THE ASSOCIATION OF METABOLIC SYNDROME RISK FACTORS WITH SERUM HIGH-MOLECULAR WEIGHT ADIPONECTIN AND URINARY METABOLITES AMONG THE ORANG ASLI IN MALAYSIA

LYDIATUL SHIMA BINTI ASHARI

UNIVERSITI SAINS MALAYSIA

2016

THE ASSOCIATION OF METABOLIC SYNDROME RISK FACTORS WITH SERUM HIGH-MOLECULAR WEIGHT ADIPONECTIN AND URINARY METABOLITES AMONG THE ORANG ASLI IN MALAYSIA

by

LYDIATUL SHIMA BINTI ASHARI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

August 2016

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful. Alhamdulillah, I praise and thank Allah SWT for giving me strength, courage, and endurance to complete this thesis.

My deepest gratitude goes to my supervisor Assoc. Prof. Dr. Hamid Jan Bin Jan Mohamed and co-supervisors, Prof. Dr. Teh Lay Kek and Assoc. Prof. Dr. Zafarina Binti Zainuddin for constructive academic supervision and enthusiastic encouragement throughout the research study. Their valuable ideas, constructive recommendations, and professional guidance have enhanced this thesis.

I would like to express gratitude to Ministry of Higher Education (MOHE) and Universiti Sains Malaysia (USM) for my sponsorship through MyBrain15 programme and USM Fellowship Scheme, respectively. Also thank you to MOHE for funding my research study through the Long Term Research Grant Scheme (LRGS) (304/PPSK/6150116/U132). I am grateful to Orang Asli (OA) population, Orang Asli Development Department (JAKOA), and Faculty of Art and Design (FSSR), Universiti Teknologi MARA (UiTM) for their cooperation. Many thanks to Central Research Lab (CRL), School of Medical Sciences, USM, and Integrative Pharmacogenomics Institute (iPROMISE), UiTM for providing help, guidance, and facilities for high-molecular weight (HMW) adiponectin and metabolomics analysis.

My sincere thanks are also extended to my colleagues, Norliyana Binti Aris, Tasnim Binti Abdul Razak, Ainaa Almardhiyah Binti Abd Rashid, Nur Nadia Binti Mohamed, Syarifah Nany Rahayu Karmilla Binti Syed Hassan, Nurul Hidayah Binti Nazri, and Zunura'in Binti Zahali who give the never ending support and motivation for me to achieve all the objectives of the project.

I would like to convey my special appreciation to my beloved family especially my father, Ashari Bin Che Mat and my mother, Naimah Binti Mat Nor for their prayers, undivided supports, and understanding during accomplishment of this thesis. Last but not least, warmest appreciation to all those who have helped me directly or indirectly in the realization and successfulness of the thesis.

TABLE OF CONTENT

ACK	NOWLEDGEMENTii		
TABLE OF CONTENT iv			
LIST	OF TABLESix		
LIST	OF FIGURES x		
LIST	OF SYMBOLS, ABBREVIATIONS, AND ACRONYMNS xi		
ABS	TRAK xvii		
ABS	TRACTxix		
CHA	PTER 1 INTRODUCTION		
1.1	Background of the study		
1.2	Rationale of the study		
1.3	Significance of the study		
1.4	Objectives		
	1.4.1 General objective7		
	1.4.2 Specific objectives7		
1.5	Research questions		
1.6	Null hypotheses		
1.7	Conceptual framework		
CHA	PTER 2 LITERATURE REVIEW 10		
2.1	Orang Asli		
2.2	Nutritional status		
	2.2.1 Metabolic syndrome		
2.3	Adipokines		
	2.3.1 Adiponectin		

	2.3.1 (a) Structure and circulating levels	24
	2.3.1 (b) Receptors	25
	2.3.1 (c) Clinical features	26
2.4	Metabolomics	27
	2.4.1 Analytical tools	27
	2.4.2 Biofluid	28
	2.4.3 Applications	29
2.5	Associations of metabolic syndrome (MetS) risk factors, high-molecular weight (HMW) adiponectin, and urinary metabolites	32
CHA	APTER 3 MATERIALS AND METHODS	33
3.1	Study design and area	33
3.2	Study population	35
3.3	Sampling methods	35
3.4	Sample size	36
3.5	Ethical considerations and research permission	40
3.6	Data collection	42
	3.6.1 Structured questionnaire	42
	3.6.2 Anthropometric measurement	42
	3.6.2 (a) Height	43
	3.6.2 (b) Body weight	44
	3.6.2 (c) Body mass index (BMI)	. 44
	3.6.2 (d) Waist circumference (WC)	. 44
	3.6.2 (e) Body fat	45
	3.6.3 Blood pressure	. 47
	3.6.4 Blood sample collection	48
	3.6.5 Urine sample collection	48
3.7	Principle and procedure for biochemical analysis	49
	3.7.1 Analysis for triglyceride (TG)	50

	3.7.1 (a) Principle	50
	3.7.1 (b) Procedure	51
	3.7.2 Analysis for high-density lipoprotein cholesterol (HDL-C)	51
	3.7.2 (a) Principle5	51
	3.7.2 (b) Procedure	52
	3.7.3 Analysis for glucose	52
	3.7.3 (a) Principle	52
	3.7.3 (b) Procedure5	53
	3.7.4 High-molecular weight (HMW) adiponection	53
	3.7.4 (a) Principle	53
	3.7.4 (b) Procedure5	54
3.8	Metabolic syndrome (MetS) definition5	56
3.9	Study subjects for metabolomics analysis5	56
3.10	Urine sample preparation	56
3.11	LC-QTOF-MS analysis5	57
3.12	Data processing and data analysis	58
3.13	ROC Curve Explorer & Tester (ROCCET)	51
	3.13.1 Data upload and processing	51
	3.13.2 Data analysis (classical univariate ROC curve analyses)	51
3.14	Statistical analyses	51
СНА	PTER 4 RESULTS6	54
4.1	Socio-demographic characteristics	54
4.2	Anthropometric profiles	56
4.3	Biochemical and physical profiles	57
4.4	Metabolic syndrome (MetS) prevalence	58
4.5	Prevalence of individual risk factors of metabolic syndrome (MetS)	59
4.6	Baseline characteristics for metabolomics study	71
4.7	Principal component analysis (PCA)	72

4.8	Heat-map analysis	72
4.9	Metabolite profiling	74
4.10	Potential urinary metabolite biomarkers	74
4.11	Correlations of metabolic syndrome (MetS) risk factors and high- molecular weight (HMW) adiponectin	78
4.12	Correlation of urinary metabolites with metabolic syndrome (MetS) risk factors and high-molecular weight (HMW) adiponectin	78
4.13	Associations of metabolic syndrome (MetS) risk factors with high- molecular weight (HMW) adiponectin	81
4.14	Associations of metabolic syndrome (MetS) risk factors with urinary metabolite	82
4.15	Associations of high-molecular weight (HMW) adiponectin with urinary metabolite	84
CHA	PTER 5 DISCUSSIONS	85
5.1	Nutritional status of Orang Asli (OA) populations	85
5.2	Metabolic syndrome (MetS) of Orang Asli (OA)	87
	5.2.1 Prevalence of metabolic syndrome (MetS)	87
	5.2.2 Prevalence of individual risk factors of metabolic syndrome (MetS)	90
5.3	High-molecular weight (HWM) adiponectin concentration	91
5.4	Metabolites profiling and biomarkers discovery	92
	5.4.1 Fatty acids (FAs)	92
	5.4.2 Amino Acid (AA)	95
	5.4.3 Bile Acids (BAs)	96
5.5	Associations of metabolic syndrome (MetS) risk factors with high- molecular weight (HMW) adiponectin	97
	5.5.1 Associations of waist circumference (WC) with high-molecular	
	weight (HMW) adiponectin	98
	5.5.2 Associations of sex and age with high-molecular weight (HMW)	
	adiponectin	102

