In the reduction state of the ZnO where there will be oxygen vacancies or zinc 

interstitial, in this case doubly or single charge defect can be written as [16, 94]; 

X •• - X •• -
O 2 O O 2 i

1 1
O  = O (gas) + V  + 2e   or  O  = O (gas) + Zn + 2e      (double)          (2.7)

2 2
  

or could be in the following 



 

  24 

 

X • - X • -
O 2 O O 2 i

1 1
O  = O (gas) + V  + e    or    O  = O (gas) + Zn  + e            (single)       (2.8)

2 2
 

where X
OO is the neutral oxygen from the surface, O OV , V   double and single ionized 

oxygen vacancy,  •• •
i iZ , Z  are the double and single ionized zinc interstitials and e is 

the electrons from the conduction band energy level. 

It was also found that substituting with foreign atoms enhanced the semiconductor 

properties (especially the optical and the electrical properties) of the ZnO, where the 

substitution of Zn atom alters the crystal properties depending on the concentration 

and the valance of the foreign atoms [95, 96].    

As noted earlier, the change in the surface conductance of the semiconductor is 

affected by the presence of the gas which perturbed the equilibrium of the conduction 

reach by the material at constant oxygen pressure. The process of the oxygen 

adsorption at the surface is known to be dependent on the temperature. At low range 

temperatures (approximately less than 150°C) the process of the adsorption is known 

as physisorption where the bonding between the surface and the oxygen is by the 

Van der Waal force with small binding energy that causes an insignificant change in 

the electrical properties, where the oxygen is in its molecular form. This state acts as 

the precursor of the next state. At higher temperatures the oxygen ionic species 

participate in the interactions. These interactions produce a depletion layer at the 

metal oxide surface.  This process is known as chemisorptions and occurs in the 

temperature range of 200 to 500 
o
C. In this type of reaction the binding energy 

exceeds 0.5 eV. Figure 2.6 shows the types of oxygen species detected at SnO2 

surface. It is well known that the oxygen molecules from the ambient are adsorbed at 

the surface of the metal oxide, subsequently converted to ions after capturing an 
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electron or two from the conduction band near, that depend on the temperatures, as 

represented by the following equations [97, 98]; 

2 2

- -

2 2

- - -

2

- - 2-

  

O (gas) O (ads)

O (ads) + e O (ads)

O (ads) + e 2O (ads)                                

O (ads) + e O (ads)

(2.8)









 

where 2O (gas)  is the ambient oxygen, 2
-O  is a single ionized oxygen molecules, 

-O is a single ionized oxygen ,
2-O is a double ionized oxygen and  

-e  is a conduction 

band electron captured from the surface. This explains the high resistance (low 

conductance) of the metal oxide sensors where the electrons are captured by oxygen 

which results in decreasing the carrier concentration of the material. 

The presence of reducing gas such as hydrogen (H2), methane (CH4), ethanol 

(C2H5OH) and others near the surface of the sensor will result in a reaction between 

the adsorbed charged oxygen ions and the reducing gases which will release the 

captured electrons back to the conduction band of the sensor’s material. Thus the 

carrier’s concentration is increased that caused the sensor resistance to be decrease. 

The following equations demonstrate these behaviors. 

- -

2- -

R + O RO + e

or                                                                                                                               

R + O RO + 2e

(2.9)





where R is a reducing gas. The decrease of the sensor resistance would be 

proportional to the amount (concentrations) of the target gas.  

For oxidizing gas such as ozone (O3) and nitrous (NOx), the oxygen from the gas will 

attract more electrons from the conduction band of the sensor material that will 

reduce the carrier’s concentration and as a consequence increase the resistance.    


