SYNTHESIS, CHARACTERIZATION AND ACTIVITY OF MIXED METAL OXIDE (Mg, Zn, Al) CATALYSTS FOR TRANSESTERIFICATION OF WASTE COOKING PALM OIL, EDIBLE AND NON-EDIBLE OILS

OLUTOYE, MOSES ADEREMI

UNIVERSITI SAINS MALAYSIA

2012

SYNTHESIS, CHARACTERIZATION AND ACTIVITY OF MIXED METAL OXIDE (Mg, Zn, Al) CATALYSTS FOR TRANSESTERIFICATION OF WASTE COOKING PALM OIL, EDIBLE AND NON-EDIBLE OILS

by

OLUTOYE, MOSES ADEREMI

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

APRIL 2012

ACKNOWLEDGEMENT

I will start with these few words: Who is this? Great and Mighty One; Who rules the earth; Who sets above; HE is my GOD and HE IS GREAT. I wish to express my profound gratitude to God Almighty for His protection from the beginning of my programme till now. May His glorious name be praised forever-Amen. I would like to express my special appreciation to my supervisor, Professor Bassim H. Hameed for his constant guidance and great inspiration throughout the duration of my research programme. It's a great opportunity to have worked under his supervision. I would like to acknowledge gratefully my co-supervisor Professor Abdul Latif Ahmad for his encouragement through the research work.

I would like to extend my heartiest appreciation to Institute of Postgraduate School, Universiti Sains Malaysia for the contribution made to support the research through the Postgraduate Research Grant Scheme (PGRS) No. 8042031 and Ministry of Science, Technology and Innovation (MOSTI) SF0207. My sincere thanks go to all administrative and technical staff in the School of Chemical Engineering for their valuable help and co-operation. The support of top hierarchy in the School, most especially the Dean, Professor Azlina Bt. Harun @ Kamaruddin, Deputy Dean Research, Assoc. Prof. Dr. Lee Keat Teong *et al.* is highly appreciated. Dr. Suzylawati Ismail is highly appreciated for kind assistance in the abstract translation to Bahasa Malaysia.

I really appreciate the sacrifice of my lovely wife and adorable children (Miracle Omowumi, Israel Gift Ifeoluwa, Deborah Abiodun Oluwaseyi Praise and Ephraim Boluwatife Oluwatobi Oluwatimilehin). They have been the source of my inspiration and motivation. I miss them for more than 3 years. God gave her the infinite strength to play the role of both father and mother even in my absence for 3 years. She

ensured the welfare of the children is fulfilled so that I can concentrate fully on my PhD abroad. Thank you my Dear Faith Olunike Ronke (FOR Olutoye). God will surely reward her love, care, prayers and concern always.

I am indebted to my colleagues at the Federal University of Technology (FUT), Minna, beginning with Prof. K. R. Onifade of Chemical Engineering Department, Federal University of Technology (FUT), Minna, Nigeria. Professor Folorunso Aberuagba, Professor J. O. Odigure, present and past Head of Department, Chemical Engineering, present and past Dean School of Engineering and Engineering Technology (SEET), especially Professor F.O. Akinbode. In the same vein, I really appreciate the following for facilitating my release for the PhD programme. They are the top hierarchy in FUT, Minna administration, Mr. M. D. Usman, the Registrar, (FUT), Minna, Nigeria, Professor Lamai, Dean of Postgraduate School, FUT, Minna at my departure from Nigeria with many other colleagues whose names are too numerous to mention are highly appreciated. I am very grateful to Dr. B. O. Aderemi and Dr Mohammed Tijani both of Chemical Engineering Department, and Dr. Abdul-Raheem Giwa of Department of Textile Science, Ahmadu Bello University (ABU), Zaria, Nigeria,

I also wish to express my profound gratitude to all the members of Parit Buntar Baptist Church. Pastor Rowland Lee and wife, Sister Janet, Bro. Mugan Bunyau and family, Sister Agnes Joseph and husband, Dr. Samuel Padman and wife, Santa, Bro. Ng Wee, Bro. Ong Tiong Keat and Sister YB Tan Cheng Liang and members of their family. Madam Lim, Sis. Siew Im and others. I am most grateful to you all. God bless you.

I acknowledge the contributions of Elder Sam Victor Olorunsogo and his wife Mummy Rejoice in the Lord for their kindness and financial support when coming to Malaysia. May God bless you for your love and kind gesture to me. Also, words will not be enough for me to express my heartfelt gratitude to all members of The Apostolic Church, Minna Area, Nigeria for taking care of my family. My thanks go to my sibling; Mr. and Mrs. Ajibola Olutoye (London, UK), Mr. and Mrs. Olanrewaju Olutoye (Lagos, Nigeria) Mr. and Mrs. Adaramola Olutoye (Abuja, Nigeria). Others are Pastor and Mrs. Samuel Olutoye, Mr. and Mrs. Oluwasesan Olutoye, Mr. and Mrs. Kehinde Olutoye.

Appreciation goes to the following (without much elaborate encomium, they know their contribution and impact in various capacities). They are: Dr. Uduak George Akpan (Tqvm), Mr. Manase Auta, Dr. Jassim M. Salman, Dr. Victor O. Njoku, Dr. Solomon O. Bello, Dr. Christopher Akinbile, Saad Nashat, Sunday Adedigba, Abolarinwa A.O.George, Muataz Shakir, Chin Lip Han, Iris Soon Ai Ni and her family (Tqvm for immeasurable assistance), Hadis Amani, Zahra and Fatemeh Gholami (Twins Sister) and other friends in Reaction Engineering and Adsorption (READ) group, for your kindness, help, concern, motivation and moral supports. I appreciate all your efforts, my dear friends. To those who indirectly contributed to this research, your kindness means a lot to me. Thank you very much.

Last but definitely not least, gratitude goes to my father and step mother in Erio-Ekiti, Ekiti State, Nigeria (my origin) for their support, encouragement, understanding, concern and for standing by me during this study. I thank you all for being there always. God will reward you bountifully. Amen!

DEDICATION

This research is dedicated to God Almighty-The Most High (*Jehovah-Elyon-*Lord Most High God) for uncountable reasons- Him alone giveth knowledge and wisdom to whom He pleases.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
DEDICATION	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
APPENDICES	xxii
LIST OF PLATES	xxiii
LIST OF SYMBOLS	xxiv
LIST OF ABBREVIATIONS	XXV
ABSTRAK	xxvii
ABSTRACT	xxix
CHAPTER 1 INTRODUCTION	
1.0 Global demand for alternative energy source	1
1.1 Transesterification process	4
1.1.1 Homogeneous transesterification process	6
1.1.2 Heterogeneous transesterification process	8
1.2 General uses and properties of biodiesel	10
1.3 Problem Statement	12
1.4 Research Objectives	16
1.5 Scope of study	17
1.6 Organization of the Thesis	19
Chapter 1 (Introduction)	19
Chapter 2 (Literature review)	19
Chapter 3 (Materials and methods)	19
Chapter 4 (Results and Discussions)	20
Chapter 5 (Thermodynamics and kinetics of the process)	20
Chapter 6 (Conclusions and recommendations)	21
CHAPTER TWO LITERATURE REVIEW	
2.0 Introduction	22
2.1 The origin and application of vegetable oil as diesel fuel	22
2.2 Fatty acid methyl ester (FAME) and transesterification	27

2.3	Solid Catalysis in Biodiesel Production	30
2.4	Fatty acids compositions of some edible and non-edible oils	51
2.5	Structure formula for fatty acids and biodiesel	52
2.6	Parameters involve in the transesterification of oil	54
	2.6.1 Effect of free fatty acids in oil during transesterification	54
	2.6.2 Effect of water content in feedstock	56
	2.6.3 Effect of catalyst loading on the production of FAME	57
	2.6.4 Effect of temperature on transesterification of oil	58
	2.6.5 Alcohol and molar ratio employed	59
2.7	Catalyst reusability and regeneration	60
2.8	Kinetic studies	61
	2.8.1 Kinetic of transesterification reaction of triglycerides	62
	2.8.2 Kinetic modeling	63
	2.8.3 Rate constant and activation energy	67
	2.8.4 Deactivation kinetics and intra-particle diffusion effects	68
	2.8.5 Summary	68
CHA	PTER THREE MATERIALS AND METHODS	
3.1	Introduction	70
3.2	Materials and methods	70
3.3	Equipment	73
	3.3.1 Equipment for FAME synthesis	73
	3.3.2 Catalyst characterization	74
	3.3.2 (a) Nitrogen physisorption isotherms	76
	3.3.2 (b) X-ray diffraction	76
	3.3.2 (c) Scanning electron microscopy	77
	3.3.2 (d) Fourier transformed infrared spectroscopy	77
	3.3.2 (e) Transmission electron microscopy (TEM)	78
	3.3.3 Purification and analysis of product	78
	3.3.3 (a) Gas chromatography (GC)	78
	3.3.3 (b) Ultra-Fast Liquid Chromatography (UFLC) analyzer	80
	3.3.3 (c) Flash point tester	81
	3.3.3 (d) Moisture content determination and refractive	
	index	82