5.6 Associations of metabolic syndrome (MetS) risk factors with urinary metabolites		
5.6.1 Associations of metabolic syndrome (MetS) risk factors with		
urinary fatty acids (FAs) 103		
5.6.2 Associations of metabolic syndrome (MetS) risk factors with		
urinary amino acid (AA) 106		
5.7 Associations of high-molecular weight (HMW) adiponectin with urinary metabolites		
5.7.1 Associations of high-molecular weight (HMW) adiponectin with urinary fatty acid (FA)		
5.7.2 Associations of high-molecular weight (HMW) adiponectin with		
urinary amino acid (AA) 111		
5.8 Strenghts of study 111		
5.9 Limitations of study 112		
5.10 Recommendations		
CHAPTER 6 CONCLUSION		
REFERENCES110		
APPENDICES 146		
Appendix 1: Ethical approval letter (Universiti Sains Malaysia) 146		
Appendix 2: Ethical approval letter (Universiti Teknologi MARA) 148		
Appendix 3: Orang Asli Development Department (JAKOA) letter 152		
Appendix 4: Orang Asli Development Department (JAKOA) letter 155		
Appendix 5: Written informed consent 158		
Appendix 6: Questionnaires		
Appendix 7: Coefficients of variability (CV) 169		
LIST OF PUBLICATIONS		

LIST OF TABLES

Page

Table 2.1	Population distribution and characteristics of the study population of Orang Asli subtribe
Table 2.2	Classification of Orang Asli village14
Table 2.3	Ethnic-specific cut points for waist circumference by International Diabetes Federation organization
Table 2.4	Definitions of metabolic syndrome by organization
Table 2.5	Current recommended cut points for waist circumference by organization
Table 3.1	Sample size calculations for specific objectives
Table 3.2	Body fat percentage classification
Table 3.3	Visceral fat rating classification
Table 4.1	Socio-demographic characteristics of respondents ^a
Table 4.2	Anthropometric measurements of the respondents (n=185) ^{a,b}
Table 4.3	Biochemical and physical characteristics of respondents (n=185) ^{a,b}
Table 4.4	Prevalence of metabolic syndrome among respondents: by sex, age, and subtribe $(n=185)^a$
Table 4.5	Prevalence of individual risk factors of metabolic syndrome among respondents: overall and by sex $(n=185)^{a,b}$
Table 4.6	Prevalence of individual risk factors of metabolic syndrome among respondents: by subtribe (n=185) ^{a,b}
Table 4.7	Baseline characteristics of respondents (n=27) ^a
Table 4.8	Lists of differentially expressed urine metabolites among the metabolic syndrome and control
Table 4.9	List of potential urinary metabolite biomarkers ranked based on area under ROC curve (AUROC)77
Table 4.10	Correlation between metabolic syndrome risk factors and high- molecular weight adiponectin (n=185) ^a
Table 4.11	Correlation between urinary metabolites with metabolic syndrome risk factors and high-molecular weight adiponectin (n=27)
Table 4.12	Associated factors of high-molecular weight adiponectin (n=185) ^a
Table 4.13	Associated factors of 3-ethyl-3-methyl-tridecanoic acid (n=27) 83
Table 4.14	Associated factors of 3-ethyl-3-methyl-tridecanoic acid (n=27) 84

LIST OF FIGURES

Figure 1.1	Conceptual framework of the study	9
Figure 2.1	Distribution map of the Orang Asli subtribes in Peninsular Malaysia 1	13
Figure 2.2	Different type of adipokines released by the adipose tissue that associated with obesity and metabolic syndrome	22
Figure 2.3	Domains and structure of adiponectin	25
Figure 2.4	General procedures for diagnosis and biomarker discovery in metabolomics	31
Figure 3.1	Map of Peninsular Malaysia indicating sampling sites	34
Figure 3.2	Flow chart of the study	41
Figure 3.3	Mechanical measuring tape seca 206 4	13
Figure 3.4	Standing height position	13
Figure 3.5	Measuring tape	45
Figure 3.6	Measuring tape position for waist circumference 4	45
Figure 3.7	Body composition analyzer Tanita SC-3304	16
Figure 3.8	Automatic blood pressure monitor	18
Figure 4.1	Principal component analysis of metabolic syndrome (blue) and control (red)	72
Figure 5.1	Mechanism underlying obesity-related insulin resistance 10)5
Figure 5.2	The regulation of adiponectin production and its effects on glucose and lipid metabolism)9

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMNS

AA	Amino acid
AAs	Amino acids
Ab	Antibody
ACC	Acetyl-coenzyme A carboxylase
ACE	Angiotensinogen-converting enzyme
ACN	Acetonitrile
ACR	Albumin/creatinine ratio
AdipoR1	Adiponectin receptor 1
AdipoR2	Adiponectin receptor 2
ADP	Adenosine 5'-diphosphate
AHA/NHLBI	American Heart Association/National Heart, Lung, and Blood
	Institute
АМРК	Adenosine monophosphate-activated protein kinase
ANGPTL2	Angiopoietin-like protein 2
ATP	Adenosine 5'-triphosphate
ATP III	Adult Treatment Panel III
AUC	Area under the curve
AUROC	Area under ROC curve
BA	Bile acid
BAs	Bile acids
BAT	Brown adipose tissue
BIA	Bioelectrical impedance analysis
BMI	Body mass index

BUN	Blood urea nitrogen
CAD	Coronary artery disease
cDNA	Complementary deoxyribonucleic acid
CI	Confidence interval
CPDRL	Centre for Pathology Diagnostic and Research Laboratories
CRP	C-reactive protein
CV	Coefficients of variability
CVD	Cardiovascular disease
CVDs	Cardiovascular diseases
DDAH	Dimethylarginine dimethylaminohydrolase
DXA	Dual energy x-ray absorptiometry
EGP	Endogenous glucose production
ELISA	Enzyme-linked immunosorbent assay
ESI	Electrospray ionization
FA	Fatty acid
FAs	Fatty acids
FFA	Free fatty acid
FFAs	Free fatty acids
FCR	Fractional catabolic rate
FDR	False discovery rate
FFA	Free fatty acid
G6PDH	Glucose-6-phosphate dehydrogenase
GIR	Glucose infusion rate
GLUT4	Glucose transporter 4
H_2O_2	Hydrogen peroxide

