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PROSEDUR PEMILIHAN BARU BAGI MASALAH
BERSKALA BESAR

ABSTRAK

Tesis ini mempertimbangkan masalah pemilihan sistem stokastik yang mempunyai jangkaan

ukuran prestasi terbaik (maksimum atau minimum) apabila bilangan alternatif adalah terhingga

dan besar. Prosedur isih dan pilih telah jayanya digunakan untuk penyelesaian masalah dengan

bilangan alternatif yang kecil. Untuk tujuan mengurangkan masalah pengiraan, idea pengopti-

muman ordinal digunakan dengan objektif untuk menemui satu sistem yang memadai baik den-

gan tidak semestinya mencari sistem yang terbaik. Dalam tesis ini, satu pendekatan prosedur

baru dicadangkan untuk memilih satu sistem yang baik apabila bilangan alternatif adalah san-

gat besar. Pendekatan ini mengandungi empat peringkat; Dalam peringkat pertama, prosedur

pengoptimuman ordinal digunakan untuk memilih satu subset kecil yang bertindan dengan set

yang terkandung m% sistem yang sebenar baik dengan kebarangkalian yang tinggi. Kemudian,

prosedur peruntukan pengkomputeran bajet optimum dilaksanakan dalam peringkat kedua un-

tuk peruntukan bajet pengkomputeran yang ada. Ini diikuti dengan prosedur pemilihan subset

bagi mendapatkan subset lebih kecil yang mengandungi sistem terbaik daripada subset yang

dipilih sebelumnya dengan kebarangkalian yang tinggi. Akhirnya, prosedur zon tiada-beza di-

gunakan bagi memilih sistem terbaik daripada subset sebelumnya dengan kebarangkalian yang

tinggi. Kecekapan pendekatan pemilihan yang dicadangkan disemak dari dua sudut berbeza.

Pertama, berdasarkan perubahan sebahagian pembolehubah seperti saiz sampel awal, pen-

ingkatan sampel simulasi, jumlah bajet dan masa yang berlalu. Kedua, berdasarkan tiga set pet-

ua henti seperti berjujukan, jangkaan kos peluang dan kebarangkalian pemilihan aturan pem-

xvii



berhentian yang baik. Sebagai tambahan, perbandingan di antara pendekatan pemilihan yang

dicadangkan dengan pendekatan pemilihan Tiga-Peringkat juga dipersembahkan. Akhirnya,

salah satu masalah yang paling sukar dalam rekabentuk baris pemasangan yang dikenali se-

bagai masalah peruntukan penimbal dibentang sebagai aplikasi sebenar bagi pendekatan yang

dicadangkan. Secara amnya keputusan menunjukkan pendekatan prosedur pemilihan yang di-

cadangkan dapat melakukan pemilihan betul dengan kebarangkalian yang tinggi.
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A NEW SELECTION PROCEDURE FOR LARGE
SCALE PROBLEMS

ABSTRACT

This thesis considers the problem of selecting the stochastic system that has the best (maxi-

mum or minimum) expected performance measure when the number of alternatives is finite but

large. Ranking and selection procedures have been used successfully for solving problems with

small number of alternatives. In order to reduce the computational problem, the idea of ordinal

optimization is being used with the objective of finding a good enough system instead of look-

ing for the best system. In this thesis, a new selection approach is proposed for selecting a good

system when the number of alternatives is very large. This approach contains four stages; In the

first stage, the ordinal optimization procedure is used for selecting a small subset that overlaps

with the set that contains the actual best m% systems with high probability. Then, the optimal

computing budget allocation procedure is applied in the second stage to allocate the available

computing budget. This is followed with the subset selection procedure to get a smaller subset

that contains the best system among the subset that was selected before with high probability.

Finally, indifference-zone procedure is used to select the best system from the previous subset

with high probability. The efficiency of the proposed selection approach is being examined

from two different points. First, based on some parameters changing such as the initial sample

size, increment in simulation samples, total budget, and the elapsed time. Secondly, based on

three sets of the stopping rules such as sequential, expected opportunity cost and probability of

good selection of the stopping rule. In addition, comparisons between the proposed selection

approach and the Three-stage selection approach are also presented. Finally, one of the most

xix



difficult problem in designing of production lines, which is known as buffer allocation prob-

lem is presented as a real application for the proposed approach. The implementations of our

approach are presented with some numerical examples. The results show that in general, the

proposed selection approach made the correct selection with high probability.
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CHAPTER 1

INTRODUCTION

Selecting the best stochastic system of a large set of alternatives is one of the most important

optimization problems. This research provides a combination between the ordinal optimization

and cardinal optimization for selecting the best system in large scale problems.

This thesis introduces a new proposed selection approach for selecting a good system when

the number of alternatives is very large. It is a combination of the cardinal optimization (rank-

ing and selection procedures) and the ordinal optimization. The advantage of the new proposed

selection approach is that, it can be used to select the best system from a very large number of

alternatives, because it uses the ordinal optimization method in order to decrease the number

of the competing alternatives, to be appropriate for the cardinal optimization methods.