	3.3.3 (e) Viscosity measurement	83
3.4	Synthesis of mixed oxides catalysts	84
	3.4.1 Experiment to establish a basis for catalyst	
	preparation/treatment procedure	85
	3.4.2 Preparation KMgZnO	86
	3.4.3 Synthesis of MgO alone with KOH	87
	3.4.4 Synthesis of ZnO alone with KOH	88
	3.4.5 Preparation of KMgZnO with reverse composition	88
	3.4.6 Synthesis of MgZnO catalyst precipitated separately with	
	KOH and NH ₄ OH	89
	3.4.7 Preparation of MgZnAlO catalyst	90
3.5	Transesterification of vegetable oils with methanol	91
	3.5.1 Process optimization and response surface methodology	93
	3.5.2 Central Composite Rotatable Design (CCRD)	94
	3.5.3 Model Fitting and Statistical Analysis	96
	3.5.4 Desirability Approach	98
	3.5.5 Experimental Data Repeatability	99
3.6	Transesterification of vegetable oil with methanol for kinetic	
	analysis	99
	3.6.1 Determination of the surface acidity and basicity of	
	synthesized catalyst	101
	3.6.2 Separation and analysis of fatty acid, FAME, MG, DG and	
	TG in oil sample	102
3.7	Thermodynamics of the reversible transesterification reaction	103
CHA	APTER FOUR RESULTS AND DISCUSSION	
4.0	Introduction	105
4.1	Synthesis of the mixed metal oxides catalyst	106
	4.1.1 The basis for the catalyst screening	106
	4.1.2 Investigation into the effects of catalyst	
	preparation/treatment conditions	107
	4.1.3 Characterization of the synthesized catalyst 1	111
	4.1.4 Textural properties of variously developed catalyst 1	112
	4.1.5 Surface morphology	115

	4.1.6 Elemental composition of the synthesized catalyst and XRD	
	measurement	117
	4.1.7 Fourier transforms infrared (FTIR) analysis	122
	4.1.8 Catalyst optimization and Design of experiment for	
	$K_yMg_{1-x}Zn_{1+x}O_3$	125
	4.1.9 Design of experiments	125
	4.1.10 Model analysis for the catalyst activity response	127
	4.1.11 Interaction between factors during activity tests for	
	$K_yMg_{1-x}Zn_{1+x}O_3$	130
	4.1.12 Optimization and model validation of	
	$K_y Mg_{1\text{-}x} Zn_{1+x} O_3$ catalyst by response surface methodology	133
	4.1.13 The study of optimized catalyst activity in the	
	transesterification of palm oil with different operating	
	parameters using DOE	133
	4.1.14 Model analysis and process optimization of the parameters	
	influencing transesterification reaction	141
	4.1.15 Activity test and characterization of catalyst 1 for stability	
	and reusability	144
	4.1.16 Short coming of catalyst 1 and justication for the the	
	development of catalyst 2	152
4.2	Development and synthesis of catalyst 2	152
	4.2.1 Characterization of the synthesized catalyst 2	154
	4.2.2 Textural properties of catalyst 2	155
	4.2.3 Surface morphology of catalyst 2	158
	4.2.4 Elemental composition (microstructure) of the	
	$Mg_{0.34}Zn_{1.66}O_2$ synthesize catalyst and XRD measurements	159
	4.2.5 Identification of the surface functional group for the	
	synthesized catalyst 2	163
	4.2.6 Catalytic activity of magnesium-zinc mixed oxides	
	$(Mg_{1-x}Zn_{1+x}O_2)$ catalyst in the production of FAME	164
	4.2.7 Correlation of models for RPO and WCPO in terms of the	
	various parameters	175

	4.2.8 Effect of water and free fatty acid in the oil	177
	4.2.9 Model analysis and optimization of WCPO	
	transesterification with methanol	179
	4.2.10 Catalytic activity tests for reusability, stability and	
	characterization of catalyst 2	181
	4.2.11 Catalyst development challenges and comparative	
	advantage of catalyst 2	196
4.3	The development and synthesis of catalyst 3	198
	4.3.1 Characterization of the as-synthesized catalyst 3	202
	4.3.2 Textural properties of the synthesized catalyst 3	203
	4.3.3 Surface morphology by TEM and SEM analysis	206
	4.3.4 Elemental composition and microstructure of the	
	synthesized catalyst 3, X-ray diffraction (XRD) analysis,	
	FTIR and TG-DTA measurements	209
	4.3.5 (a) Effect of oil properties and characterization on	
	the transesterification reaction	216
	4.3.5 (b) Catalytic activity of Al ₂ O ₃ modified mixed oxides	
	catalyst (catalyst 3) in the production of FAME	218
	4.3.5 (c) Effect of catalyst loading, properties and reaction	
	temperature on the trans-esterification reaction	218
	4.3.5 (d) Effect of reaction temperature and methanol/oil	
	ratio on the transesterification reaction	224
	4.3.5 (e) Effect of reaction time on FAME yield	225
	4.3.6 General model for the different vegetable oils from the	
	design of experiments using catalyst 3 and the evaluation of	
	process optimum conditions	227
	4.3.7 Yield of CJO and fatty acid profile	236
	4.3.8 Characterization and properties of FAME obtained from	
	CJO, refined PO and WCPO	238
	4.3.9 Catalyst stability, reusability tests and characterization of	
	catalyst 3	243

CHAPTER FIVE THERMODYNAMICS AND KINETICS OF THE PROCESS: KINETIC STUDY AND DETERMINATION OF KINETIC REACTION PARAMETERS FOR TRANSESTERIFICATION 5.0 Introduction 248 5.1 Reaction kinetic model and analysis of kinetic data 248 5.1.1 Transesterification reaction of crude jatropha oil with and without catalyst 254 5.2 The thermodynamics of process 262 5.3 Effect of temperature 264 Catalyst deactivation model and mechanism 270 5.4 The mechanism for the basic site catalytic reaction 5.5 274 **CHAPTER SIX** CONCLUSIONS AND RECOMMENDATIONS 6.1 Conclusions 278 6.2 Recommendations 282

REFERENCES

APPENDICES

LIST OF PUBLICATIONS

283

301

317

LIST OF TABLES

		Page
Table 2.1	Compilation of homogeneous and heterogeneous catalysts	
	used in transesterification at low and extremely high	
	conditions	34-49
Table 3.1	Sources and suppliers of feedstock and chemicals used for	
	the study	72-73
	Factors and corresponding levels of experimental design	
Table 3.2	used for the catalyst preparation.	86
Table 3.3	Factors and corresponding levels for the response	
	surface design of independent variables used in	
	transesterification	93
Table 4.1	Various levels of chemical combinations of metals	
	employed in for the synthesis of catalyst 1	108
Table 4.2	Catalyst formulation and the treatment methods employed	
	during synthesis	108
Table 4.3	Preliminary activity test of selected catalyst 1 subjected to	
	dual treatment at different calcination temperature	109
Table 4.4	BET surface area, total pore volume and average pore	
	diameter of the synthesized catalyst	113
Table 4.5	Elemental composition of the synthesized catalyst	120
Table 4.6	Experimental design matrix and catalyst activity response	127
Table 4.7	Analysis of variance of the response surface model	128
Table 4.8	Optimized conditions for $K_yMg_{1-x}Zn_{1+}xO_3$ catalyst	134
Table 4.9	Experimental design matrix and response for catalyst	
	activity test	135
Table 4.10	Analysis of variance of the response surface	142
Table 4.11	The preset goal with constraints for all parameters and	
	response for optimized conditions	144
Table 4.12	Results of reusability and leaching tests	145
Table 4.13	Development and empirical formulation of catalyst 2	154
Table 4.14	BET surface area, total pore volume and average pore	
	diameter of the synthesized Mg _{0.34} Zn _{1.66} O ₂ catalyst	155

Table 4.15	EDX of $Mg_{0.34}Zn_{1.66}O_2$ catalyst prepared by dual precipitating media	159
Table 4.16	FTIR spectra analysis and peak assignment for catalyst 2	164
Table 4.17	Levels of the transesterification condition variables for	
	WCPO	166
Table 4.18a	Comparative results of the activity of as synthesized	
	$K_2 Mg_{0.3} Zn_{1.7} O_3$ and $Mg_{0.34} Zn_{1.66} O_2$ catalysts on WCPO	167
Table 4.18b	FAME yield of catalyst 2 on RPO	168
Table 4.19	Value of coefficient defined in general model equation for	
	each catalyst	170
Table 4.20	Effect of stirring with and without catalyst at room and	
	elevated temperature during transesterification	171
Table 4.21	Results of model correlation for both RPO and WCPO	176
Table 4.22	Analysis of variance for the response surface model of	
	WCPO	180
Table 4.23	Activity of A _{pptd} and K _{pptd} catalysts in reusability and	
	regeneration tests	184
Table 4.24	Elemental analysis for as synthesized A_{pptd} and K_{pptd}	
	catalysts	186
Table 4.25	Various levels of chemical combination of the metals	
	employed in catalyst synthesis for catalyst 3	199
Table 4.26	FAME yield (%) obtained during preliminary test run for	
	activity of catalyst 3 with WCPO as feedstock	201
Table 4.27	BET surface area, total pore volume and average pore	203
	diameter of selected catalyst 3 with $K_y M g_{1\text{-}x} Z n_{1+x} A l_{(2\text{-}y)/3} O_3$	
Table 4.28	Elemental composition of catalyst 3	210
Table 4.29	FTIR spectra analysis and peak assignment for catalyst 3	
	with and without Al inclusion	214
Table 4.30	Some properties of five types of oil before trans-	
	esterification with methanol	216
Table 4.31	Design of experiment and responses for five types of oil	
	using catalyst 3	219

Table 4.32	Values of the determined coefficients in the five-type oil	229
	general model	
Table 4.33	Process optimum conditions for five-type vegetable oil	230
Table 4.34	Comparison of results obtained with synthesized catalyst 3	231-
		234
Table 4.35	FAME properties of some samples of oil after	
	transesterification with methanol	239
Table 5.1	Values of experimental and kinetic model parameters	253
Table 5.2	Kinetic model parameters for the zero and apparent first	
	order reaction for the transesterification of crude jatropha oil	267
Table 5.3	Reaction kinetics of transesterification between palm oil and	
	methanol under subcritical conditions	269