H_2SO_4	Sulfuric acid
HbA1c	Glycated hemoglobin
HDL	High-density lipoprotein
HDL-C	High-density lipoprotein cholesterol
НК	Hexokinase
HMDB	Human Metabolome Database
HMW	High-molecular weight
HOMA-IR	Homeostasis model assessment of insulin resistance
HRP	Horse radish peroxidase
hs-CRP	High-sensitivity C-reactive protein
HSD	Honestly significant difference
HSL	Hormone-sensitive lipase
IAF	Intra-abdominal fat
IASO	International Association for the study of Obesity
IDF	International Diabetes Federation
IFG	Impaired fasting glucose
IGT	Impaired glucose tolerance
IL-6	Interleukin-6
IOTF	International Obesity Task Force
IPH	Institute for Public Health
IQR	Interquartile range
IR	Insulin resistance
KEGG	Kyoto Encyclopedia of Genes and Genomes
L/A	Leptin to adiponectin
LC	Liquid chromatography

LCFA	Long chain fatty acids
LC-MS	Liquid chromatography-mass spectrometry
LC-QTOF-MS	Liquid chromatography-hybrid quadrupole time-of-flight
	mass spectrometry
LDL	Low-density lipoprotein
LDL-C	Low-density lipoprotein cholesterol
LIPID MAPS	Lipid Metabolites and Pathways Strategy
LMW	Low-molecular weight
LPL	Lipoprotein lipase
MCFA	Medium chain fatty acids
MCP-1	Monocyte chemoattractant protein-1
MetS	Metabolic syndrome
MFE	Molecular Feature Extraction
MMW	Middle-molecular weight
MRI	Magnetic resonance imaging
NEFA	Non-esterified fatty acid
NCEP ATP III	National Cholesterol Education Program Adult Treatment
	Panel III
NGT	Normal glucose tolerant
NHANES	National Health and Nutrition Examination Survey
NHMS	National Health and Morbidity Survey
OA	Orang Asli
OPD	O-phenylenediamine
PAD	Peripheral artery disease
PAI-1	Plasminogen activator inhibitor-1

PCA	Principal component analysis
PEG	Polyethylene glycol
PMI	Planned myocardial infarction
POD	Peroxidase
PPAR	Peroxisome proliferator activated receptor
QC	Quality control
QTOF	Quadrupole-time-of-flight
RBP4	Retinol binding protein 4
Rf	Relative flotation index
ROCCET	ROC Curve Explorer & Tester
SAA	Serum amyloid A
SAT	Subcutaneous adipose tissue
SCAT	Subcutaneous abdominal fat
SCFA	Small chain fatty acids
SD	Standard deviation
SPSS	Statistical Package for the Social Sciences
SUA	Serum uric acid
T2DM	Type 2 diabetes mellitus
TAG	Triacylglycerol
TC	Total cholesterol
TCA	Tricarboxylic acid
TG	Triglyceride
THM	Tetrahydrometabolites
TNF-α	Tumor necrosis factor-α
UAE	Urinary albumin excretion

UiTM	Universiti Teknologi MARA		
USM	University Sains Malaysia		
UPLC-qTOF-MS	Ultra performance liquid chromatography coupled to		
	electrospray ionization quadrupole time of flight mass		
	spectrometry		
VAT	Visceral abdominal fat		
VAT	Visceral adipose tissue		
VEGF	Vascular endothelial growth factor		
VLCFA	Very long chain fatty acids		
VLDL	Very low density lipoprotein		
VLDL B	Very low density lipoprotein B		
VLDL-TAG	Very low density lipoprotein triacylglycerols		
VIF	Variance inflation factor		
WAT	White adipose tissue		
WC	Waist circumference		
WHO	World Health Organization		
WHR	Waist hip ratio		
WHtR	Waist height ratio		

PERKAITAN FAKTOR-FAKTOR RISIKO SINDROM METABOLIK DENGAN ADIPONEKTIN BERAT MOLEKUL TINGGI SERUM DAN METABOLIT-METABOLIT URIN DALAM KALANGAN ORANG ASLI DI MALAYSIA

ABSTRAK

Orang Asli (OA) merupakan orang asal di Semenanjung Malaysia. Secara keseluruhan, terdapat lapan belas suku kaum OA yang dikategorikan di bawah tiga kaum utama iaitu Senoi, Melayu Proto, dan Negrito. Perkaitan faktor-faktor risiko sindrom metabolik dengan adiponektin berat molekul tinggi serum dan metabolitmetabolit urin dalam kalangan OA jarang dilaporkan. Tujuan kajian ini adalah untuk menentukan perkaitan antara faktor-faktor risiko sindrom metabolik dengan adiponektin berat molekul tinggi serum dan metabolit-metabolit urin dalam kalangan OA di Semenanjung Malaysia. Kaedah kajian yang dijalankan adalah keratan rentas dan pemilihan lokasi kajian adalah menerusi kaedah persampelan rawak mudah. Enam lokasi suku kaum OA telah dipilih iaitu Che Wong, Kensiu, Semai, Orang Kanaq, Lanoh, dan Bateq. Kaedah persampelan bertujuan dan bola salji telah digunakan untuk memilih 185 responden yang berumur 18 tahun dan ke atas. Ukuran berat, ketinggian, ukur lilit pinggang, dan tekanan darah direkodkan. Sampel darah subjek yang berpuasa semalaman telah dianalisis untuk mengkaji profil lipid, glukosa plasma, dan adiponektin berat molekul tinggi serum manakala sampel urin untuk mengkaji profil metabolit dengan menggunakan pendekatan metabolomiks. Secara keseluruhan prevalens sindrom metabolik adalah 29.7% (55/185). Prevalens sindrom metabolik secara signifikan lebih tinggi dalam kalangan responden wanita (36.2%)

berbanding lelaki (21.3%). Sindrom metabolik juga adalah lebih tinggi di kalangan suku kaum yang tinggal di kawasan pinggir bandar iaitu Orang Kanaq (81.8%) dan Kensiu (36.4%) dan lebih rendah di kawasan pedalaman iaitu Semai (23.8%) dan Bateq (8.0%) (p<0.001). Responden wanita dilaporkan secara signifikan mempunyai kadar peningkatan ukur lilit pinggang (45.7% vs. 2.5%, p < 0.001) dan penurunan aras lipoprotein berdensiti tinggi (69.5% vs. 31.3%, p<0.001) vang lebih tinggi berbanding dengan lelaki. Analisis hasil kawasan bawah ROC lengkung menunjukkan 22 metabolit dikenalpasti sebagai penanda bio metabolit urin bagi penyakit sindrom metabolik dengan kawasan di bawah lengkung sekurangkurangnya 0.7. Model analisis regresi linear berganda menunjukan adiponektin berat molekul tinggi serum mempunyai korelasi secara negatif dengan ukur lilit pinggang $(\beta=-0.07; p=0.001)$ dan jantina $(\beta=-1.53; p<0.001)$ tetapi mempunyai korelasi secara positif dengan umur (β =0.05; p=0.004). Selain daripada itu, asid 3-ethyl-3-methyltridecanoic ($C_{16}H_{32}O_2$) urin mempunyai korelasi secara positif dengan tekanan darah sistolik (β =0.06; p=0.031). Metabolit urin ini tidak mempunyai korelasi dengan adiponektin berat molekul tinggi serum dalam model analisis regresi linear berganda tetapi mempunyai korelasi dalam analisis korelasi Spearman. Kajian ini dapat memberi petunjuk dan maklumat tambahan bagi mekanisma patogenik sindrom metabolik dalam kalangan OA.