This chapter discusses the background of the problem and the problem statement for the

selection problems. The goals and constraints are stated and the research objectives are re-

fined. The significance of the research and research methodology are also discussed in this

chapter. Also, in this chapter a background for M/M/1 queuing system are discussed. Finally,

organization of the thesis is presented.

1.1 Problem Background

There are many problems in a real world that cannot be solved until the discovery of calculus,

which enable mathematical modeling for a large number of physical problems. However, since

the optimization technique emerged in 1950’s, there are many algorithms developed, which
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were previously thought to be infeasible for numerical solution in difficult optimization prob-

lems, now become possible. However, optimization is an old idea, seeking improvement.

Computational load is one of the important problems in optimization that is still being

trying to solve. Actually, this problem does not always necessarily arise due to the size’s

problem. Instead, the complexity of a problem can also caused infeasible computational load.

Simulation models are used to solve many complex problems such as large scale electric power

grids, air and land traffic control systems, the Internet and other communication networks.

Such systems work with evolve in time via human-made rules of operation, and are difficult

to describe by mathematical models such as differential equations for physical systems. These

systems are known as discrete event dynamic systems (DEDS).

Simulation model is important for designing the problem specially when the real system

does not exist or, when it is impossible to do experiment on the real system. Unfortunately,

having a simulation model is not the end of the problem difficulty. Usually, it involves with

time consuming model.

In this thesis, we consider techniques that are designed to solved the problem of selecting

the system that has the best performance measure. This system is known as the best system,

where the best system is defined as the one that has the (maximum or minimum) performance

measure (mean). Moreover, an experimenter might wish to select several systems from a set

of best systems. Selection of the systems according to their ordered means is the problem in

ranking the systems.

In fact, when the number of alternative systems is small, there are many techniques can be

used to achieve this goal, and these techniques are known as the ranking and selection proce-

dures. Some of these techniques are designed to select a single best system as in indifference-
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zone procedures, and some are designed to screen out a set of systems before choosing a ran-

dom size subset of systems containing the best one as in subset selection procedures. The

problem arises for a large scale problem because it needs a huge computational time. For each

sample of the performance value requires one simulation run. Therefore, for a large scale prob-

lem will need a large number of samples which is very time consuming and may be impossible,

especially when we are dealing with a huge number of alternatives in the solution set, as in the

engineering applications. In this situation, we would change our objective to finding good sys-

tems rather than estimating accurately the performance value for these systems, which is the

idea of ordinal optimization.

To selecting the best alternative systems, the experimenter needs two things. First, a sta-

tistical procedure that will tell the experimenter which system to select. Second, an operating

characteristic function for that procedure based on the probability of making a correct selec-

tion. On the other hand, in any experiment there are several different types of decisions that are

required to investigate a research hypothesis. These types are characterized (Bechhofer et al.,

1995) as follows:-

• The experimenter must determine what characteristics are to be measured and then what

is the system design to be used. The system design should include the specification of

system combinations to be used.

• The experimenter must determine the number of times each system is to be observed.

That is, how many replications need to be performed. Adequate replication will ensure

the experimenter be able to achieve the desired design requirement for whatever goal and

statistical procedure is to be employed.

• “Blocking” is the third aspect of the experimental design; it means that, system compar-

isons must be made across homogeneous experimental units.
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• The final aspect of the experimental design is the determination of the manner in which

the system combinations are randomized to the experimental units. Randomization pre-

vents unrecognized factors from systematically confounding the results.

1.2 Problem Statement

We consider the following optimization problem,

min
θ∈Θ

f (θ) (1.1)

where Θ is the feasible solution set and it is an arbitrary, has no structure, finite but a huge set.

Let f be the expected performance measure of some complex stochastic system,

f (θ) = E[L(θ ,Y )]

where θ is a vector represents the system design parameters, Y represents all the random effect

of the system and L is a deterministic function that depends on θ and Y . Unfortunately, it is

not easy to solve this problem because the numerical estimation of the expected performance

measure is only available for a limited class of performance measures, and to estimate this

value we use simulation which is costly and consume time especially when dealing with a

huge number of alternatives.

The goal of the selection procedure is to identify the best n simulated systems. Assume

the best system is defined as the system with the (largest or smallest) mean, which is unknown

and to be inferred from simulation. Suppose that there are n systems, and let Yi j (observation)

represent the jth output from the system i , and let Yi = {Yi j, j = 1,2, . . .} denote the output

sequence from the system i. Also assume that Yi j are independent and identically distributed
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(i.i.d.) normal with unknown means µi = E(Yi j) and variances σ2
i = Var(Yi j). In practice the

σ2
i are unknown, so we estimate it using the sample variances s2

i for Yi j. Also, assume that the

Y1,Y2, . . . ,Yn are mutually independent.