LIST OF FIGURES

		Page
Figure 2.1	Typical process flow diagram for biodiesel production	31
Figure 3.1	Schematic flow chart of experimental work	71
Figure 3.2	Schematic diagram of PARR 4842 reactor	75
Figure 3.3	Schematic diagram of CCRD as a function of three	
	variables, X_1 , X_2 and X_3 according to 2^3 factorial design.	96
Figure 4.1	FAME yield (%) versus transesterification time (min) during	
	test of activity with as synthesized catalyst $K_2Mg_{0.3}Zn_{1.7}O_3$	
	at different treatment methods: Hot and cold treatment with	
	methanol/oil ratio 6:1, catalyst loading 1.404 wt %, reaction	
	time 12 h and temperature 150 $^{\circ}$ C.	110
Figure 4.2	Initial test for the effect of reaction period on the yield of	
	FAME at methanol/oil ratio 6:1, catalyst loading 1.404 wt	
	%, reaction time 6 h and temperature 150 $^{\rm o}$ C.	112
Figure 4.3	Adsorption-desorption isotherms for catalyst 1; (a)	
	$K_2 M g_{0.3} Z n_{1.7} O_3$ (b) $K_2 M g_{1.7} Z n_{0.3} O_3$ calcined at temperature	
	460 ± 1 °C and time 4.5 h	114
Figure 4.4	Figure 4.4. SEM image of synthesized catalyst samples	
	calcined at 4.5 h: (a) $K_2Mg_{0.3}Zn_{1.7}O_3$, 600 °C, (b)	
	$K_2Mg_{0.3}Zn_{1.7}O_3$, 460 ± 1 °C, (c) $K_2Mg_{0.7}Zn_{1.3}O_3$, 600 °C, (d) $K_2Mg_{0.7}Zn_{1.3}O_3$, 460 ± 1 °C, (e) ZnO at 460 ± 1 °C for 4.5 h	
	(f) MgO, 460 ± 1 °C, (g) K ₂ Mg _{1.7} Zn _{0.3} O ₃ (swapped Mg/Zn metal), 460 ± 1 °C.	116
Figure 4.5	Energy dispersive X-ray (EDX) spectra of the synthesized	
_	catalysts:(a) $K_2Mg_{0.3}Zn_{1.7}O_3$; (b) $K_2Mg_{1.7}Zn_{0.3}O_3$; (c) MgO	
	and (d) ZnO all calcined at 460 ± 1 °C for 4.5 h	119
Figure 4.6	XRD pattern for the synthesized catalyst; (a) K ₂ Mg _{0.3} Zn _{1.7} O ₃ ;	
_	(b) $K_2Mg_{1.7}Zn_{0.3}O_3$ both calcined at 460 ± 1 °C for 4.5 h.	121
Figure 4.7	FTIR spectra for 4 samples: (a) $K_2Mg_{0.3}Zn_{1.7}O_3$ (b)	
-	$K_2Mg_{1.7}Zn_{0.3}O_3$ (c) MgO and (d) ZnO calcined at 460 \pm 1 °C	
	for 4.5 h	123

Figure 4.8	3-D surface response plot for the interactive effect of Mg/Zn	
	ratio and time on FAME content (at calcination temperature	
	$=460 \pm 1 {}^{\circ}\text{C}$	130
Figure 4.9	3-D surface response plot for the interactive effect of	
	calcinations temperature and calcination time (at Mg/Zn	
	ratio = 4.81).	131
Figure 4.10	3-D surface response plot for the interactive effect of Mg/Zn	
	ratio and calcination temperature on FAME content (at	
	calcination time $= 4.5 \text{ h}$).	132
Figure 4.11	3-D response surface plot of FAME content showing effect	
	of catalyst loading and time (with two of the parameters	
	fixed; methanol to oil molar ratio = 12, and temperature =	
	175 °C).	136
Figure 4.12	3-D response surface plot of FAME content showing effect	
	of catalyst loading and temperature (with two of the	
	parameters fixed; methanol to oil molar ratio = 12, and time	
	= 3 h).	137
Figure 4.13	3-D response surface plot of FAME content showing effect	
	of methanol to oil molar and time (temperature = 175 °C,	
	catalyst loading = 2.5wt %).	138
Figure 4.14	3-D response surface plot of FAME content showing effect	
	of catalyst loading and methanol to oil molar (temperature	
	=175 °C, time = 3 h).	139
Figure 4.15	SEM images of $K_2Mg_{0.34}Zn_{1.66}O_3$: (a) image before and	
	(b) image after used for one cycle in transesterification	
	at methanol/oil ratio 6:1, catalyst loading 1.404 wt %,	
	temperature 150 °C and reaction time 6 h.	147
Figure 4.16	EDX spectra for $K_2Mg_{0.34}Zn_{1.66}O_{3:}$ (a) spectrum before and	
	(b) spectrum after used for one cycle in transesterification at	
	methanol/oil ratio 6:1, catalyst loading 1.404 wt %,	
	temperature 150 °C and reaction time 6 h.	148
Figure 4 17	XRD spectra for $K_2Mg_{0.24}Zn_{1.66}O_2$ (a) spectrum before and	

	(b) spectrum after used for one cycle in transesterification at	
	methanol/oil ratio 6:1, catalyst loading 1.404 wt %,	
	temperature 150 °C and reaction time 6 h.	149
Figure 4.18	FTIR spectra for $K_2Mg_{0.34}Zn_{1.66}O_3$ (a) spectrum before (b)	
	spectrum after used for one cycle in transesterification at	
	methanol/oil ratio 6:1, catalyst loading 1.404 wt %,	
	temperature 150 °C and reaction time 6 h.	151
Figure 4.19	Adsorption-desorption isotherms for catalyst 2 samples	
	calcined at temperature 460 \pm 1 $^{\circ}$ C and time 4.5 h; (a)	
	NH ₄ OH precipitated and (b) KOH precipitated	157
Figure 4.20	SEM image of synthesized catalyst samples:(a) SEM image	
	of NH ₄ OH precipitated catalyst sample and (b) SEM image	
	of KOH precipitated catalyst sample both calcined at 460 \pm	
	1 °C at 4.5 h.	159
Figure 4.21	EDX spectra of synthesized catalyst samples of catalyst 2:	
	(a) EDX image of NH ₄ OH precipitated catalyst sample and	
	(b) EDX image of KOH precipitated catalyst sample both	
	calcined at 460 °C for 4.5 h	160
Figure 4.22	XRD patterns of the as-synthesized catalyst: (a) NH ₄ OH	
	precipitated sample and (b) KOH precipitated sample both	
	calcined at 460 ± 1 °C for 4.5 h.	161
Figure 4.23	FTIR spectra analysis for the as-synthesized catalyst for A_{12}	
	and K_{12} showing the identification of specific band widths:	
	A_{12} (NH ₄ OH precipitated) and K_{12} (KOH precipitated).	163
Figure 4.24	3-D response surface plot of FAME content showing effect	
	of methanol to oil molar ratio and catalyst loading(with two	
	of the parameters fixed; temperature = 188 °C, and time =	
	4.25 h).	171
Figure 4.25	3-D response surface plot of FAME content showing effect	
	of catalyst loading and temperature (methanol to oil molar	
	ratio = 9 , time = 4.25 h).	172
Figure 4.26	3-D response surface plot of FAME content showing effect	
	of methanol to oil molar ratio and temperature (time $= 4.25$	

	h, catalyst loading = 3 wt %).	174
Figure 4.27	3-D response surface plot of FAME content showing effect	
	of methanol to oil molar ratio and time (with two of the	
	parameters fixed; catalyst loading = 3wt %, and temperature	
	$= 188 {}^{\circ}\text{C}$).	174
Figure 4.28	Dependency of FAME yields on various parameters. (a)	
	Methanol/oil ratio at catalyst loading of 4.19 wt %,	
	temperature 186 °C, and reaction time 4 h; (b) Catalyst	
	loading at methanol/oil ratio 10:1, temperature 186 °C, and	
	reaction time 4 h; (c) Temperature at methanol/oil ratio 10:1,	
	catalyst loading of 4.19 wt %, and reaction time 4 h; and (d)	
	Reaction time at methanol/oil ratio 10:1, catalyst loading of	182-
	4.19 wt %, and temperature 186 $^{\circ}$ C.	183
Figure 4.29	SEM images of $Mg_{0.34}Zn_{1.66}O_2$ for Ammonium precipitated	
	catalyst (a) before used, (b) After 4 th regeneration and (c)	
	After 4 th reuse a subjected to similar initial heat treatment at	
	temperature 460 ± 1 °C, 4.41 h.	185
Figure 4.30	SEM images of $Mg_{0.34}Zn_{1.66}O_2$ for potassium hydroxide	
	precipitated catalyst:(a) before use, (b) after 4 th regeneration,	
	and (c) after 4 th reuse all subjected to similar initial heat	
	treatment at temperature 460 ± 1 °C, 4.41 h.	187
Figure 4.31	EDX spectra for $Mg_{0.34}Zn_{1.66}O_2$ for Ammonium precipitated	
	catalyst (a) Before used, (b) After 4 th regeneration and (c)	
	After 4 th reuse all subjected to similar initial heat treatment at	
	temperature 460 ± 1 °C, 4.41 h.	189
Figure 4.32	EDX spectra for $Mg_{0.34}Zn_{1.66}O_2$ for potassium hydroxide	
	precipitate catalyst: (a) before use, (b) after 4 th regeneration,	
	and (c) after 4 th reuse all subjected to similar initial heat	
	treatment at temperature 460 ± 1 °C, 4.41 h.	190
Figure 4.33	XRD patterns of representative catalyst precipitated with	
	ammonium (A_{pptd}) and potassium (K_{pptd}) hydroxides after 4	
	cycles.	191
Figure 4.34	FTIR spectra for Mg _{0.34} Zn _{1.66} O ₂ A _{pptd} catalyst,(a) Before use,	