THE ASSOCIATION OF METABOLIC SYNDROME RISK FACTORS WITH SERUM HIGH-MOLECULAR WEIGHT ADIPONECTIN AND URINARY METABOLITES AMONG THE ORANG ASLI IN MALAYSIA

ABSTRACT

Orang Asli (OA) are the indigenous people of Peninsular Malaysia. Overall, there are 18 subtribes of OA which are categorised under three main tribes namely Senoi, Proto Malay, and the Negrito. The association of metabolic syndrome (MetS) risk factors with serum high-molecular weight (HMW) adiponectin and urinary metabolites among OA tribes are scantly reported. The purpose of this study was to determine the association of MetS risk factors with serum HMW adiponectin and urinary metabolites among the OA population in Peninsular Malaysia. This crosssectional study was conducted according to the geographical locations of OA subtribes namely Che Wong, Kensiu, Semai, Orang Kanaq, Lanoh, and Bateq by simple random sampling method. The purposive and snow-ball sampling methods were used to select 185 respondents aged 18 years and above. The respondents were measured for their weight, height, waist circumference (WC), and blood pressure. Overnight fasting venous blood samples were analysed for lipid profiles, plasma glucose, and HMW adiponectin while urine samples were analysed for metabolite profiles using metabolomics approach. The overall prevalence of MetS was 29.7% (55/185). MetS prevalence was significantly higher in female (36.2%) compared to male (21.3%) respondents. MetS was also higher among the suburban Orang Kanaq (81.8%) and Kensiu (36.4%) subtribes and lower among rural Semai (23.8%) and Bateq (8.0%) subtribes (p<0.001). Females had significantly higher rates of high WC (45.7% vs. 2.5%, p<0.001) and low HDL-C (69.5% vs. 31.3%, p<0.001) compared to males. Area under ROC curve (AUROC) analysis showed that 22 metabolites were determined as potential urinary metabolite biomarkers of MetS with area under the curve (AUC) of at least 0.7. Multiple linear regression models revealed that HMW adiponectin were negatively associated with WC (β =-0.07; p=0.001) and sex (β =-1.53; p<0.001) but positively associated with age (β =0.05; p=0.004). Besides, urinary 3-ethyl-3-methyl-tridecanoic acid (C₁₆H₃₂O₂) level was positively associated with systolic blood pressure (β =0.06; p=0.031). This urinary metabolite was not associated with HMW adiponectin in multiple linear regression models but it was correlated with HMW adiponectin in Spearman correlation analysis. This study could provide clues and additional insight into the pathogenic mechanism of MetS among OA population.

CHAPTER 1

INTRODUCTION

1.1 Background of the study

Metabolic syndrome (MetS) is a constellation of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) risk factors namely hyperglycemia, elevated triglyceride (TG) levels, low high-density lipoprotein cholesterol (HDL-C) levels, raised blood pressure, and obesity (particularly central adiposity) (Alberti *et al.*, 2009). It can be defined using several definitions including World Health Organization (WHO) (Alberti and Zimmet, 1998), National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) (NCEP ATP III, 2001), International Diabetes Federation (IDF) (Alberti *et al.*, 2009).

MetS is a complex disorder (Kassi *et al.*, 2011) that associated with adverse health outcomes and become one of growing problem worldwide (Schlaich *et al.*, 2015). National Health and Nutrition Examination Survey (NHANES) data from 2009 to 2010 indicated that the prevalence of MetS in United States was 22.9% based on Harmonized criteria (Beltran-Sanchez *et al.*, 2013). Ten population based cohort studies in seven countries in Europe observed that the MetS rate in obese subjects ranged from 43% to 78% and 24% to 65% in men and women, respectively (Van Vliet-Ostaptchouk *et al.*, 2014). The high prevalence of MetS not only affects developed countries but also some developing countries. Using the ATP III criteria which was same as Europe, a higher rate of MetS was observed among males (47.2%) compared to females (40.3%) in Saudi Arabia population (Al-Daghri *et al.*, 2014). In a cross-sectional study in China, the prevalence of MetS was also higher in males (27.6%) than females (24.4%) based on Harmonized definition (Xu *et al.*, 2014). Meanwhile in Malaysia, 42.5% of Malaysian adults were diagnosed with MetS where 43.9%, 42.1%, and 51.9% were reported in Malay, Chinese, and Indian ethnic groups respectively (Mohamud *et al.*, 2011). Moreover, the prevalence of MetS among Malaysians aged 15 years and older was higher among Indians (35.6%) compared to Indigenous Sarawakians (30.5%), Malays (26.4%) and Chinese (26.2%) (Rampal *et al.*, 2012).

Another study among Malay adults in Malaysia observed that the prevalence was reported around 31.9% on the basis of the modified NCEP ATP III criteria. (Chu and Moy, 2014). The prevalence rates of MetS in Malaysian T2DM patients were 95.8%, 96.1%, 84.8%, and 97.7% according to the WHO, NCEP ATP III, IDF, and the Harmonized definitions respectively (Tan *et al.*, 2013). The MetS is not only emerge among main population of Malaysia but also minority population which is Orang Asli (OA). A study conducted in 2010 reported that the prevalence of MetS among OA based on IDF criteria was 22.7% (Mohamud and Suraiami, 2010).

Adiponectin is an adipokines that has association with the MetS risk factors. Low serum adiponectin concentrations are associated with multiple phenotypic traits of MetS including decreased insulin sensitivity, increased abdominal fat distribution, and reduced HDL-C levels (Lara Castro *et al.*, 2008). As a result, low circulating adiponectin level has been proposed as a biomarker for the MetS (Ryo *et al.*, 2004; Trujillo and Scherer, 2005). Previous study indicated that high-molecular weight (HMW) adiponectin is the active form of the protein (Hara *et al.*, 2006) and might be a more useful predictor than total adiponectin for assessing T2DM risk (Nakashima *et al.*, 2006). According to Hara *et al.* (2006), the HMW ratio values has better predictive power than total adiponectin for prediction insulin resistance (IR) and MetS in humans (Hara *et al.*, 2006). The HMW adiponectin complex is the most active form of adiponectin in depressing blood glucose levels in mice (Pajvani *et al.*, 2004). Moreover, HMW adiponectin that has antiatherogenic factors can prevent endothelial cells from apoptosis (Kobayashi *et al.*, 2004).

Besides adiponectin, there is association of MetS risk factors with endogenous metabolites. Urinary nicotinuric acid metabolite that correlated with MetS risk factors (Blood pressure, TG, and HDL-C), body mass index (BMI), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), glycated hemoglobin (HbA1c), and high-sensitivity C-reactive protein (hs-CRP) could represents a potential biomarker of MetS (Huang *et al.*, 2013). The presence of metabolic risk factors including IR, obesity, high blood pressure, and dyslipidemia are significantly associated with serum metabolites such as branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites (Cheng *et al.*, 2012).

Bile acid (BA) metabolite in serum shows several positive and statistically significant correlations with single components of the MetS, namely BMI, glucose,

TG, homeostasis model assessment of insulin resistance (HOMA-IR), and HbA1c (Steiner *et al.*, 2011). Further, branched-chain and aromatic amino acid metabolites in serum are linked with hyperglycemia in the general population study (Würtz *et al.*, 2012). The association of adiponectin can also be observed with urinary metabolite. Increased urinary tetrahydrometabolites (THM) not only correlated with dyslipidemia, IR, β cell dysfunction, weight, and WC but it also correlated with hypoadiponectinemia (Baudrand *et al.*, 2011).

