
DEVELOPMENT OF POROUS SINTERED ALUMINA BY A 
SPONGE SCAFFOLDING METHOD AND PORE FORMING 

AGENT USING NATURAL BIORESOURCES 

 
 
 
 
 
 

by 

 
 
 
 
 

Sengphet Keokangdong 
 
 
 
 
 
 

 
Thesis submitted in fulfillment of the 

requirements for the degree of 
Master of Science 

   Universiti Sains Malaysia 
 

 
 

September 2010 



Saya isytiharkan bahawa kandungan yang dibentangkan di dalam tesis ini adalah hasil kerja 

saya sendiri dan telah dijalankan di Universiti Sains Malaysia kecuali dimaklumkan 

sebaliknya. Tesis ini juga tidak pernah diserahkan untuk ijazah yang lain sebelum ini. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                    Disaksikan Oleh: 
 
 
 
 
 
 
 
 
 
Tandatangan Calon                                                                Tandatangan Penyelia/Dekan 
 
Nama Calon: Sengphet Keokangdong 

 
 
 



I declare that the contents presented in this thesis are my own work which was done at 

Universiti Sains Malaysia unless stated otherwise. The thesis has not been previously 

submitted for any other degree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      

Signature of candidate     Main Supervisor’s Signature  

Name of candidate:  

SENGPHET KOEKANGDONG 



ii 
 

ACKNOWLEDGEMENTS 
 

 
I would like to express my sincere gratefulness to my main supervisor, Professor 

Dr. Ahmad Fauzi Mohd Noor as well as co-supervisors Professor Dr. Radzali Othman 

and Dr. Yeo Feir Yee for their guidance, inspiration, devotion and perpetual 

encouragement till the completion of this work at Universiti Sains Malaysia, USM. 

I also would like to express my sincere thanks to my co-supervisors, Professor Dr. 

Ahiko Matsumoto Toyohashi University of Technology (Japan), and Assoc. Prof. 

Korakanh Pasomsouk National University of Laos (NUOL) for their help and support in 

this research project. 

I am grateful to JICA-AUN/SEED-Net program for the opportunity to undertake 

this work and financial support. I do thank you all very much to AUN/SEED-Net Chief 

Advisor, Professor Kazuo Tsutsumi, Program coordinator; Mr. Sakae Yamada, Ms. 

Siriphone, Ms. Kanchana, and also Mrs. Irda, and Mrs Norpisah from USM for their 

active supports and assistance through my work.  

I am greatly indebted to Mechanical engineering Department, National University 

of Laos (NUOL) and Ministry of Education, Laos for granting permission to conduct my 

higher studies in USM. 

Many thanks to all my friends in USM, particularly, my senior Aye Aye thant, 

Uday, Umar, Yanny, Chong, Kee, Sengpasith, Le Minh Hai... and for their great 

companion and help making my stay in Malaysia pleasant and enjoyable.  

Last but not least, I would like to take opportunity to express my gratitude to my 

family for their love, especially my parents. 

Thank you very much. 



 
 

iii 
 

TABLES OF CONTENTS 
 

                                                                                                                                              Page 

ACKNOWLEDGEMENTS        ii 

TABLE OF CONTENTS        iii 

LIST OF TABLE         viii 

LIST OF FIGURES         ix 

LIST OF ABBREVIATIONS       xiii 

ABSTRAK          xv 

ABSTRACT                    xvii 

 

CHAPTER 1: INTRODUCTION 

1.1 Introduction         1 

1.2     Problem statements        4 

1.3     Objectives          5 

1.4    Research Scope         5 

CHAPTER 2: LITERATURE REVIEW  

2.1   Porous ceramics          6 

2.2   Applications of porous ceramic       8 

2.2.1   Filters         8 

2.2.2   Dental implants        8 

2.2.3   Molten metal filtration       9 

2.2.4   Hot gas cleanup        10 

2.2.5   Thermal insulation        10 

2.2.6    Catalysts         11 

2.3   Aluminium oxide (Al2O3)       11 



 
 