	(b) After 4 th regeneration and (c) After 4 th reuse.	193
Figure 4.35	FTIR spectra for $Mg_{0.34}Zn_{1.66}O_2$ K_{pptd} catalyst, (a) Before	
	use, (b) After 4 th regeneration and (c) After 4 th reuse.	194
Figure 4.36	Nitrogen adsorption/desorption isotherms of catalyst 3: (a)	
	$Mg_{0.7}Zn_{1.3}Al_{0.67}O_3$ calcined at temperature 460 ± 1 $^{\circ}C$ and	
	time 4.41 h, (b) Typical representative catalyst 3 calcined at	
	temperature 460 ± 1 °C and time 4.41 h.	205
Figure 4.37	TEM images for $K_yMg_{1-x}Zn_{1+x}$ $Al_{(2-y)/3}O_3$ catalyst where (a) x	
	= 0.1, (b) $x = 0.3$, (c) $x = 0.5$ and (d) $x = 0.7$ with	
	magnification at 35 KX.	207
Figure 4.38	SEM images for $K_yMg_{1-x}Zn_{1+x} Al_{(2-y)/3}O_3$ where (a) $x = 0.1$,	
	and (b) $x = 0.3$, calcined at temperature 460 ± 1 °C, 4.41 h.	209
Figure 4.39	XRD spectra for the synthesized catalyst 3: (a) Ammonia	
	precipitated Al modified catalyst showing ZnO hexagonal	
	structure, Al ₂ O ₃ orthorhombic structure, and ZnAl oxide	
	$(Zn_3Al_{94}O_{144/94}Al_2O_3.6ZnO)$ -monoclinic structure. (b)	
	Ammonia precipitated unmodified catalyst (without Al)	
	showing both hexagonal ZnO and MgO with Cubic MgZn	
	$(Mg_2Zn_{11}).$	211
Figure 4.40	TGA and DTA curves for the synthesized catalyst 3,	
	$Mg_{1-x}Zn_{1+x}Al_{(2-y)/3}O_3$ (a) when $x=0.3$ and (b) $x=0.5;\ y=0$	212
Figure 4.41	FTIR spectra for the synthesized catalyst 3 (a) With Al and	
	(b)Without Al.	214
Figure 4.42	3-D response for methanol/oil ratio and catalyst loading, wt	
	% for (a) refined PO, (b) WCPO, (c) PKO, (d) CCO, and (e)	
	CJO at temperature = 170° C.	220
Figure 4.43	3-D response for temperature (°C) and catalyst loading (wt	
	%) for (a) RPO, (b) WCPO, (c) PKO, (d) CCO, and (e) CJO	
	at methanol/oil ratio = 14.	222
Figure 4.44	3-D surface response plot for temperature (°C) and	
	methanol/oil ratio for (a) RPO, (b) WCPO, (c) PKO, (d)	
	CCO, and (e) CJO at catalyst loading = 6 wt %.	226

Figure 4.45	Comparison between the regeneration and reusability tests	
	for catalyst 3.	245
Figure 4.46	TEM images of $Mg_{0.7}Zn_{1.3}Al_{2/3}O_3$:(a) Before use, (b) After	
	5 th regeneration cycle and (C) After 5 th reuse cycle all	
	calcined at 460 ± 1 °C for 4.41 h	246
Figure 5.1	Plot of triglyceride concentration against reaction time with	
(a-d)	catalyst 3: (a) At 150 $^{\circ}$ C and (b) At 160 $^{\circ}$ C.	251
Figure 5.2	Plot of $\ln C_A/C_{Ao}$ against reaction time with catalyst 3 at: (a)	
(a-d)	$150^{\circ}\mathrm{C}$, (b) $160^{\circ}\mathrm{C}$, (c) $170^{\circ}\mathrm{C}$ and (d) $182^{\circ}\mathrm{C}$	252
Figure 5.3	Plot of triglyceride concentration against reaction time at	
	temperature, $T = 182$ °C: (a) With catalyst and (b) Without	
	catalyst.	255
Figure 5.4	Plot of triglyceride concentration against reaction time at	
	temperature, $T = 150$ °C: (a) With catalyst and (b) Without	
	catalyst.	255
Figure 5.5	Plot of triglyceride concentration against reaction time at	
	temperature, $T = 160$ °C: (a) With catalyst and (b) Without	
	catalyst.	256
Figure 5.6	Plot of triglyceride concentration against reaction time at	
	temperature, $T = 170$ °C: (a) With catalyst and (b) Without	
	catalyst.	256
Figure 5.7	Representative profile of % FAME, DG, MG, and TG	
	against reaction time at temperature of $T = 150$ $^{\circ}C$ without	
	catalyst: (a) With catalyst and (b) without catalyst.	258
Figure 5.8	Representative plots of TG conversion to FAME, DG, MG,	
(a-d)	and residual unconverted TG with reaction time at $T = 150$	
	°C with catalyst 3: (a) FAME content with catalyst, (b)	
	FAME content without catalyst, (c) MG content with	
	catalyst, and (d) MG content without catalyst.	260
Figure 5.8	Representative plots of TG conversion to FAME, DG, MG,	
(e-h)	and residual unconverted TG with reaction time at $T = 150$	
	°C with catalyst 3: (e) DG content with catalyst, (f) DG	

	content without catalyst, (g) Residual TG content with	
	catalyst, and (h) Residual TG content without catalyst	261
Figure 5.9	Representative FAME yield plot and residual FFA in product at temperature $T = 150$ °C: (a) With application of catalyst 3 and (b) Without catalyst	262
Figure 5.10	Effect of temperature on the initial concentration of	265
	triglyceride at 1 h reaction time	
Figure 5.11	Arrhenius plot of rate constant versus temperature for the	
	transesterification of crude jatropha oil with methanol at	
	constant catalyst loading of 3.32 wt %	266
Figure 5.12	Plot of FAME yield (%) versus reaction time (min) at different temperatures at reaction time of 6 h	276
	1	2/0

APPENDICES

		Page
APPENDIX	\mathbf{A}	
Table A-1	Fatty acid composition of some common edible fats and	
	oils, % by weight of total fatty acids	301
Table A-2	Selected properties of some common fatty acids and esters	303
APPENDIX	В	
Figure B-1	Calibration curve for triglyceride (crude jatropha oil)	305
APPENDIX	C	
Figure C-1	Representative profile of % FAME, DG, MG, and TG	311
	against reaction time at temperature of $T = 160$ °C: (a)	
	With catalyst 3 and (b) without catalyst	
Figure C-2	Plots of TG conversion to FAME, DG, MG, and residual	312
(a-d)	unconverted TG with reaction time at $T = 160$ $^{\circ}$ C with	
	catalyst 3: (a) FAME content with catalyst, (b) FAME	
	content without catalyst, (c) MG content with catalyst, and	
	(d) MG content without catalyst	
Figure C-2	Representative plots of TG conversion to FAME, DG,	313
(e-h)	MG, and residual unconverted TG with reaction time at T	
	= 160 °C with catalyst 3: (e) DG content with catalyst, (f)	
	DG content without catalyst, (g) Residual TG content with	
	catalyst, and (h) Residual TG content without catalyst	
Figure C-3	Representative profile of % FAME, DG, MG, and TG	314
	against reaction time at temperature of $T = 170$ °C: (a)	
	With catalyst 3 and (b) without catalyst	

Figure C-4	Representative plots of TG conversion to FAME, DG,	
(a-d)	MG, and residual unconverted TG with reaction time at	
	T = 170 °C with catalyst 3: (a) FAME content with	
	catalyst, (b) FAME content without catalyst, (c) MG	
	content with catalyst, and (d) MG content without	
	catalyst.	315
Figure C-4	Representative plots of TG conversion to FAME, DG,	
(e-h)	MG, and residual unconverted TG with reaction time at	
	T = 170 °C with catalyst 3: (e) DG content with catalyst,	
	(f) DG content without catalyst, (g) Residual TG content	
	with catalyst, and (h) Residual TG content without	
	catalyst.	316

LIST OF PLATES

		Page
Plate 3.1	The PARR 4842 reactor	75
Plate 3.2	Gas chromatography	80
Plate 3.3	Ultrafast Liquid Chromatography	81
Plate 3.4	Flash point tester equipment	82
Plate 3.5	Coulometric Karl Fischer Titration Analyzer	83
Plate 3.6	Viscosity measurement set-up	85

LIST OF SYMBOLS

Symbol **Description** Unit L mol⁻¹ min⁻¹ A Pre-exponential factor C, C_t Concentration at any time, t mg/L C_0, C_{A0} Initial concentration mg/L J/mol E_a Activation energy Η Hysteresis type k Rate constant (1/min) mg/(L.min) True rate constant $\mathbf{k}_{\mathbf{r}}$ K Dimensionless constant Adsorption equilibrium constant L/mg K_{A} Hydroxyl radical 'OH OH^{-} Hydroxyl ion P Pressure bar P_0 Initial pressure bar Initial rate of reaction mg/(L.min) r_{A0} R^2 Correlation coefficient Surface coverage of adsorbed θ_{Ads}

species

LIST OF ABBREVIATIONS

A_{Kpptd} Ammonium hydroxide precipitated

ASTM American Standards of Testing and

Measurements

AGO Automotive gas oil

Al Aluminium

AC Activated carbon

BET Brunauer–Emmet–Teller

BJH Barret–Joyner–Halenda

CCO Coconut oil

CJO Crude jatropha oil

CO₂ Carbon dioxide

DG Diglyceride

DOE Design of experiments

EDX energy dispersive X-ray

EN European Standard

FAME Fatty acid methyl ester

FTIR Fourier transform infrared

HCl Hydrochloric acid

H₂O Water

K Potassium

K_{pptd} Potasium hydroxide precipitated

KNO₃/Al₂O₃ Potasium nitrate on alumina support

KOH Potasium hydroxide

L-H Langmuir-Hinshelwood

Mg Magnesium

MG Monoglyceride

PKO Palm kernel oil

RSM Response surface methodology

RPO Refined pal oil

SEM Scanning electron microscopy

TEM Transmission electron microscopy

TG Triglyceride

WCPO Waste cooking palm oil

wt % Weight percent

XRD X-ray diffraction

Zn Zinc

ZnO Zinc oxide

ZnCl₂ Zinc chloride

SINTESIS, PENCIRIAN DAN AKTIVITI MANGKIN CAMPURAN OKSIDA LOGAM (Mg, Zn, Al) BAGI TRANSESTERIFIKASI SISA MINYAK MASAK KELAPA SAWIT, MINYAK BOLEH DIMAKAN DAN TIDAK BOLEH DIMAKAN