There have been many health studies conducted on OA focusing on nutritional status (Haemamalar *et al.*, 2010; Hian and Leng, 1998; Lin, 1988; Wong *et al.*, 2015), parasitic infections (Al-Mekhlafi *et al.*, 2013; Anuar *et al.*, 2012), anemia (Al-Mekhlafi *et al.*, 2008) and cardio-metabolic factors (Phipps *et al.*, 2015). A study on MetS has been conducted among female OA and the focus was mainly on prevalence of the disease (Mohamud and Suraiami, 2010). To date, there is no study yet on the association of MetS risk factors with serum HMW adiponectin and urinary metabolites among the OA tribes in Peninsular Malaysia.

1.2 Rationale of the study

The large increase in incidence of obesity in both developed and developing countries has led to an escalating incidence of T2DM and CVD risk factors which collectively termed as MetS (Schlaich *et al.*, 2015). The scant report on MetS prevalence among OA makes it impossible to provide trend of the disease in this population. However, this prevalence is expected to increase for the next decade as most OA population undergo resettlement programme which directly exposed them

to urbanised lifestyle. According to Kaur (2014), the increasing of the MetS are due to surplus energy intake, increasing obesity, urbanization, and sedentary life habits. Therefore it is important to search for greater insight about mechanisms contributing to the MetS development in this population.

Adiponectin, a fat cell-secreted hormone is one of the factors contribute to the MetS development. Low circulating levels of adiponectin have been linked to several components of the MetS such as elevated WC, elevated TG, reduced HDL-C, and elevated blood pressure (Yun *et al.*, 2011). Adiponectin that is abundantly expressed in adipose tissue has inverse association with IR (Mente *et al.*, 2010), MetS (Kim *et al.*, 2013), and T2DM (Jee *et al.*, 2013; Ley *et al.*, 2008).

A detailed understanding of the MetS pathophysiology could be achived by using metabolomics technology. The measurement of small molecule metabolites provides insight into changes in chemical "signature" due to specific cellular processes and environmental exposures. Profiles of urinary metabolites in individual that has MetS trait are useful in eluciding the potential roles of specific metabolites and the pathways underlying MetS disease. An earlier studies using metabolomics have identified urinary metabolite biomarkers and its mechanism for T2DM (Jankevics *et al.*, 2009) and atherosclerosis (Zhang *et al.*, 2009a).

Many recent studies on the associations between MetS risk factors with HMW adiponectin and urinary metabolites come mainly from South America (von Frankenberg *et al.*, 2014), Asia such as Japan (Saisho *et al.*, 2013), Taiwan (Huang *et al.*, 2013), and China (Yu *et al.*, 2014). However, to the best of my knowledge there

are no studies and data available in Malaysia especially among OA population. Therefore, the study need to be established as ethnic-specific differences could modify the relationship between MetS risk factors with HMW adiponectin and urinary metabolites.

1.3 Significance of the study

This study provides an updated figure of health status and fundamental database for serum of adults OA population. Important parameters related to nutritional status and MetS was examined throughout the study including anthropometry and biochemical parameters such as glucose, HDL-C, TG, and HMW adiponectin levels. Besides, urinary metabolites from various classes such as fatty acids (FAs), amino acids (AAs), bile acids (BAs), and eicosanoids have been measured and profiled by using metabolomics technology. The profiling of metabolites provides curation database, novel biomarkers, and biochemical pathways for diagnosis and prognosis of MetS and related disorders in the study population. The discovery of urinary metabolite may add an useful and crucial information on MetS in molecular level. Its association with MetS risk factors and HMW adiponectin may provide greater pathophysiological understanding of disease.

In future, the biomarkers discovered through metabolomics technology could be used by doctors as a routine clinical practice to treat the patients. Furthermore, this study may help scientist and researchers to stimulate multiple research ideas especially in the aspect of epidemiology, public health, nutrition, metabolomics, and biomarker discovery towards Malaysian population specifically OA.

1.4 Objectives

1.4.1 General objective

To determine the association of MetS risk factors with serum HMW adiponectin and urinary metabolites among several subtribes of OA in Peninsular Malaysia.

1.4.2 Specific objectives

- i. To assess the prevalence of MetS among the OA.
- ii. To assess individual risk factors of MetS among the OA.
- iii. To profile the urinary metabolites in MetS and non-MetS of OA.
- iv. To identify potential urinary metabolites of MetS.
- v. To investigate the association between MetS risk factors and HMW adiponectin.
- vi. To investigate the association between MetS risk factors and urinary metabolite.
- vii. To investigate the association between HMW adiponectin and urinary metabolite.

1.5 Research questions

- i. What is the prevalence of MetS among the OA in Peninsular Malaysia?
- ii. What are the individual risk factors of MetS among the OA?
- iii. What are the urinary metabolite profiles in MetS and non-MetS of OA?

- iv. What is the potential urinary metabolites of MetS?
- v. Is there any association between MetS risk factors and HMW adiponectin?
- vi. Is there any association between MetS risk factors and urinary metabolite?
- vii. Is there any association between HMW adiponectin and urinary metabolite?

1.6 Null hypotheses

- i. There are no difference in the urinary metabolite profiles in MetS and non-MetS of OA tribes.
- ii. There are no association between MetS risk factors and HMW adiponectin.
- iii. There are no association between MetS risk factors and urinary metabolite.
- iv. There are no association between HMW adiponectin and urinary metabolite.

1.7 Conceptual framework

The conceptual framework of the study is presented in Figure 1.1. Poor dietary intake and physical inactivity are lifestyle factors that induce visceral fat accumulation and low plasma adiponectin level (hypoadiponectinemia). Besides, genetic factors such as I164T SNP is also associated with hypoadiponectinemia. Hypoadiponectinemia may lead to dysregulation of urinary metabolites and alterations in FAs and AAs metabolism. Visceral adiposity will lead to hypoadiponectinemia and an increase in free fatty acid (FFA) concentrations (Cnop *et al.*, 2003). These conditions enhance a cluster of T2DM, hypertension (elevated blood pressure), and dyslipidemia (high TG and low HDL-C) termed as MetS.

IR: Insulin resistance; T2DM: Type 2 diabetes mellitus; MetS: Metabolic syndrome

Figure 1.1 Conceptual framework of the study

(Adopted from Okamoto et al., 2006; current study)

CHAPTER 2

LITERATURE REVIEW

2.1 Orang Asli

OA is a Malay term which means original people are the indigenous inhabitants of Peninsular Malaysia (Khor and Zalilah, 2008). The Orang Asli Development Department (JAKOA) reported that the total population of OA in the year 2013 was 178,197 (JAKOA, 2013) representing 0.6% of national population. The OA is classified into three main tribes namely Senoi, Proto Malay or Aboriginal Malay, and the Negrito. The categorisation of the tribes were based on morphology, culture, language, and geographical locations for the convenience of administration (Masron *et al.*, 2013). The population distribution and characteristics of the study population is shown in Table 2.1.

The Senoi is the largest OA tribe constituting about 55% (Khor and Zalilah, 2008) of the population and scattered from the middle to northern part of the Peninsular Malaysia (Masron *et al.*, 2013). The Senoi subtribes including Semai, Che Wong, Temiar, Jah Hut, Semoq Beri, and Mah Meri. The physical characteristics of Senoi are having variety of skin color and wavy hair, living as both hunter-gatherers and traders, and descend from an admixture of the Negrito and an East Asian population (Ang *et al.*, 2012). Senoi speak Austro-Asiatic languages of the Mon-Khmer subgroup, indicating their ancient connection with the mainland Southeast Asia (Nicholas, 2000).