1.3 The Normality and Independent Assumptions

The raw data in the real world problems are rarely normally distributed, and are not indepen-

dent. For example, waiting times for customers in a queuing system are usually dependent

because a long delay for one customer tends to increase the delays to the following customers.

To solve these problems we hope to approximate these raw data to be normally distributed and

independent.

To achieve the normality assumption we need to transform the raw data into batch means,

which are the averages of a large number of raw data, (Law and Kelton, 2000; Kim and Nel-

son, 2006a,b). However, the batch means are far less dependent and non normal than the raw

data if the batch size is large enough. Another solution for the normality problem is to make

multiple replications of each alternative. Then using within-replication averages as the basic

observations, and prolong the replications will make the within-replication averages are ap-

proximately normal distribution. In both solutions the normality assumption is hold by using

the Central Limit Theorem, that suggest the replication averages will be normally distributed

approximately. On the other hand, the independent assumption is valid in the simulation ex-

periments when using a different sequence of random numbers to derive the simulation of each

system.
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1.4 Research Objectives

Selecting the best stochastic system of a huge set of alternatives is one from the most important

optimization problems. This thesis provides an useful combination between the ordinal opti-

mization and cardinal optimization for selecting the best system in large scale problems. The

objectives of this thesis are as follows:

• To propose a new selection approach that can be used to find the best stochastic system

from a large number of alternative set. This new approach is based on the idea of using

the ordinal optimization with optimal computing budget allocation procedures to reduce

the number of systems in the search space, in order to be suitable for the ranking and

selection procedures.

• To study the efficiency of the new proposed selection approach from two points; some

changes in the parameter settings and when applying three different stopping rules.

• To compare between the new proposed selection approach with the Three-stage selection

approach that have been proposed by Alrefaei and Almomani (2004), to select the best

system for large scale problems.

• To solve one of the real life problems, which is known as the buffer allocation problem,

by using the new proposed selection approach.

In order to achieve these objectives, the research framework of this study is designed as

summarized in Figure 1.1. In this figure, P(CS) represents the probability of correct selection,

E(OC) is the expected opportunity cost of a potentially incorrect selection, t0 is the initial

sample size, ∆ is the increment in simulation samples, B is the total simulation budget, T is the

elapsed (execution) time, S is the sequential stopping rule, E(OC) is the expected opportunity

cost stopping rule and P(GS)δ ∗ is the probability of good selection stopping rule.
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1.5 Significance of the Research

Selection problems affect our life everyday. The statistician is called upon to help in provid-

ing a rational procedure for selecting the best from several alternatives. Thus, an agronomist

studying a number of varieties of wheat may seek to select the variety that will produce the

largest number of bushels per acre. A clinician may be interested in which type of drug is most

effective in treating a certain disease. A manufacturing engineer may wish to find a number

of possible assembly line configurations with minimum cost. A polling agency may wish to

determine which candidate is most preferred by electorate.

Many of selection problems are dealing with a large number of alternatives, like engineer-

ing application. Therefore, existence of a selection approach that can be used to solve these

problems is very important. However, selecting the best system from a feasible solution set

is not enough here, although it is the main target. On the other hand we want to achieve the

target with a high probability of correct selection, small expected opportunity cost of a poten-

tially incorrect selection, minimum simulation samples and minimum elapsed time. This thesis

will achieve the target to select the best system under these constraints, by proposing a new

selection approach. The proposed selection approach will select the best system from a large

feasible solution set with high probability of correct selection and relatively small in expected

opportunity cost of a potentially incorrect selection, simulation samples and elapsed time.

Finally, to solve a buffer allocation problem using the proposed selection approach as an

important contribution in this thesis since the buffer allocation problem in a finite production

line is one of the most difficult problems in modeling performance and in designing a produc-

tion line. Of course this study can be further extended to solve another problems, such as an

inventory system, a different type of queuing systems, and other management problems.
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1.6 Methodology

The existing methods for solving the selection problems are used in developing and construct-

ing a new selection approach. It involves with two kinds of optimization; the ordinal and car-

dinal. It is a combination of ordinal optimization, optimal computing budget allocation, subset

selection and indifference-zone procedures. Initially, using ordinal optimization procedure, a

small subset is randomly selected from a feasible solution set that overlaps with the set that

contains the actual best m% systems with high probability. Then optimal computing budget

allocation procedure is used to allocate the available computing budget. This is followed with

subset selection procedure to get a smaller subset with high probability, that contains the best

system among the previous selected subset. Finally, indifference-zone procedure is applied to

select the best system from previous set.

Every procedure that involved here has a specific use with a clear goal. Note that, the

proposed algorithm is appropriate to select the best stochastic system for large scale problems.

This is because the ordinal optimization with the optimal computing budget allocation proce-

dures is used to reduce the number of systems in the feasible solution set. Therefore, it will

be suitable for applying the subset selection and indifference-zone procedures. Furthermore,

using the idea of optimal computing budget allocation in the proposed algorithm will improve

the performance of the ordinal optimization which will lead to the improvement in the whole

performance of the proposed selection approach.