ABSTRAK

Biodiesel, yang juga dikenali sebagai "fatty acid methyl esters" (FAME), merupakan alternatif bahan api yang boleh dihasilkan melalui proses pemangkinan homogen atau heterogen. Biodiesel adalah bahan api yang boleh diperbaharui dan pembakarannya yang mesra alam jika dibandingkan dengan fosil (petroleum mentah). Kajian ini memberi tumpuan kepada pembangunan dan sintesis mangkin pepejal melalui gabungan beberapa logam untuk menghasilkan mangkin komposit dengan formula $Mg_{1-x}Zn_{1+x}Al_{(2-y)/3}O_3$ (at y = 0 dan $0.1 \le x \le 0.9$) sesuai untuk menghasilkan FAME daripada pelbagai sumber minyak sayuran yang boleh dimakan dan tidak boleh dimakan (minyak kelapa sawit ditapis (RPO), sisa minyak masak sawit (WCPO), minyak kelapa (CCO), minyak isirung sawit (PKO) dan minyak jatropha (CJO)) terutamanya daripada minyak kelapa sawit kerana Malaysia adalah salah satu pengeluar terbesar di dunia dan ia boleh didapati dalam kuantiti komersil. Mangkin yang disintesis dengan aktiviti yang dipertingkatkan dalam transesterifikasi telah dibangunkan dan disediakan melalui kaedah pemendakan bersama campuran hidroksida logam-logam daripada sebatian nitrat masing-masing yang diperolehi dalam tiga peringkat mangkin 1 (K_vMg_{1-x}Zn_{1+x}O₃), mangkin 2 (Mg_{1-x}Zn_{1+x}O₂) dan mangkin 3 (Mg_{1-x}Zn_{1+x}Al_{(2-y)/3}O₃). Mangkin-mangkin tersebut tertakluk kepada suhu 460 ± 1 °C untuk 4.41 h. Prestasi mangkin diperolehi daripada pencirian sifat-sifat tekstur, "surface scanning electron microscopy" (SEM) untuk morfologi mikrostruktur dan permukaan dan "X-ray diffraction" (XRD) dan "Fourier Transformed Infra Red" (FTIR) untuk menganalisis struktur dan kumpulan berangkap masing-masing. Hasil analisis menunjukkan bahawa mangkin yang disediakan terbukti berkesan dalam transesterifikasi dengan 87% FAME telah dihasilkan bagi mangkin 1 menggunakan RPO, 87% dan 83% bagi mangkin 2 menggunakan WCPO dan RPO masing-masing. Walaubagaimanapun, nilai larut lesap yang tinggi bagi mangkin 1 iaitu 13%, hasil yang rendah dan luas permukaan yang rendah iaitu 9.67 m²/g bagi mangkin 2 menyebabkan pengubahsuaian selanjutnya diperlukan. Mangkin 3 menunjukkan prestasi yang lebih baik apabila aluminium, dimasukkan dengan meningkatkan luas permukaan, larut lesap kurang dalam bentuk ion dalam lingkungan 1-2% dan 94% FAME dihasilkan untuk minyak tidak boleh makan, asid lemak dan kandungan kelembapan minyak mentah jatropha melalui cara sintesis satu kelompok. Sifat amfoterik mangkin 3 dengan kehadiran aluminium dalam komposit ini bertanggungjawab meningkatkan prestasi dan ia boleh diguna sebanyak lima kitaran. Pelbagai parameter antaranya nisbah metanol kepada molar minyak (9-18), jumlah mangkin (1.5-10.5 wt %), suhu (150-190 °C) dan masa tindakbalas (6 h) telah dikaji. Parameter-parameter ini telah dioptimumkan dengan penggunaan perisian reka eksperimen, bagi memperoleh keadaan optimum iaitu (88% FAME; nisbah metanol kepada minyak, 11:1; jumlah mangkin, 3.32 wt % pada suhu 182 °C) untuk mangkin 3 menggunakan minyak jatropha, tekanan autogenous dalam linkungan 12-22 bar dan suhu didapati menjadi salah satu parameter yang ketara. Analisis produk menunjukkan persamaan dengan piawaian American Standards for Testing and Measurements (ASTM) dan European Union Standards (EN) bagi biodiesel. Kajian kinetik juga dikaji untuk minyak jetropha pada keadaan optimum dan tindakbalas dijelaskan dengan kadar tertib pertama. Di samping itu, nilai-nilai tenaga bebas Gibb (ΔG, J/mol), tenaga pengaktifan (E_a, kJ/mol) dan pra-eksponen faktor A, L/mol/min) adalah -1285.6, 161.4 and 1.0 x 10⁻⁴, masing-masing.

SYNTHESIS, CHARACTERIZATION AND ACTIVITY OF MIXED METAL OXIDE (Mg, Zn, Al) CATALYSTS FOR TRANSESTERIFICATION OF WASTE COOKING PALM OIL, EDIBLE AND NON-EDIBLE OILS

ABSTRACT

Biodiesel, also known as fatty acid methyl esters (FAME), is an alternative fuel that could be obtained by homogeneous or heterogeneous catalytic processes. It is renewable and its combustion is environment friendly compared to fossil (crude petroleum). This research focused on the development and synthesis of solid catalyst from combination of some metals to produce composite catalyst with $K_{\nu}Mg_{1-}$ $_{x}Zn_{1+x}Al_{(2-y)/3}O_{3}$ (at y = 0 and 0.1 \le x \le 0.9) suitable to produce FAME from different vegetable oils-edible and non-edible sources (refined palm oil (RPO), waste cooking palm oil (WCPO), coconut oil (CCO), palm kernel oil (PKO) and crude jatropha oil (CJO)) most specifically from palm oil since Malaysia is one of the world's largest producer and it's available in commercial quantity. The synthesized catalyst with an enhanced activity in transesterification was developed and prepared by coprecipitation of the mixed metal hydroxides from their nitrates compounds achieved in three stages named as catalyst 1 ($K_vMg_{1-x}Zn_{1+x}O_3$), catalyst 2 ($Mg_{1-x}Zn_{1+x}O_2$) and catalyst 3 (Mg_{1-x}Zn_{1+x}Al_{(2-y)/3}O₃). All the catalysts were subjected to heat treatment at 460 ± 1 °C for 4.41 h. Insights to the catalyst performance was obtained from characterization for its textural properties, surface scanning electron microscopy (SEM) for microstructure and surface morphology and, X-ray diffraction (XRD) and Fourier Transformed Infra Red (FTIR) for structural and functional groups analysis, respectively. The analysis revealed that the developed catalysts proved to be effective in transesterification with FAME yields of 87 % for catalyst 1 using RPO, 87 % and 83 % for catalyst 2 using WCPO and RPO, respectively. However, high value of leaching for catalyst 1(13 %), low yield and low surface area (9.67 m²/g) for

catalyst 2 make further modification imperative. Catalyst 3 performed better when Al was incorporated with improved surface area, tolerable leaching of 1-2 % and FAME yield of 94 % for non-edible, high fatty acid and moisture content CJO in one-batch synthesis. The amphoteric nature of catalyst 3 with inclusion of Al in the composite is responsible for its high performance and it is reusable over five cycles. Various parameters such as methanol to oil molar ratio (9-18), catalyst loading (1.5-10.5 wt. %), temperature (150-190 °C) and reaction time (6 h) were investigated. These parameters were optimized with the used of design of experiment software, to obtain optimum conditions (88 % FAME; methanol to oil ratio, 11:1; catalyst loading, 3.32 wt. % at temperature 182 °C) for catalyst 3 using CJO, autogenous pressure range of 12-22 bar and temperature was found to be one of the most significant parameters. Analysis of the product showed agreement with American Standards for Testing and Measurements (ASTM) and European Union Standards (EN) for biodiesel. Kinetic study was investigated using CJO at the optimum conditions and the reaction was described by first order rate. In addition, values of Gibb's free energy (ΔG, J/mole), activation energy (E_a, kJ/mole) and pre-exponential factor (A, L/mol/min) are -1285.6, 161.4 and 1.0 x 10⁻⁴, respectively.

CHAPTER 1

INTRODUCTION

1.0 Global demand for alternative energy source

Recent research showed that there is increased global awareness in the utilization of alternative (renewable) sources of energy (Adelman and Watkins, 2008). The reason for this has been the increase in the cost of energy produced from fossil fuels coupled with the fact that it is a finite resource; it grossly affects the environment (Phan and Phan, 2008). There is the need to evolve new measures, in terms of appropriate technology and resources, to promote a shift from fossil fuels. Due to astronomical growth in world population and rapid industrialization which are direct consequence of increased technological breakthrough in almost all spheres of life, it is believed that the global energy demand will definitely increase. Thus, the search for the renewable resources such as solar, wind, water, biomass and other clean energy sources will surge in demand and eventually account for the vast majority of overall energy usage in the near future.

The increasing decline in crude oil reserves has made alternative energy sources inevitable and of great importance. This is in the light of increasing campaign for cleaner burning fuels in order to safeguard the environment and protect man from inhalation of toxic substances. The exhaust from petroleum diesel is known to be carcinogenic in nature, since they contain polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons (PAHs and NPAHs), carbon monoxide, sulphates, and particulate matter (Canakci and Gerpen, 1999).

A renewable resource is a natural resource that can be replaced or replenished by natural processes at a higher or equal rate to its rate of consumption. The renewable resources are part of the natural environment and constitute what is known as the eco-system. The world-wide energy demand is quite huge and more than 80% of this energy is currently supplied by fossil fuels, coal, oil or gas (Chapman, 1974; Cleveland *et al.*, 2000; Farrell and Brandt, 2006). Fossil fuels are non-renewable finite resource. The shrinking supply of this resource globally will not make it possible for continued dependence on it for a longer time because they will be used up within the next decades. Besides, the drastic increase in the emission of carbon dioxide into the environment, when fossil fuels (oil, gas, petrol, kerosene, etc.) are combusted in engines and automobiles has been identified as the major cause for the change of temperature in the atmosphere generally referred to as global warming. Thus, the search for an alternative that could replace fossil fuels in the short or medium term has become imperative.