		Ofalig	Asii suburbe	
Tribe	Subtribe	Population of	Name of the area	Location
		2013 ^a		type
Negrito		5,009		
C	Kensiu ^b	237	Kg. Lubuk Legong, Baling, Kedah	Suburban
	Kintak	194		
	Lanoh ^b	382	Kg. Air Bah, Lenggong, Perak	Rural
	Jahai	2,387		
	Mendrig	362		
	Beteq ^b	1,447	Kg. Aring 5, Gua Musang Kelantan	Rural
Senoi		97.856	U	
	Temiar	31.038		
	Semai ^b	51,437	Pos Tual, Kuala Lipis, Pahang	Rural
	Semog Beri	5,313		
	Che Wong ^b	651	Kg. Sungai Enggang, Lanchang, Pahang	Suburban
	Jah Hut	5,618		
	Mah Meri	3,799		
Proto		75,332		
Malav		,		
	Temuan	27.590		
	Semelai	7.727		
	Jakun	34.722		
	Orang Kanaq ^b	148	Kg. Sungai Selangi, Kota Tinggi, Johor	Suburban
	Orang Kuala	3,525		
	Orang Seletar	1,620		
Total		178,197		

Table 2.1Population distribution and characteristics of the study population of
Orang Asli subtribe

^aData obtained from the Orang Asli Museum, Gombak, viewed 15 April 2015. ^b Study population

The second largest tribe of OA is Proto Malay or Aboriginal Malay constituting around 42% of the population (Khor and Zalilah, 2008). They can be found mainly in the middle and southern states of Pahang, Johor, Negeri Sembilan, and Selangor (Khor and Zalilah, 2008) and are similar to Deutero-Malays from the morphological aspect, culture, and languages (Lim *et al.*, 2010). Proto Malays consist of Jakun, Temuan, Semelai, Orang Kanaq, Orang Seletar, and Orang Kuala. The migration of Proto Malay from Yunnan to Peninsular Malaysia happened around 4,000 years ago after the arrival of Negrito and Senois (Fix, 1995). The Proto Malay, who work as farmer-traders have a lighter skin color and straight hair (Fix, 1995).

The Negrito is the least tribes which has approximately 3% of the population (Khor and Zalilah, 2008). The settlements of this tribe are isolated and scattered but mostly distributed in the northern and central region of the Peninsular Malaysia (Masron *et al.*, 2013). They can be classified into six subtribes, mainly Bateq, Kensiu, Kintaq, Jahai, Lanoh, and Mendriq. The Negrito is the earliest OA tribes arrived in the Peninsular Malaysia which was around 25, 000 years ago (Masron *et al.*, 2013). The Negrito population is the first occupants of South-East Asia, has dark skin, curly hair, and live as hunter-gatherers (Ang *et al.*, 2012). Generally, the Jahai subtribe is physically similar to negro in Africa, Andaman islanders, and Aeta in the Philippines (JAKOA, 2015b). The distribution map of the OA subtribes is shown in Figure 2.1.

The government of Malaysia through JAKOA had commenced an inclusive development programmes since 1954 as efforts to transform and develop the OA community (Yahaya *et al.*, 2011). Three main development programme by JAKOA includes structured settlements development, economic development, and social development (JAKOA, 2015a). One of the development programmes that has been implemented for remote and scattered settlement of the OA community was The Resettlement Scheme or RPS (Kamaruddin, 2008). This scheme provided basic facilities including housing, kindergarten, community halls, electricity, water, and access roads and currently 17 RPS has been implemented and benefited 3,015 families (Kamaruddin, 2008).

Figure 2.1 Distribution map of the Orang Asli subtribes in Peninsular Malaysia (Source: Center for Orang Asli Concerns, 2015)

Based on JAKOA record, until 31 Disember 2010, there are 852 OA villages that has been classified into rural, suburban, and urban (Yahaya *et al.*, 2011). These classifications were based on location, phase of economic development, and basic facilities and infrastructures (Yahaya *et al.*, 2011). The classification of OA village is shown in Table 2.2.

	Table 2.2 Classific	eation of Orang Asli village
Category	Number of village	Criteria
Rural	327	a. Can be reached by dirt roads, trail roads,
		or waterways
		b. Do not have access to clean water, 24
		hours electricity, and other basic amenities
		c. Do not have fix incomes
Suburban	519	a. Near with Malay village
		b. Can be reached by paved roads
		c. Have basic facilities, clean water
		supply, 24 hours electricity supply
		d. Have land development projects and
		fix incomes
Urban	6	a. Has a complete facilities
		b. There are no land development projects
		(Source: Yahaya <i>et al.</i> , 2011)

Table 2.2Classification of Orang Asli village

2.2 Nutritional status

Nutritional status refer to the person health as it relates to how well diet meets that person's individual nutrient requirements (Mcguire and Beerman, 2007). Generally, the nutritional status can be assessed using four components namely anthropometric measurements (height, weight, circumferences, and body composition), biochemical measurements (blood and urine), clinical assessment (medical history and physical examination), and dietary assessment (24-hour recall method, food frequency questionnaire, and diet record) (Mcguire and Beerman, 2007). Anthropometric measurements were widely used because it can be easily performed with appropriate

training, does not require sophisticated machine or equipment, can be performed in field settings, and economical (Yusof *et al.*, 2007).

Globally, the overweight and obesity have affected both developed and developing countries, men and women, adults and children (Yatsuya *et al.*, 2014) and the prevalence of this epidemic is on the rise. The survey conducted on more than 100 countries around the world observed that the proportions of overweight and obesity increased between the year 1980 and 2013 from 28.8% to 36.9% in males and from 29.8% to 38.0% in females (Ng *et al.*, 2014). Ng *et al.* (2014) also reported that the estimated rate of obesity exceeded 50% in male in Tonga and female in Kuwait, Kiribati, the Federated States of Micronesia, Libya, Qatar, Tonga, and Samoa.

The findings of National Health and Morbidity Survey (NHMS) 2011 indicated that the rate of overweight and obesity (29.4% and 15.1%) among adults Malaysian was comparable to that reported in NHMS III 2006 (28.6% and 14.0%) based on the WHO (1998) classification (IPH, 2011). However, more than 60% of Malaysian adults were estimated pre-obese and obese according to the Malaysian Clinical Practice Guidelines on Management of Obesity (2004) classification (IPH, 2011). Another study in 2011 observed that the rate of overweight and obesity among adult Malaysians were 33.6% and 19.5% respectively (Wan Mohamud *et al.*, 2011). The updated in NHMS 2015 indicated that the national prevalence of overweight and obesity were 30.0% and 17.7% respectively according to the WHO (1998) classifications while the rate of overweight and obesity were 33.4% and 30.6% respectively according to the Malaysian Clinical Practice Guidelines of Obesity (2004) classifications (IPH, 2015). Besides, the national prevalence of abdominal obesity or central obesity was 48.6% according to the International Diabetes Institute/Western Pacific World Health Organization/International Association for the study of Obesity/International Obesity Task Force (WHO/IASO/IOTF, 2000) (IPH, 2015). The emergence of obesity is believed to cause a number of risk factors for T2DM and cardiovascular diseases (CVDs) known as MetS. Underweight and obesity epidemics, particularly higher levels of obesity were found associated with increased mortality among American adults (Flegal *et al.*, 2005).