The efficiency of the proposed selection approach under different parameter settings and

different stopping rules are then being studied by applying it on a M/M/1 queuing system.

This is follows with a study on efficiency of the proposed selection approach in solving a real

problem, specifically, to solve the buffer allocation problem with a specific setting.
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Statistical selection approaches is used to select the best system from a finite set of alter-

natives, when the stochastic simulation is used to indicate the performance measure for each

alternative system. Since, the used of the simulation methods have a potential for incorrect

selection, so we need measures to determine the quality of selection. There are two measures

of selection quality; first, the probability of correct selection, where the correct selection means

that the selected system is the system that belong to the actual m% best subset. Secondly, is

the expected opportunity cost of a potentially incorrect selection, where the opportunity cost

is defined as the difference between the unknown means of the selected system and the actual

best system. To estimate the probability of correct selection, we need to count the number of

times we successfully find the best systems that belong to the actual m% best subset out of 100

independent replications.

In this thesis, we use “java” as the programming language in the numerical examples and

was run using a computer model of Optiplex380, manufactured by Dell with installed memory

(RAM) 2.00 GB and the Processor Intel(R)Core(T M)2 Duo CPU E7500 @ 2.93GHz 2.93GHz.

1.7 M/M/1 Queuing System

The analysis of queues (waiting lines) is called queuing theory. It is applied to any situation in

which customers arrived at a system, waited, and received a service. The queuing theory is used

to solve the queuing problem where the problem is about a balance between average waiting

time for one customer and an idle time for a server. The main objectives of queuing theory

are to improve customer service and to reduce operating costs. Applications of queuing theory

are found in various fields, such as in time-shared computer system design, traffic control and

hospital management. In a business world, more customers mean more business transactions.

Out of the many ways to attract customers, an efficient queuing system plays an important role

as it reduces the customers waiting time. Of course, this will make customers happy, and as a
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result the customer will come back for doing business again.

In particular, all queuing systems have three elements:

1. Customers that waiting for a service. They can be people, machines waiting to get re-

paired, a telephone calls and trucks waiting for loading.

2. Servers that provide service. They can be people, telephone center, washing bays, ATM’s

and computers.

3. A waiting line or queue. The queue is the set of customers waiting for getting the service.

It may be a physical line, or an invisible one such as information to be processed in a

computer.

As example, in the mini-market, there is a cashier counter, and customers reached the

counter in random. The customer will pay off immediately and leave the line, provided that

the customer reaches the cashier while it is free from other customer. If the cashier is busy

as the customer reaches the counter, the customer will have to wait in the line. Once another

customer enters the queue, the customer will receive a service according to the queuing rule,

then departs after receiving service. A simple queuing system is shown in Figure 1.2.

Figure 1.2: A simple queuing system

A queuing system provides measures for a system performance. The first measure is, the

quality of service provided to the customers, which is can be measured by waiting time in the

queue, time in the system (waiting time plus service time), and completion by a deadline. The
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second measure is, the efficiency of the service operation and the cost in providing the service,

in which can be measured by an average queue length, average number of customers in the

system (queue plus customers in service), throughput (the rate at which customers are served),

server utilization (percentage of time servers are busy), and percentage of customers who balk.

In simulation of the queuing system, there are three perceptions usually being used:

1. The arrival process.

2. The service mechanism, such as the number of servers and the service-time distribution.

3. The queuing rule and the criteria of the queuing system such as, first come first served

(FCFS), last come first served (LCFS), random served and priority served.

The notation A/S/N/C is used to classify a queuing system, where A specifies the type of

arrival process, S denotes the service-time distribution, N specifies the number of servers, and

C denotes the capacity of the system, that is, the maximum number of customers that can be

accommodated (including number in queue and number being served). If C is not specified,

it is assumed that the capacity of the system is unlimited. For example, an M/M/2 queuing

system, M represented the memoryless, exponential interarrival times, and a Poisson arrival

process, with 2 servers. An M/G/1 queuing system has Poisson arrivals, general service-time

distribution, and a single server. An M/D/1 queuing system, D stands for constant (deter-

ministic) service time. However, there are many examples of queuing systems with limited

capacity among other are hospital emergency rooms with limited beds and telephone systems

with limited trunks. Our concern in this thesis is M/M/1 queuing system, where the two M’s

refer to the fact that both the interarrival and the service distributions are exponential, and there

is one server.
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In the M/M/1 queuing system, the customers arrive at a single-server service station fol-

lows the Poisson probability distribution with λ is the mean arrival rate. Note that, if the

number of arrivals follow a Poisson process with λ mean arrival rate, then the time between

arrivals has an exponential distribution with mean interarrival time is 1/λ . It is clear that, each

customer upon arrival goes directly into service if the server is ideal and if not, the customer

will have to join the queue. When the server finishes serving a customer, the customer leaves

the system, and the next customer in line, if there is any, enters service. The successive service

times are assumed to follow an exponential distribution with mean service rate, µ . Then, the

average service time will be 1/µ . The performance measures of the system are the customers

waiting time, the length of queue, and the idle time of the server. In this thesis our goal is to

minimize the average waiting time that a customer spends in the system. So, if we assume

W represents the average amount of time that a customer spends in the system, then it can be

shown that W = 1
µ−λ

. More details on the M/M/1 queuing system can be found in (Ross,

2007; Hsu, 1997; Lian and Wan, 2007).