The future potential of renewable energy for the mitigation of global warming is intended to focus on six most important energy technologies viz: - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy. This research will mainly focused on the potential of one of these energy sources (bioenergy) taking into account its environmental, social, financial and technological benefits derivable from its clean technologies. The emphasis under this category (bioenergy) will be centered on the production of fatty acid methyl esters (FAMEs), also called biodiesel, a clean burning alternative fuel from renewable resources such as vegetable oils, animal fats and waste cooking oils. It is a nonpetroleum-based diesel fuel consisting of short chain alkyl (methyl or ethyl) esters, obtained by the

process of transesterification of the oil (triglyceride) with primary alcohol (methanol) in the presence of a suitable catalyst (Shu *et al.*, 2009). The biodiesel (fuel) produced from this process can be used alone or blended with conventional petro-diesel in unmodified diesel engine vehicles (Sharma *et al.*, 2008).

The renewable sources or feedstock for biodiesel production are derived from different vegetable oils which are available as fresh plant oils such as palm oil (Elaeis guineensis), used (waste) vegetable cooking oil, palm kernel oil, coconut oil (Cocos nucifera), jatropha oil (Jatropha curcas), soybean oil (Glycine max), rape seed oil (Brassica napus), peanut oil (Arachis hypogaea), canola oil (Brassica napus), sunflower oil (Helianthus annuus) as well as animals fats with a high content in free fatty acids. In the most recent review, Europe stands out as the largest producer and user of biodiesel obtained from rapeseed (canola) oil while the United States closely followed as the second largest producer and user of biodiesel which is obtained from soybean oil or recycled restaurant grease. The type of starting feedstock for biodiesel production absolutely depends on availability and the suitability of the climate to cultivate vast hectares of land for the crop. For example, in other regions of the world (Asia for example), Malaysia, Indonesia and Thailand based their feedstock on the abundant supply of edible palm oil. India is known for the non-edible jatropha oil (Banapurmath et al., 2008).

The immediate and longtime benefits derivable from renewable energy are numerous. These include environmental benefits in which case the renewable energy technologies are from clean sources of energy and have much lower environmental impact than conventional energy technologies. On the long time basis, it will provide

energy for our children's children because the renewable energy will not "run out" forever. It will provide jobs and create a robust economy, and above all energy security will be guaranteed.

1.1 Transesterification process

Transesterification is the term used to describe a class of organic reactions in which an ester is transformed into another through interchange of the alkoxy moiety. When the original ester is reacted with an alcohol, for example, transesterification process is called alcoholysis and in particular methanolysis if lowest molecular weight methanol is used. Transesterification is a reversible reaction and the tendency to attain equilibrium depends on the operating variables. The presence of excess alcohol in the reaction mixture and a catalyst (acid or base) could accelerate and control the equilibrium to achieve a high yield of the ester.

The stoichiometry of transesterification reaction requires 1 mol of a triglyceride (TG) and 3 mols of the alcohol to form di- and mono-glycerides (partial glycerides) and the final products methyl esters and glycerol. Usually, an excess of the alcohol is used to increase the yield of the methyl esters and to allow its physical separation from the glycerol formed. Investigations have shown that transesterification reaction depends on some number of parameters which enhances the product conversion.

In other words, the extent of the reaction will depend on the type of catalyst (acid or base), alcohol to vegetable oil molar ratio, temperature, purity of the reactants and free fatty acid content. Methyl esters of fatty acids are produced by

alcoholysis (transesterification) of triglyceride with methanol in the presence of an acid or base catalyst as illustrated by the reaction Scheme 1.1. Complete conversion of the triglyceride involves three consecutive reactions with monoglyceride and diglyceride intermediates.

Scheme 1.1: 3-step reversible reactions of triglyceride where R_1 , R_2 , and R_3 are long chains of carbons and hydrogen atoms (fatty acid chains) (Fukuda *et al.*, 2001)

Methanol

Monoglyceride

Methyl ester

H₂C-OH

Glycerol

Triglycerides are simple lipid and are fatty acid triesters of the trihydroxy alcohol glycerol which are present in plant and animal tissues. In particular, they are found in the food storage depots (the triglycerides in the food storage depots represent a concentrated energy source, since oxidation provides more energy than an equivalent weight of protein or carbohydrate) either as simple esters in which all the fatty acids are the same or as mixed esters in which the fatty acids are different. Similarly, triglycerides constitute the main component of natural fats and oils. The typical molecular structure of a triglyceride is given as Scheme 1.2.

$$H_{2}C-O-C-R_{1}$$
 $H_{2}C-O-C-R_{2}$
 $H_{2}C-O-C-R_{3}$

Scheme 1.2: A mole triglyceride

where R₁CO₂H, R₂CO₂H, and R₃CO₂H represent molecules of either the same or different fatty acids, such as butyric or caproic (short chain), palmitic or stearic (long chain), oleic, linoleic, or linolenic (unsaturated).

1.1.1 Homogeneous transesterification process

Transesterification reaction as mentioned earlier requires a suitable catalyst for the conversion of the triglyceride (vegetable oil) to fatty acid methyl esters (FAME). The use of homogeneous catalyst where the catalyst and the reactants are in same liquid-liquid phase for the production of FAME is among the various technologies that emerged over decades and has gained increased acceptability

because it is widely known to give higher conversion to methyl esters but not without some shortcomings. These include free fatty acid in feedstock which formed saponified products, water in raw materials interferes with the reaction, glycerol separation is usually difficult, and purification of methyl esters require repeated washing with water which when discharged make the environment unsafe (Ma *et al.*, 1999; Fukuda *et al.*, 2001; Apostolakou *et al.*, 2009).

The current industrial production of FAME basically employed homogeneous alkali-catalyzed transesterification of vegetable oils with methanol. This is because of the fast kinetics of the reaction that is involved by the use of homogeneous catalysts. For example, NaOH, KOH, (K⁺ or Na⁺) OCH₃ are most often used. It is also a known fact that, though the reaction involving these catalysts is fast, saponification (a side reaction) in the system considerably reduced FAME yield, the product requires repeated washing with water to remove glycerol. Also, in homogeneously catalyzed process, fats and alcohols are not totally miscible and vigorous mixing is required to increase the area of contact between the two immiscible phases and a kind of emulsion is produced which reduce the yield of fatty acid methyl ester (FAME) product. Moreover, the catalyst is not reusable and soap is formed. The glycerin by-product that is contaminated with the alkaline catalyst also has little market worth and disposal problem becomes aggravated. The conventional production of FAME relies on soluble sodium and potassium hydroxide catalysts; however, removal of these catalysts is technically difficult and brings extra cost to the final product.

In the same vain, acid transesterification allows formation of ester without by-products. The main disadvantage of this process lies in the fact that the acid homogeneous transesterification involve the application of corrosive catalyst such as H₂SO₄, H₃PO₄, HNO₃, and HCl. In addition, the reaction rate is generally slow. However, at high operating temperatures and pressures, the rate and yield could be improved but this will add extra cost to the final product Macario *et al.*, (2010). All the limitations mentioned here make the homogeneous process cumbersome and uneconomical. Thus, this makes investigation into suitable acid or basic heterogeneous catalysts, or heterogeneous catalyst with dual sites, that is, with both acid and basic functions for the process imperative.

1.1.2 Heterogeneous transesterification process

Heterogeneous catalysts (where the catalyst and the reactants are in different phase, that is, solid-liquid phase) could be employed in the transesterification process to improve the yield of fatty acid methyl ester (FAME) at lower cost. There is significant demand in energy consumption worldwide and to meet this challenge, a new and efficient catalyst for fatty acid methyl ester (FAME) production which possesses criteria such as good activity and selectivity, low cost, ease of separation and environmental friendliness is required.

Heterogeneous catalysts have been used in various processes, for example, alkali metal (Li, Na, and K) promoted alkali earth oxides (CaO, BaO, and MgO), as well as K₂CO₃ supported on Al₂O₃(K₂CO₃/Al₂O₃), has been used for transesterification of different vegetable oils (D'Cruz *et al.*, 2007). However, there

was potassium leaching into the product during the reaction and require catalyst modification to obtain higher yield and eliminate or reduce leaching.

The utilization of heterogeneous catalyst in transesterification reactions appeared very promising because they could become cheaper materials in substitution of noble metal supported on alumina, silica and other inert solids in addition to the ease of separation of the products. Heterogeneous CaO has been used in transesterification of soybean oil (Kouzu *et al.*, 2009). Soybean and poultry fat using nano crystalline CaO (Reddy *et al.*, 2006) have also been reported. For example, activated CaO on rapeseed oil using 0.10 g catalyst with 3.90 g methanol and 15 g oil at 60 °C in 3 h, gave 90 % and CaO pretreatment was carried out by activation with methanol at 25 °C in 1.5 h before contacting with oil (Kawashima *et al.*, 2009).

In a similar work, Nakatani *et al.*, (2009) reported transesterification of soybean oil over combusted oyster shell with 25 wt % catalyst, 65-70 °C in 5 h and obtained 73.8 % conversion. Mg-Al hydrotalcites was used for transesterification of rape oil at 1.5 wt % catalyst loading, alcohol to oil ratio of 6:1 and 65 °C in 4 h and the yield obtained was 90.5 % (Zeng *et al.*, 2008). Silica-supported solid acid catalyst has also been used for the esterification of free fatty acids in sunflower oils (SO) for the production of diesel fuel (Ni and Meunier, 2007). Basic solid Mg/Zr catalysts have been applied on edible and non-edible oil with ratio Mg/Zr of 2:1 (wt/wt %), when 0.1 g catalyst was mixed with 1 g oil and 2.5 mL methanol at 65 °C for 2 h for transesterification and the results indicated over 90% methyl ester conversion.