2.2.1 Metabolic syndrome

MetS is defined as a constellation of interconnected physiological, biochemical, clinical, and metabolic factors that directly augments the risk of CVD, T2DM, and all cause mortality (Kaur, 2014). Overweight, obesity, and physical inactivity are modifiable factors that closely linked with MetS (Chu and Moy, 2014). Many international organizations and expert groups had attempted to propose the definitions of MetS.

The first definition of MetS by WHO was proposed in 1998 which highlight IR as the major underlying risk factor and required evidence of IR for diagnosis (Alberti and Zimmet, 1998). A diagnosis of the syndrome by WHO criteria could thus be made on the basis of several markers of IR plus two additional risk factors, including obesity, hypertension, reduced HDL-C level, high TG level, or microalbuminuria (Alberti and Zimmet, 1998). In 2011, the other definition of MetS was proposed by NCEP ATP III (NCEP ATP III, 2001). NCEP ATP III criteria did not require demonstration of IR and no single factor was required for diagnosis (NCEP ATP III, 2001). However, NCEP ATP III made the presence of 3 of the 5 factors including elevated WC (highly correlated with IR), reduced HDL-C, elevated TG, elevated fasting glucose (impared fasting glucose or T2DM), and elevated blood pressure as the basis for establishing the diagnosis (NCEP ATP III, 2001). This definition was presented as part of an educational programme for the prevention of coronary heart disease (CHD) (Alberti *et al.*, 2006).

In 2005, another definition of MetS was proposed by IDF (Alberti *et al.*, 2005) in an effort to define the syndrome more precisely and therefore it could be used by different clinical and research groups (Kassi *et al.*, 2011). IDF introduced abdominal obesity as a prerequisite of the diagnosis plus any two of risk factors (elevated WC, reduced HDL-C, elevated TG, elevated fasting plasma glucose, and elevated blood pressure) as the basis for establishing the diagnosis (Alberti *et al.*, 2005). Ethnicspecific values for WC is shown in Table 2.3. The IDF guidelines stressed adoption of different values for WC in different ethnic groups based on the relationship of WC either to the other MetS components or to longer-term outcome studies such as those on the risk of T2DM and CVD (Alberti *et al.*, 2009).

In 2009, IDF and American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) representatives held discussions to resolve the remaining differences between definitions of MetS and to unify the criteria (Alberti *et al.*, 2009). This latest harmonized definition proposed that MetS was diagnosed by the presence of any 3 of 5 risk factors which abdominal obesity is not a prerequisite risk factor (Alberti *et al.*, 2009). The definitions of MetS by organization is shown in Table 2.4. In Harmonized definition, the population and country-specific values for WC was used (Alberti *et al.*, 2009). According to Alberti *et al.* (2009), the IDF cut points of WC were recommended to be used for non-Europeans and either the IDF or AHA/NHLBI cut points were used for European origin. Table 2.5 presents WC threshold by several organization.

]	Diabetes Federation organization	
Ethnic group ^a	WC (as measure of central obesity)	
Europids	Men ≥94 cm	
	Women ≥80 cm	
South Asians	Men ≥90 cm	
	Women ≥80 cm	
Chinese	Men ≥90 cm	
	Women ≥80 cm	
Japanese	Men ≥85 cm	
-	Women ≥90 cm	
Ethnic south and central	Use south Asian recommendations until more	
Americans	specific data are available	
Sub-Saharan Africans	Use European data until more specific data are	
	available	
Eastern Mediterranean and	Use European data until more specific data are	
Middle East (Arab)	available	
WC. Waist sines of farmer as		

Table 2.3Ethnic-specific cut points for waist circumference by International
Diabetes Federation organization

WC: Waist circumference

^aEthnicity should be basis for classification, not country of residence

(Source: Alberti et al., 2005)

Risk factors	WHO (1998)	NCEP ATP III (2001)	IDF (2005)	Harmonized IDF (2009)
Obesity (BMI) or	BMI > 30 kg/	WC	WC (Ethnic-	WC
abdominal obesity	m^2 and/or	M >102 cm,	specific)	(Population-
(WC)	WHR > 0.90	F >88 cm	1 /	and
× ,	(M), > 0.85			country-
	(F)			specific) ^a
High BP	≥ 160/90	≥130/85	≥130/85	Systolic \geq
(Systolic/	mmHg	mmHg	mmHg or on	130 and/or
Diastolic)			Rx	diastolic ≥ 85 mmHg or on Rx
High FPG	IGT or DM	\geq 6.1 mmol/L	\geq 5.6 mmol/L	\geq 5.6 mmol/L
C	and/or IR	or DM	or DM	or DM or on Rx
Microalbuminuria	UAE > 20	-	-	-
	μ g/min or ACR ≥ 20			
	mg/g			
Elevated TG	\geq 1.7 mmol/L	\geq 1.7 mmol/L	> 1.7 mmol/L	$\geq 1.7 \text{ mmol/L}$
Dadwood UDL C	<0.0 mmol/I	<1.0 mmol/I	<1.02	or on KX
Reduced HDL-C	$\langle 0.9 \text{ IIIII0I/L} \rangle$	<1.0 IIIII0I/L (M) <1.2 (E)	<1.05 mmol/I	<1.0 IIIII0I/L (M) <1.2 (E)
	(101), < 1.0(1)	(101), <1.3(1)	(M) < 1.20	(WI), < I.3 (I')
			(M), <1.29 (F)	of on KX
MetS	IGT or DM	At least 3 RF	WC + 2 more	At least 3 RF
	and/or IR +		RF	
	any 2 or more			
	RF			

Table 2.4Definitions of metabolic syndrome by organization

WHO: World Health Organization; NCEP ATP III: National Cholesterol Education Program Adult Treatment Panel III; IDF: International Diabetes Federation; BMI: Body Mass Index; WHR: Waist hip ratio; WC: Waist circumference; BP: Blood pressure; FPG: Fasting plasma glucose; UAE: Urinary albumin excretion; ACR: Albumin/creatinine ratio; TG: Triglyceride; HDL-C: High-density lipoprotein cholesterol; Rx: On medication; IGT: Impaired glucose tolerance; DM: Diabetes mellitus; IR: Insulin resistance; MetS: Metabolic syndrome; M: Male; F: Female; RF: Risk factors

^aIt is recommended that the IDF cut points be used for non-Europeans and either the IDF or AHA/NHLBI cut points used for European origin until more data are available.