1.8 Organization of the Thesis

This thesis is organized in the following manner. The introduction and some background to

the selection problems was explained in the beginning of Chapter 1, followed by the problem

statement, the objectives, the significance of research and the methodology of the study. It also

gives some discussions on the normality and independent assumptions with a brief background

for the M/M/1 queuing system. In Chapter 2, a background of statistical selection procedures

are presented together with the ordinal optimization procedure. This chapter is divided into two

parts. The first part deals with the statistical selection procedures which include, indifference-

zone, subset selection and multiple comparisons procedures. While the second part explains

the idea of ordinal optimization and optimal computing budget allocation. Also in this chapter
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the measures of selection quality will be discussed.

The new proposed selection approach is presented in Chapter 3 together with a perfor-

mance evaluation and an examples to illustrate how the approach works. The efficiency of the

proposed selection approach under different parameter settings and different stopping rules are

presented in Chapter 4 with a series of numerical illustrations. In this chapter, there are four

parameter settings are being discussed; they are the initial sample size, increment in simulation

samples, total budget and the elapsed time. We also study in case of three stopping rules; the

sequential, the expected opportunity cost and the probability of good selection.

Chapter 5 presents a comparison between different selection approaches that have been

used to solve the large scale problems. For the sake of the comparisons, in this chapter we argue

the Three-Stage selection approach in context of the expected opportunity cost as a measure of

selection quality and also we discuss the effect of the initial sample size on the performance of

the Three-Stage selection approach. Chapter 6 presents how the new proposed method works

in buffer allocation problem. Finally, conclusions, contribution of the thesis and suggestions

for further research are presented in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

We consider the problem of selecting the system that has the best performance measure with a

pre-specified high probability. This system is defined as the best system, where the best system

might be the one that has maximum or minimum performance measure (mean). We assume

that all systems in the search space are normally distributed with unknown means and unknown

variances.

Some of the statistical selection procedures that will be discussed in this chapter, are de-

signed to select a single best system. Whereas, other procedures are designed to screen a set of

systems by choosing a (random size) subset of the systems containing the best one. In the other

hand, some procedures are used to construct simultaneous confidence intervals for specific set

of mean system. However, all these methods are effective when the number of alternatives is

relatively small.

In the real world problems, the number of alternatives is very huge, so we cannot use

statistical selection procedures to select the best systems. To solve this problem, usually we

change our concern from finding the best system to finding the good enough system with high

probability. In this situation, the ordinal optimization becomes more important from cardinal

optimization.
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Statistical selection procedures are used to select the best system from a finite set of alter-

natives, when the stochastic simulation is used to indicate the performance measure for each

alternative in the simulation. Since the used of the simulation methods have a potential for

incorrect selection, so we need a measure to determine the quality of selection. In fact, there

are two measures of selection quality. The first measure is the probability of correct selection,

and the second one is the expected opportunity cost of a potential incorrect selection.

In this chapter, we argue the statistical selection procedures (the indifference-zone, the sub-

set selection and multiple comparisons) and the ordinal optimization procedure with the budget

allocation problem. Then, we present several combined procedures that are used to select the

best system, when the number of alternatives is large. Finally, we discuss two measures of

selection quality; the probability of correct selection and the expected opportunity cost of a

potential incorrect selection.

2.2 Statistical Selection Procedures

The problem of selection of some or all the systems according to their ordered means, can

be solved by ranking and selection procedures, which involved two different procedures; the

indifference-zone and the subset selection. A natural strategy of ranking and selection proce-

dures for dealing with this problem is to make comparisons between different systems whose

response is normally distributed when the number of systems in the search space is small.

These procedures usually are used to select the best system or a subset that contain the best

systems when the number of systems is small, with a pre-specified significance level.

In this section, we consider three basic problem formations for selecting, screening and

multiple comparison problems. We discuss three different statistical selection procedures that

work in case of a single normal random effect of the system with n systems. These procedures
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are, the indifference-zone, the subset selection and multiple comparisons procedures.