1.2 General uses and properties of biodiesel

Biodiesel, a renewable alternative fuel to diesel from fossil, will be extensively used in the near future due to its many benefits. Biodiesel can be used in the blended form-B20 (20 % of biodiesel with 80 % petroleum diesel) or in the pure form (B100) depending on the feedstock from which it is derived or the quality of the finished fuel (Sharma *et al.*, 2008). In the blended form, it can be used in unmodified diesel engines. The flow and combustion properties of biodiesel are similar to petroleum-based diesel and thus, it can act as a substitute for diesel fuel and justify its suitability as blends with fuels. Higher blends, or even pure biodiesel (100 % biodiesel or B100), can be used in some other engines, for example as in aviation with little or no modification.

In terms of efficiency, biodiesel has positive performance attributes such as increased cetane, high fuel lubricity, and high oxygen content, which may make it a preferred blending stock with future ultra-clean diesel. It is a performance enhancer in terms of operations to conventional diesel. There is an increase in engine life span because biodiesel is more lubricating than diesel fuel. The increased lubricity will enhance engine performance and reduce the frequency of engine parts replacement. Thus, it can serve as a replacement to sulphur (a lubricating agent) in blends. Sulphur dioxide is produced during combustion of sulphur containing diesel fuel which is a primary component in acid rain (Gerpen *et al.*, 1997). Pure biodiesel carries about 90 % of the energy content of the normal diesel and hence it can be expected that the engine performance can be nearly the same.

Emissions of nitrogen oxides increase with the concentration of biodiesel in the fuel and the increase is roughly 2 % for B20 (Ban-Weiss *et al.*, 2007; Demirbas, 2007). Some biodiesel produces more nitrogen oxides than others, and some additives have shown promise in reducing the increase production of these oxides in the fuel. In the case of biodiesel, NOx emissions are a function of combustion temperature. The higher the heat of combustion the greater is the NOx emissions. Also, because biodiesel contains more oxygen than diesel fuel, the heat of combustion is slightly higher.

Biodiesel is biodegradable and this feature makes it ideal for use in fragile areas such as natured reserves, water reserve, forestry estates, bodies of water, inland waterways and coastal waters, and in urban agglomerations. Production and use of biodiesel are environmentally friendly because of their proximity to the feedstock. Besides, biodiesel is safe to transport because it has a high ignition temperature (higher flash point than normal diesel). No danger of explosion is associated with this fuel.

The production of biodiesel is relevant for most industrialized nations where energy demand is quite huge. For example, the demand for transport fuels is going to increase to a great extent as the world population increases. Biodiesel will enable the development and the support for sustainable society projects that are of strategic importance. Similarly, the economic and social aspects of development which aims at greater energy self-sufficiency, a more secured environment (by decreasing the air pollution from transportation and mitigating greenhouse gas emissions) and socioeconomic benefits of the bottom billion will be promoted.

The increased utilization of biodiesel will help to develop the economy and provides significant results in microeconomic growth for both the urban and rural sectors. In addition, it is hoped that the research will generate employment opportunities, thereby providing livelihood support (economic empowerment). It is expected that more plantations of oil yielding plants such as palm tree (cash crop) and others for the production of biodiesel will help to create eco-restoration and environment sanity vis-à-vis environment security and reduce drought. The long term benefits derivable from using biodiesel are improvement in national security, environmental protection, guarantees public health cum safety, and a source of income to farmers.

1.3 Problem Statement

The surge in industrialization and the unprecedented rise in world population have necessitated some few questions being asked by both developed and developing nations pertaining to human survival. The aspects of energy generation and consumption, safe environment and food are areas that have direct impact on the population. How can energy be produced from a source to meet increasing industrial demand and its consumption will pose lesser danger on the environment? How many more years shall we wait to nurse the fear of exhaustion and depleting crude petroleum reserves? How could the human race survive starvation? The answer to the above posers lies in massive investment in renewable resources (water, agriculture, wind and solar) to generate sustainable energy, ensure safe environment and improve food supply.

The increase in transportation system in most urban centers of the world has grown rapidly in the past decades with the new emerging technologies in the automobile industry. Fuel from fossil source is the main energy that is being used to operate these vehicles whether on land, rail, sea or air. The fuel consumption from the automobile industry generates huge amount of carcinogenic substances consisting of polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, carbon monoxide, sulphates and particulate matter. The release of these substances into the environment is hazardous to man and could cause disruption to ecosystem through global warming.

Thus, huge environmental burden evolved due to the present utilization of energy derived from fossil fuel requires the elaboration of alternative solutions. The number of automobiles in Malaysia and fuel demand has increased in recent years and emission from exhaust of these vehicles makes the environment unsafe.

From the available possibilities which depending on the locality, current research focuses on the utilization of biotechnology to produce fuel from edible and non-edible sources of vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil, coconut oil and jatropha oil) to provide alternative sources of energy using simple yet actively selective heterogeneous catalyst. More importantly, the industry needs an effective catalyst that could be employed to produce FAME from different oil sources to minimize their operation cost. This will require the synthesis of heterogeneous catalyst from a combination of metals (Mg, Zn, Al and K used as fluxing material) having empirical formulae $K_vMg_{1-x}Zn_{1+x}O_3$ and

 $Mg_{1-x}Zn_{1+x}Al_{(2-y)/3}O_3$. This is due to the fact that their independent structures and properties have been investigated and were chosen for this study because they are of interest in a large field of application and possess desirable properties such as basicity, catalytic properties, surface area and good porosity.

Heterogeneous catalysts (solid catalysts) are more flexible in handling than homogeneously catalyzed process which is characterized by cumbersome purification steps rendering the environment unsafe and it is not reusable. However, heterogeneous catalyzed process is accompanied with fewer complications because it is easily separable from product mixture of glycerin and FAME. Thus, the catalyst is reusable after cleaning/treatment/regeneration. In heterogeneous catalyzed reaction, the refining steps in the purification process is less demanding (simple centrifuge and in few cases require less amount of water washing to remove solid catalyst fines in the FAME product. In heterogeneous process, application of solid catalyst in continuous packed bed reactors is feasible.

The use of heterogeneous catalysts makes the reaction mixture a three-phase (Liquid-Vapour-Solid) system comprising of the vegetable oil, alcohol (methanol), and solid catalyst. Though, heterogeneous catalysis requires relatively higher reaction conditions in terms of pressures and temperatures, the selectivity towards the product yield is excellent. For example, few researches have been conducted at as low temperature as 65 °C (approximately at the reflux temperature of methanol) while some at elevated temperatures of above 250 °C. In some cases however, higher temperatures and pressures favours the conversion to products.

The activity of the catalyst will be tested on five oil types namely:- refined palm oil, waste cooking palm oil, palm kernel oil, coconut oil and jatropha oil. All these oils except jatropha are found to be abundant in Malaysia and its usage for biodiesel production could make the country another great exporter of biodiesel in addition to palm oil. Malaysia is one of the world's leading producers of palm oil. Local palm oil refineries are flourishing because of large hectares of land cultivated to grow the commodity. Both refined edible oil and waste are being produced and export of the refined product constitutes huge income generation for the economy

In order to diversify the income generation, this research considers the development of a suitable catalyst as stated above that will meet the criteria such as catalyst stability (leaching, reusability and regeneration), availability and simplicity in method of preparation and inexpensive to produce FAME from the abundant oil source. The performance of the catalyst towards the production of FAME from these oils coupled with characteristics that meet the stability criteria will promote the biofuel industry. Similarly, investment in the industry will in no doubt put Malaysia as one of the economically developed nations with less dependence on fossil fuels for her energy generation. However, future attempts could be made to further invest in oil from other sources (apart from oil palm) to produce biodiesel from non-edible sources (jatropha). This will put to rest the food for oil debate.

In conclusion the novel idea of the present research are summarized as: (1) No catalyst has been developed to produce biodiesel with application to more than two types of vegetable oil in one batch process, (2) Heterogeneous catalysts have been widely reported but information on leaching, reusability and stability is limited,

and (3) No study has been carried out to investigate the synergistic effect and application of synthesized heterogeneous catalyst from three metals (Mg, Zn and Al) to transesterified five types of feedstock.

1.4 Research Objectives

This research is aimed at developing an efficient heterogeneous catalyst to produce fatty acid methyl ester from vegetable oils taking cognizance of the identifiable problems associated with the homogeneous catalysts in transesterification process. The objectives will be achieved through the outlined steps.

- i. To develop heterogeneous mixed metal oxide (Mg, Zn, Al) catalyst for the transesterification of vegetable oils through screening to obtain different combination of metal oxides developed from their original nitrate compounds.
- To characterize the developed catalysts for its morphology, textural and surface functional properties.
- iii. To study the activity of the developed metal oxides catalyst and variation in process parameters (such as reaction temperature and time, methanol/oil molar ratio, catalyst loading etc.) during transesterification of different oils from edible and non-edible sources with methanol. These includes: refined palm oil, waste cooking palm oil, palm kernel oil, coconut oil and jatropha oil and obtain optimum value for the parameters.
- iv. To obtain a reaction mechanism for the transesterification using model oil (jatropha oil) and to use suitable mathematical techniques to evaluate kinetic parameters of the process for the purpose of design.

1.5 Scope of study

The scope of the present study covered the development, characterization, optimization and the test of activity of the developed heterogeneous catalyst in transesterification of vegetable oils from refined palm oil, waste cooking palm oil (WCPO) and non-edible oil with methanol. The catalyst was developed using combination of metallic compounds mixed and co-precipitated in solution in an alkali medium. The treatment conditions employed in the catalyst preparation was studied to establish a suitable method of precipitation, either hot or cold. The further treatment employed on the catalyst includes determination of optimum calcination temperature to synergize the combined metallic oxides, ratio of metal combination and calcination time to give the best product yield. Synthesized catalysts are characterized using surface area analyzer, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffractometer (XRD) and energy dispersive X-ray (EDX).