(Source: Alberti *et al.*, 2009; Alberti *et al.*, 2005; Alberti and Zimmet, 1998; NCEP ATP III, 2001)

	L L	n guillauton	
		WC cut points	
Population	Organization	Men	Women
Europid	IDF	≥94 cm	≥80 cm
Caucasian	WHO	≥94 cm	≥80 cm
		(increased risk)	(increased risk)
		$\geq 102 \text{ cm} \text{ (still}$	≥88 cm (still
		higher risk)	higher risk)
United States	AHA/NHLBI	≥102 cm	≥88 cm
	(ATP III)		
Canada	Health Canada	≥102 cm	≥88 cm
European	European	≥102 cm	≥88 cm
	Cardiovascular		
	Society		
Asian (including	IDF	≥90 cm	≥80 cm
Japanese)			
Asian	WHO	≥90 cm	≥80 cm
Japanese	Japanese Obesity	≥85 cm	≥90 cm
	Society		
China	Cooperative Task	≥85 cm	≥80 cm
	Force		
Middle East,	IDF	≥94 cm	≥80 cm
Mediterranean			
Sub-Saharan African	IDF	≥94 cm	≥80 cm
Ethnic Central and	IDF	≥90 cm	≥80 cm
South American			

Table 2.5	Current recommended cut points for waist circumference by
	organization

WC: Waist circumference; IDF: International Diabetes Federation; WHO: World Health Organization; AHA/NHLBI: American Heart Association/National Heart, Lung, and Blood Institute; ATP III : Adult Treatment Panel III

(Source: Alberti et al., 2009)

2.3 Adipokines

Adipose tissue can be classified into two major types namely white adipose tissue (WAT) and brown adipose tissue (Fantuzzi, 2005). The distribution of brown adipose tissue in humans are in cervical-supraclavicular area and the shape of this tissue is polygonal with multi-ocular lipid droplets (Kwon and Pessin, 2013). It can be found in newborn humans but almost absent in adults (Coelho *et al.*, 2013). The function of brown adipose tissue (BAT) is to dissipate energy and generate heat (Berry *et al.*,

2013). WAT is located throughout the body (Kwon and Pessin, 2013). Subcutaneous and visceral adipose tissues are the major adipocyte depots of WAT with additional adipose depots distributed at various organs including heart, lung, and kidney (Kwon and Pessin, 2013). WAT is composed of variety cell types such as adipocytes, macrophages, lymphocytes, fibroblasts, and endothelial cells (Kwon and Pessin, 2013). It is designed as energy storage (Berry *et al.*, 2013) and endocrine organ because of its capacity to secrete hormones and cytokines (Vázquez-Vela *et al.*, 2008).

Adipokines are proteins that produced mainly by adipocytes (Fantuzzi, 2005). Subcutaneous or visceral adipose tissue play a role in secretion of adipokines (Kwon and Pessin, 2013). Adipokines can act centrally to regulate appetite and energy expenditure, and peripherally affect insulin sensitivity, oxidative capacity, and lipid uptake (de Oliveira Leal and Mafra, 2013). The release of adipokine by either adipocytes or adipose tissue macrophages could induce a low-grade chronic inflammatory state that play a central role in obesity related cardiovascular complications and IR (Antuna-Puente *et al.*, 2008). The inflammatory functions of adipokines are responsible for mediating obesity-induced insulin resistance (Kwon and Pessin, 2013). On this point, adipokines are categorized as pro- and anti-inflammatory adipokines according to their effects on inflammatory responses in adipose tissues (Kwon and Pessin, 2013).

Example of pro-inflammatory adipokines are leptin, interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α), retinol binding protein 4 (RBP4), resistin, CCchemokine ligand 2 (CCL2), CC-chemokine receptor type 5 (CCR5), angiopoietinlike protein 2 (ANGPTL2), and chemerin while anti-inflammatory adipokines are adiponectin, secreted frizzled-related protein 5, visceral adipose tissue-derived serine protease inhibitor, omentin-1, and apelin (Kwon and Pessin, 2013). Figure 2.2 shows the adipokines that most clearly associated with obesity and MetS.

ACE: Angiotensinogen-converting enzyme; MCP-1: Monocyte chemoattractant protein-1; PAI-1: Plasminogen activator inhibitor-1; RBP4: Retinol binding protein 4; SAA: Serum amyloid A; IL-6: Interleukin-6; TNF- α : Tumor necrosis factor- α ; VEGF: Vascular endothelial growth factor

Figure 2.2 Different type of adipokines released by the adipose tissue that associated with obesity and metabolic syndrome

(Source: Gustafson et al., 2007)

Of these adipokines, leptin is widely studied (Gustafson *et al.*, 2007) and has been the most thoroughly investigated (Avram *et al.*, 2005). Leptin is positively related to adipocyte size and obesity which is in contrast to adiponectin (Gustafson *et al.*, 2007). The metabolic function of leptin including repression of food intake, promotion of energy expenditure, stimulation of FA oxidation in liver, pancreas, and skeletal muscle, modulation of hepatic gluconeogenesis, and modulation of pancreatic β cell function (Rabe *et al.*, 2008). TNF- α and IL-6 are important inflammatory molecules associated with obesity and IR (Gustafson *et al.*, 2007) which functioning as modulation of hepatic and skeletal muscle insulin signalling (Rabe *et al.*, 2008). Adiponectin is one of the most widely studied adipokine (Gustafson *et al.*, 2007; Turer and Scherer, 2012) and highly expressed by adipocyte cells with strong anti-inflammatory properties (Kwon and Pessin, 2013). Adiponectin (microgram per milliliter) circulates at the highest levels as compared to leptin (nanograms per millilitre) (Fantuzzi, 2005). It is a key mediator of systemic insulin sensitivity and glucose homeostasis (Turer and Scherer, 2012). These effects can be achieved by a diverse set of effects on several important targets including liver, pancreas, cardiac myocytes, the immune system, and even the adipose tissue itself (Turer and Scherer, 2012).

2.3.1 Adiponectin

Adiponectin was discovered during gene-expression profiling of human adipose tissue conducted by the human complementary deoxyribonucleic acid (cDNA) project (Di Chiara *et al.*, 2011). It is encoded by the ADIPOQ gene that can modulate insulin sensitivity and glucose homeostasis (Schwarz *et al.*, 2006). It is involved in regulating glucose levels as well as fatty acid (FA) breakdown (Al-Braich *et al.*, 2014). According to Kadowaki *et al.* (2006), adiponectin is an adipokine or adipocytokines that is specifically and abundantly expressed in adipose tissue and directly sensitizes the body to insulin (Kadowaki *et al.*, 2006). It possesses anti-diabetic, anti-atherogenic, and anti-inflammatory properties (Matsuzawa, 2010).

2.3.1 (a) Structure and circulating levels

Full-length adiponectin contains 244 amino acids, a signal peptide, a collagen like domain at its N-terminus and a globular domain at its C-terminus, which shares sequence similarities with collagens X and VIII as well as complement factor C1q (Okamoto *et al.*, 2006). It requires post-translational modifications for biological activity (hydroxylation and glycosylation) (Wang *et al.*, 2002).

Adiponectin circulates in plasma as a low-molecular weight (LMW) trimer (~90kDa), a middle-molecular weight (MMW) hexamer (~180 kDa), and highmolecular weight (HMW) 12- to 18-mer (400 kDa) and these forms were postulated to differ in biologic activity (Pajvani *et al.*, 2003; Waki *et al.*, 2003; Wang *et al.*, 2006). A smaller form of adiponectin consisted of globular domain also exists in plasma in a very small amount (Fruebis *et al.*, 2001). Figure 2.3 shows the domains and structure of adiponectin. Adiponectin is relatively abundant in plasma with a concentration range of 2-10 μ g/ml (Arita *et al.*, 1999). Matsuzawa (2010) reported that the average concentrations of adiponectin in human plasma are extremely high up to 5-10 μ g/ml.