2.2.1 The Indifference-Zone Procedure

Consider the problem of selecting the best system among n systems when n small (n ≥ 2),

by using the indifference-zone selection procedure. Suppose that we are dealing with sys-

tems that are normally distributed with unknown means µ1,µ2, . . . ,µn and unknown variances

σ2
1 ,σ2

2 , . . . ,σ2
n . We assume that a largest mean is better, therefore if the ordered µi-values are

denoted by µ[1] ≤ µ[2] ≤ . . .≤ µ[n], then the system having mean µ[n] is refer to as the best sys-

tem. In the indifference-zone procedure, the indifference zone is the interval [µ[n]− δ ∗,µ[n]],

where δ ∗ is a small positive real number predetermined by the examiner. The objective is to

selecting the system i∗ such that µi∗ ∈ [µ[n]− δ ∗,µ[n]]. Let the correct selection (CS) here is

defined as, selecting the system whose mean belongs to the indifference zone. We would like

the correct selection to take place with high probability, say with a probability no smaller than

P∗, where P∗ is predetermined by the examiner. In mathematical notation, we seeks to achieve

P(CS) ≥ P∗ whenever µ[n]− µ[n−1] ≥ δ ∗, where 0 < δ ∗ < ∞ and 1/n < P∗ < 1, i.e. P( select

[n] | µ[n]−µ[n−1] ≥ δ ∗)≥ P∗.

The δ ∗ is called the indifference zone, which is the difference between the best system and

the favorable system. It represents the smallest difference that we want to achieve. Therefore,

we must be very careful in determining the value of δ ∗, because the system requires to implic-

itly specifying the common single stage sample size that required for the n competing systems.

If δ ∗ is too small, then the required number of simulation samples or replications to guarantee

the probability requirement is expected to be large. Therefore, δ ∗ can be choose as the smallest

difference of µ[n]− µ[n−1] and it is worth to detect. In the other hand, large P∗ may require a

larger number of simulation samples or replications to achieve the experimenter request.
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In the indifference-zone procedures, we must use at least two-stage procedure when the

common variances are unknown to select the best system. Indifference-zone procedures are

differ in both, the standard used for selecting the best system, and the choice of the sample size

in the second stage. The first stage involves obtaining a fixed number of simulation samples

t0, to get the first stage sample means and sample variances for each system in the feasible

solution set Θ. Then using the sample mean and variance from the first stage, the additional

simulation samples needed from each system in Θ is determined in order to get the sample

means of the second stage. Then a weighted average of the first and second stage sample mean

is computed and the system with the best weighted average estimated mean will be selected as

the best system.

The first work that presented indifference-zone formulation was proposed by Bechhofer

(1954). It involved with a single-stage procedure for ranking means of normal systems with

known variances, and suggested the probability requirement for the indifference-zone proce-

dure. Hayter (1989) has proposed a single-stage procedure when the variances are unknown

and bounded. In this procedure, the variances σ2
1 ,σ2

2 , . . . ,σ2
n are unknown but max{σ2

1 , σ2
2 ,

. . . , σ2
n } ≤ σ2

v , where σ2
v is known. The Hayter (1989) procedure is as follows, (Bechhofer

et al., 1995):

1. For the given n and specified δ ∗ and P∗, choose Z(1−P∗)
n−1,1/2 from Table A.1 in Appendix A,

corresponding to the n and P∗ of interest.

2. Calculate t = d2(σvZ(1−P∗)
n−1,1/2/δ ∗)2e, where dxe denotes the smallest integer greater than

or equals to x.

3. Take random samples of t observations yi j ( j = 1, . . . , t) for each system i, and calculate

the n sample means ȳi = ∑
t
j=1 yi j

t , where i = 1, . . . ,n.

4. Select the system i∗ that satisfies ȳi∗ = max{ȳ1, ȳ2, . . . , ȳn} as an estimate of µ[n].
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Remark:- The value of the constant Z(1−P∗)
n−1,1/2 that have been used to implement the proce-

dure of Hayter (1989), is a special case of the upper equicoordinate point of the multivariate

normal distribution. If vector (W1, . . . ,Wn−1) has the (n−1)-variate multivariate normal distri-

bution with mean vector zero, a unit variances, with a common correlation 1/2, then

P(W1 ≤ c,W2 ≤ c, . . . ,Wn−1 ≤ c) =
∫

∞

−∞

Φ
n−1
(

z+ c
√

2
)

dΦ(z)

where c = Z(1−P∗)
n−1,1/2, and Φ(·) denotes the standard normal cumulative distribution function,

(Bechhofer et al., 1995).

If no information about the variances is available, then the two-stage procedure of Rinott

(1978) can be used. This procedure is applicable when the data are normally distributed and

all systems are simulated independently of each others. However, Rinott (1978) has proposed

a sequential procedure, that consists a two-stage procedure for the case when the variances are

completely unknown. In fact, Rinott (1978) procedure is one of the simplest and the most well

known ranking and selection procedures. In the other hand, most other ranking and selection

procedures are directly or indirectly based on this procedure. The Rinott (1978) procedure is

as follows:

For the given n and a specified δ ∗ and P∗, fix a number of simulation samples t0 ≥ 2 to be

taken in Stage 1. Choose the constant g = g(n,P∗,v) from Table A.2 in Appendix A, where

v = t0−1.

Stage 1:

1. Take random samples of t0 ≥ 2 observations yi j ( j = 1, . . . , t0) for each system i, where

i = 1, . . . ,n.
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2. Calculate the first sample mean ȳ(1)
i = ∑

t0
j=1 yi j

t0
, and sample variance s2

i = ∑
t0
j=1(yi j−ȳ(1)

i )2

v as

an unbiased estimator of σ2
i based on v = t0−1 degrees of freedom.