The main idea of this study is to develop a reusable heterogeneous catalyst for the synthesis of fatty acid methyl esters (FAME). This is an attempt to lower the current cost of biodiesel production and overcome the drawbacks of the homogeneous process. In this study, K, Mg, Zn and Al are considered for the catalyst development as they are cheap and available and are not corrosive. In few cases, K, Mg or Zn oxides alone had been employed for the synthesis of (FAME) using different types of oils, but it has not been reported where the performance of the combination of these metals was used for the synthesis of FAME. Moreover, the reaction takes place in homogeneous phase and with serious consequences. A quick reference in this regard is K which is commonly used in the form of homogeneous

KOH. The above mentioned important points calls for further study into the process of synthesizing FAME from vegetable oils using heterogeneous catalyst. The activity and the stability of the catalyst during transesterification were tested using chromatographic technique. The structures of the catalyst are characterized by TEM and SEM. The embedded metal particles in the composite catalyst are detected by EDX. The nature of metal oxides formed after heat treatment was studied by XRD technique.

A laboratory-scale PARR reactor with a turbine impeller was used to test the activity performance and selectivity of the catalyst. The activity of the catalyst was tested on vegetable oils with both low and high fatty acid content and high moisture content. Important process variables in the production of biodiesel were studied. The data obtained from this study were further developed and used for the derivation of kinetic model using mathematical concepts governing processes that involve solidliquid-vapour phases. For example, mass transfer operations, thermodynamics and rate laws were used. All operations were conducted in closed batch reactor for the study of the catalyst activity and the kinetics of the system using model oil (jatropha oil). Interactive effects of four critical process parameters during transesterification were investigated using surface response methodology (RSM). The variables involved were methanol/oil ratio, catalyst loading (wt % of oil), reaction temperature (°C) and reaction time (h). The reusability and regeneration of the developed catalyst was tested using appropriate techniques. The scope was expanded to cover on additional four types of vegetable oils among which include testing with non-edible oil of high fatty acid content.

1.6 Organization of the Thesis

This thesis is put together in six major chapters. Each chapter represents an integral part of the main work that is sequentially arranged. In order to assist the reader, this thesis is organized as follows.

Chapter 1 (Introduction)

Chapter one gives an overview on sustainable energy through a renewable source and the depleting resource of fossil fuels and the cost of energy derived from it. The global efforts to search for alternative through renewable technologies and more importantly, biofuels was presented. The problem statement, research objectives, scope and justification, and organization of the thesis are provided in this chapter.

Chapter 2 (Literature review)

This chapter presents a detailed review of literature. This chapter takes into cognizance where we are coming from (the past), where we are at present (current) and what are the challenges and benefits ahead (the future). The Chapter takes an indepth look into the study that has been carried out prior to this work in order to identify shortcomings, areas of improvement and direction of this study. The chapter gives detailed background study of the process of transesterification, highlights the chemistry and suitable conditions for the process.

Chapter 3 (Materials and methods)

This chapter dwells on the materials used and the experimental procedure employed in this study. The experimental strategy used in this work as a result of these findings is well laid here. The materials are subdivided into two groups viz: The consumables (comprising of all chemicals and reagents) and the hardware
(which represents various units of equipment used in this study). The stage wise
process involved in the catalyst development the test of activity of the developed
catalyst was discussed.

Chapter 4 (Results and Discussions)

The outcome of the investigation made in chapter two which resulted into series of experimental work were presented and discussed. There are a total of three catalysts developed and synthesized. The characterization and the activity of each catalyst were presented. Discussions on the effect of various process parameters are explained. The results of optimization studies carried out work for this are explained and the relationships between the operating variables on the desired responses using Design of Experiments (DOE) method and the optimum conditions based Response Surface Methodology (RSM) are presented. Lastly, the chapter includes the results and discussion of regeneration and reusability (leaching) of the catalyst and concluded with what makes the as-synthesized catalyst in this work stand out.

Chapter 5 (Thermodynamics and kinetics of the process)

This chapter gave the detailed investigation of the kinetic study carried out on the transesterification process at the optimum conditions. The results obtained for the kinetics and thermodynamic study using jatropha oil as the reference oil were presented. Kinetic model was developed to obtain the equation that governs the catalyst deactivation and presents explanation on the thermodynamics of the process. The efficiency of the catalyst developed is evaluated in terms of the conversion of

vegetable oil to methyl esters and other products (partial glycerides). Based on the investigation, a mechanism for the reaction is proposed.

Chapter 6 (Conclusions and recommendations)

This chapter summarizes the findings of this research and gave recommendations for future studies in the field for synthesis of heterogeneous catalysts and improvement required in biodiesel production.

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This chapter focuses on what biodiesel synthesis entails and the application of various catalysts in the transesterification process. It detailed the discussion on homogeneously and heterogeneously catalyzed transesterification processes, its merits and demerits were reviewed. Basis for the method of preparation employed and selection of metal oxides (Mg, Zn, Al) used in catalyst synthesis for the process were discussed. A review of vegetable oils composition and properties were presented. Starting from its origin, brief information is provided about the cultivation of the types of vegetable oil feedstock used in this research and the in-depth discussion on the process parameters involved in transesterification (alcohol to oil molar ratio, reaction temperature, amount of catalyst and reaction time) among others also include the design of experiments and kinetics.

2.1 The origin and application of vegetable oil as diesel fuel

Vegetable oils have long been promoted as possible alternative for diesel fuel because it is derivable from a renewable natural resource and it is sustainable. On the other hand, diesel fuel is obtained from fossil and its combustion is known to be harmful to the environment (Correa and Arbilla, 2006). The idea for the application of vegetable oils in diesel engines dated back to decades ago by Gauthier, 1928 who was a French engineer and published a paper regarding the application of vegetable oils in diesel engines.

Particularly during the Second World War, there was an increase in the application of vegetable oils in various parts of the world. Shortly after the war, discovery of fossil fuels in substantial amounts, which is by far inexpensive and had superior engine performance over the vegetable oils, reduced the desire into the research for diesel alternatives.

In 1853, scientists E. Doffy and J. Patrick conducted an experiment on transesterification of vegetable oil many years before the first diesel engine became functional. Rudolf Diesel's prime model engine, a single 3 m iron cylinder with a flywheel at its base (which was built by the French Otto company), ran on its own power for the first time in Augsburg, Germany on August 10, 1893. This engine was powered by peanut oil, a biofuel, not a biodiesel (since it was not transesterified).

Rudolf Diesel believed that in the future, the engine will be run by biomass. Diesel in his speech in 1912 said "the use of vegetable oils for engine fuels may seem insignificant today but in the course of time, such oils may become as important as petroleum and coal tar of the present time" (Misra and Murthy, 2010). The manufacturers of the diesel engine altered their engines to utilize the lower viscosity of the petroleum based diesel instead of vegetable oil in the 1920's making the petroleum industry capable to expand their markets, as most biodiesel engines then ran on petroleum based diesel.

Besides the lower viscosity of the petroleum diesel, it was also considerably cheaper, and also it is not a consumable commodity. Recently, due to environmental

impact concerns and decreasing price differential; biomass fuels such as biodiesel has become a growing alternative.

On August 31, 1937, G. Chavanne of the university of Brussels (Belgium) was granted a patent for a "procedure for the transformation of vegetable oils for their uses as fuels", Belgian patent 422,877. This was the patent for the alcoholysis (transesterification) of vegetable oils using methanol and ethanol in order to separate the fatty acids from the glycerol by short linear alcohols. This was the first account of the production of biodiesel (Chavanne, 1938). However, owing to oil embargoes in the late 1970's, increase in the world crude oil price, oil politics and worldwide interest on environmentally friendly energy alternatives, there was a renewed vigour on alternative fuels research.

This occurrence made vegetable oils as an alternative to diesel fuel indispensable and as a result considerable work started recently in this field. Few examples of vegetable oils on which research has been carried out include sunflower oil, tobacco seed oil, corn oil and soybean, palm and palm kernel oils, coconut oil, animal fats, or other lipids. In order to lay to rest the intense debate on food for oil, several researchers have investigated other sources of feedstock to produce biodiesel which includes croton megalocarpus, karanj oil (*pongomia pinnata*), moringa oleifera and the non-edible oil used in this work, that is, jatropha oil (*Jatropha curcas* Linnaeus) (Karmee and Chadha, 2005; Meneghetti *et al.*, 2007; Shi and Bao, 2008; Benjapornkulaphong *et al.*, 2009; Gutiérrez *et al.*, 2009; Koberg *et al.*, 2010). Animal fats, although mentioned frequently, have not been studied to the same extent

as the other vegetable oils because some methods of processing applicable to common vegetable oils are not suitable for it.

The differences in the physical property of animal fats when compared to other vegetable oils could be responsible for this trend. In further attempts to broaden the scope of biodiesel production from sustainable resources, investigation have been carried out on how to utilize oils from algae and microalgae, bacteria and fungi and, terpenes and latexes to produce biodiesel (Huber *et al.*, 2006; Chisti, 2008; Li *et al.*, 2008; Demirbas, 2009; Taravus *et al.*, 2009; Mata *et al.*, 2010). It is also necessary to balance the current argument and avoid the replacement of edible vegetable oils for the production of fuels which will lead to acute shortage of food worldwide. For this reason, renewable energy sources (wind, solar, hydro) other than alternatives from food sources could take the place of the nonrenewable resources. Equally non-edible oils stuffs could also be cultivated in large expanse of farmlands to boost the feedstock availability for production of diesel fuels and the vast plantation will serve to replenish the environment by maintaining eco-balance.

Combustion of fuel in ignition engines are capable of operating with a mixture of 10 % vegetable oil to maintain total power without any alterations or adjustments to the engine but it was later established that the engines could not run on 100 % vegetable oil for diesel fuel because of engine clogging, corrosion, poor ignition, to mention but few. However, a blend of 20 % vegetable oil and 80 % diesel fuel was found to be successful and excessive carbon deposits on combustion chamber parts do not occur.