Stage 2:

3. Compute Ti = d(gsi/δ ∗)2e for all i = 1, . . . ,n. Take random samples of max{0,Ti− t0}

additional observations from each system i, where i = 1, . . . ,n.

4. Calculate the overall sample means ȳi = ∑
Ti
j=1 yi j

Ti
for i = 1, . . . ,n.

5. Select the system i∗ that satisfies ȳi∗ = max{ȳ1, ȳ2, . . . , ȳn} as an estimate of µ[n].

Remark:- In the procedure of Rinott (1978), constant g = g(n,P∗,v) is the solution of

∫
∞

0

∫
∞

0

[
Φ

(
g√

v(1/x+1/y)

)
fv(x)

]n−1

fv(y)dydx = P∗

where Φ(·) is the standard normal cumulative distribution function and fv(·) is the probability

density function of the Chi-squared distribution with v degrees of freedom, (Bechhofer et al.,

1995).

Rinott (1978) procedure has two properties. First, it does not eliminate any system at

the end of stage one, but instead it uses the data of each system in stage one to estimate the

variance of that system. Second, the total number of simulation samples or replications from

each system is a random variable, so it is possibly different for each system.

Kim and Nelson (2007) present a brief proof sketch of the statistical validity of Rinott

(1978) procedure. They assume that the variances are known and equal across all systems.

Therefore, Rinott (1978) procedure does not need two stages and it becomes a one-stage pro-

cedure. In addition, Kim and Nelson (2007) give an overview on recent advances made in

indifferent-zone ranking and selection procedures. Kim and Nelson (2006a) described the ba-
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sic rule for the ranking and selection, and discussed many other types of ranking and selection

problems. Furthermore, they gave useful theorems to handle the problems with the unknown

and unequal variances.

Recently, Kim and Nelson (2001) proposed a fully sequential procedure, denoted by (KN)

procedure. The goal of this sequential procedure is to eliminate, at an early stage of simulation

process, those simulated systems that are apparently inferior, and thus reduce the overall com-

putational effort. The KN procedure is fully sequential since it takes only a single basic output

from each system that is still in competition at each stage. However, if there exists evidence

that a system is inferior, then it will be eliminated immediately from consideration. This pro-

cedure requires independent and identically normal distribution data, to find the best system.

The KN procedure is as follows:

1. Select confidence level 1−α , indifference zone δ ∗, and first stage sample size t0 ≥ 2.

Calculate ϕ and c as described below.

2. Let I = {1,2, . . . ,n} be the set of systems still in competition, and let h2 = 2cϕ(t0−1).

3. Obtain t0 of observations yi j, ( j = 1, . . . , t0) from each system i, where i = 1, . . . ,n. For

all i 6= l, compute s2
il = 1

t0−1 ∑
t0
j=1(yi j− yl j− [yi(t0)− yl(t0)])2 as the sample variance of

the difference between systems i and l.

4. Let Til =
⌊(

hsil
δ ∗

)2
⌋

, where bxc refereing to the greatest integer less than or equal to the

real number x, and let Ti = maxi 6=l Til. Here Ti +1 is the maximum number of observations

that can be taken from system i.

5. If t0 > maxi Ti, then stop and select the system with the largest yi(t0) as the best system.

Otherwise, set the observation counter d = t0 and go to the next step.
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6. Set Iold = I. Let I = {i : i ∈ Iold and yi(d) ≥ yl(d)− Bil(d), ∀l ∈ Iold , l 6= i}, where

Bil(d) = max
{

0, δ ∗

2cd

((
hsil
δ ∗

)2
−d
)}

.

7. If |I|= 1, then stop and select the system whose index is in I as the best system. Here |I|

is the number of elements in the set I. Otherwise, take one additional observation yi,d+1

from each system i ∈ I, and set d = d +1.

8. If d = maxi Ti +1, then stop and select the system whose index is in I and has the largest

yi(d) as the best system. Otherwise, go to step 6.

Remark:-

- yi(d) = 1
d ∑

d
j=1 yi j denote the sample mean of the first d observations from system i.

- Constant c is a nonnegative integer, with standard choices being c = 1,2. It is easy to

compute ϕ when c = 1,2.

- Constant ϕ is the solution to the equation

f (ϕ)≡
c

∑
k=1

(−1)k+1
(

1− 1
2

ζ (k = c)
)(

1+
2ϕ(2c− k)k

c

)−(t0−1)/2

=
α

n−1

where ζ is the indicator function. In the special case that c = 1, we have the closed form

solution ϕ = 1
2

[( 2α

n−1

)−2/(t0−1)−1
]
.

To prove the validity of the KN procedure, Kim and Nelson (2001) purposed the following

theorem:

Theorem 2.2.1 Suppose that Y1,Y2, . . . are independent and identically distributed multivari-

ate normal with unknown mean vector µ , that is arbitrary except for the condition that µn ≥
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µn−1 +δ ∗, and unknown and arbitrary positive definite covariance matrix Σ. Then with prob-

ability ≥ 1−α the fully sequential indifference-zone procedure selects system n.

proof:- See (Kim and Nelson, 2001).

Kim and Nelson (2006b) present two fully sequential procedures for steady-state simula-

tion that are designed to select the best system of a finite number of simulated systems. These

two procedures are extensions of KN to steady-state simulation. The first procedure is called

(KN+) procedure in which the variance estimators in this procedure are calculated once from

the first stage sample, and the second procedure is called (KN ++) procedure with the variance

estimators in this procedure are allows to updated.

The KN+ procedure does not update the variance estimators after the first stage of sam-

pling. The goal of this procedure is finding the system with the largest steady-state mean.

However, the goal can be modified to select the system with the smallest mean. Kim and

Nelson (2006b) proved the validity of this procedure. The KN+ procedure is as follows:

1. Select confidence level 1/n < 1−α < 1, indifference zone δ ∗, first stage sample size

t0 ≥ 2, and batch size m0 < t0. Calculate ϕ and c as described below.

2. Let I = {1,2, . . . ,n} be the set of systems still in competition, and let h2 = 2cϕz, where

the degrees of freedom z is determined by which variance estimator is used.

3. Obtain t0 observations yi j ( j = 1, . . . , t0) from each system i = 1, . . . ,n. For all i 6= l,

compute the estimator m0V 2
il the sample asymptotic variance of the difference between

systems i and l.

4. Let Til =
⌊

h2m0V 2
il

(δ ∗)2

⌋
, where bxc is the greatest integer less than or equal to the real number

x, and let Ti = maxi6=l Til. Here Ti + 1 is the maximum number of observations that can
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be taken from system i.

5. If t0 ≥ maxi Ti + 1, then stop and select the system with the largest yi(t0) as the best

system. Otherwise, set the observation counter d = t0 and go to the next step.

6. Set Iold = I. Let I = {i : i ∈ Iold and yi(d) > yl(d)− Bil(d), ∀l ∈ Iold , l 6= i}, where

Bil(d) = max
{

0, δ ∗

2cd

(
h2m0V 2

il
(δ ∗)2 −d

)}
.

7. If |I| = 1, then stop and select the system whose index is in I as the best system. Oth-

erwise, take one additional observation yi,d+1 from each system i ∈ I and set d = d + 1,

and go to step 6.

Remark:-

- Constant c may be any nonnegative integer.

- Constant ϕ is the solution to the equation

f (ϕ) =
c

∑
k=1

(−1)k+1
(

1− 1
2

ζ (k = c)
)(

1+
2ϕ(2c− k)k

c

)−z/2

= 1− (1−α)1/(n−1)

where ζ is the indicator function.

The variance estimators used in KN+ depend only on the first stage sample. Nevertheless,

KN ++ procedure has improved the KN+ by updating the variance estimators as getting more

samples. Kim and Nelson (2006b) prove the validity of this procedure. The KN ++ procedure

is as follows:

1. Select confidence level 1/n < 1−α < 1, indifference zone δ ∗, first stage sample size

t0 ≥ 2, and batch size m0 < t0. Calculate ϕ and c as described below.
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2. Let I = {1,2, . . . ,n} be the set of systems still in contention, and let h2 = 2cϕ .

3. Obtain t0 observations yi j, j = 1, . . . , t0 from each system i = 1, . . . ,n.

4. Set the observation counter d = t0 and md = m0.

5. If md has changed since the last update, then for all i 6= l, compute estimator mdV 2
il (d)

the sample asymptotic variance of the difference between systems i and l based on bd

batches of size md .

6. Let Til(d) =
⌊

h2mdV 2
il (d)

(δ ∗)2

⌋
, where bxc is the greatest integer less than or equal to the real

number x, and let Ti(d) = maxi 6=l Til(d).

7. If d ≥ maxi Ti(d)+ 1, then stop and select the system with the largest yi(d) as the best

system. Otherwise, go to the next step.

8. Set Iold = I. Let I = {i : i∈ Iold and yi(d) > yl(d)−Bil(d) ∀l ∈ Iold , l 6= i}, where Bil(d) =

max
{

0, δ ∗

2cd

(
h2mdV 2

il (d)
(δ ∗)2 −d

)}
.

9. If |I| = 1, then stop and select the system whose index is in I as the best system. Oth-

erwise, take one additional observation yi,d+1 from each system i ∈ I and set d = d + 1,

and go to step 5.

Remark:-

- Constant c may be any nonnegative integer.

- Constant ϕ is the solution to the equation

f (ϕ) =
c

∑
k=1

(−1)k+1
(

1− 1
2

ζ (k = c)
)

exp
(
−ϕ

c
(2c− k)k

)
= 1− (1−α)1/(n−1)

where ζ is the indicator function.
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