iv 
 

2.4   Porous alumina         14 
 

2.4.1   Sintering of porous alumina      14 

2.4.2   Density and porosity of porous alumina     15 

2.4.3   Pore size of porous alumina      15 

2.5   Fabrication of porous alumina        16 

2.5.1   Preparation of porous alumina by using a polymeric sponge method 16 

2.5.1.1   Polymeric sponge open cell foams    17 

2.5.1.2   Polymeric sponge closed cell foams    18 

2.5.1.3   Advantages and disadvantages of foams   18 

2.5.2   Fabrication of porous alumina by pore-forming agent (PFA)  19 

2.5.2.1   Solid pore forming agents (SPFA)    19 

2.5.2.2   Liquid pore forming agents (LPFA)    20 

2.5.2.3   Advantages and disadvantages of (PFA)   21 

2.5.3   Other method        22 

2.5.3.1 Sol-gel processing      22 

2.6   Flow rate through porous media       22 

CH APTER 3: MATERIALS AND METHODOLOGY 

3.1   Introduction         24 

3.2   Starting Raw Materials        24 

3.2.1   Polymeric sponge method      25 

3.2.1.1 Polymeric sponge       25 

3.2.1.2 Alpha-alumina powder (α-Al2O3)    26 

3.2.1.3 Polyvinyl alcohol (PVA)      26 

3.2.2 Pore-forming agent method using bioresources    27 



 
 

v 
 

3.2.2.1 Sugar cane waste (SC)      27 

3.2.2.2  Rice husk (RH)       28 

3.3 Preparation of alumina slurry       29 

3.3.1 Polymeric sponge method      29 

3.3.1.1Mixing         30 

3.3.1.2 Preparation of foam       31 

3.3.1.3 Immersion of polymeric sponge     31 

3.3.1.4 Sintering temperatures        31 

 3.3.2 Pore forming agents (PFA) using bioresources    32 

3.3.2.1 Preparation of alumina slurry by using bioresources   32 

3.3.2.2 Molding         33 

3.3.2.3 Drying         34 

3.3.2.4 Sintering         34 

3.4 Characterization of samples        35 

3.4.1 Chemical analysis using XRF       36 

3.4.2 Microstructural observation using optical microscopy   37 

3.4.3 Microstructural observation using FE-SEM     37 

3.5 Physical and Mechanical Tests       37 

3.5.1 Viscosity test        37 

3.5.2 Density and Porosity measurement     38 

3.5.2 Water flow rate determined by Darcy’s law (Darcy’s flux 1865)  40 

3.5.3 Compressive strength (ASTM C773-88)     41 

  

CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction          43 

4.2 Characterization of Raw Materials        43 



 
 

vi 
 

4.2.1 Scanning Electron Microscopy Analysis      44 

4.2.2 X-ray Fluorescence (XRF)       47 

4.3 Fabrication of porous alumina using a polymeric sponge    48 

4.3.1 Effect of concentration alumina slurry      48 

4.3.1.1 Viscosity         49 

4.3.1.2 Density         49 

4.3.1.3 Porosity         50 

4.3.1.4 Optical Microscope Observation     51 

4.3.1.5 Field Emission Scanning Electron Microscopy (FE-SEM) 51 

4.3.2 Effect of sintering temperatures       52 
 

4.3.2.1 Density and porosity       53 

4.3.2.2 Water flow rate and seepage-velocity    56 

4.3.2.3 Optical Microscope Observation     58 

4.3.2.4 Field Emission Scanning Electron Microscopy (FE-SEM)  60 

4.3.2.5 Compressive strength      62 

4.3.3 Effect of binder on porous alumina      63 

4.3.3.1 Density and porosity       64 

4.3.3.2 Water flow rate and seepage- velocity    65 

4.3.3.3 Optical Microscope Observation     66 

4.3.3.4 Field Emission Scanning Electron Microscopy (FE-SEM)  67 

4.3.3.5 Compressive strength      68 

4.3.4 Effect of Sugar cane (SC) on porous alumina foams   68 

4.3.4.1 Density and porosity      68 

4.3.4.2 Water flow rate and seepage-velocity    71 

4.3.4.3 Optical Microscope Observation     72 

4.3.4.4 Field Emission Scanning Electron Microscopy (FE-SEM) 74 



 
 

vii 
 

4.3.4.5 Compressive strength      75 

4.4 Fabrication of porous alumina by pore-forming agents     76 

       (Slip casting in a Mold)  

4.4.1 Effect of PVA on alumina by casting     76 

4.4.1.1Density and porosity      77 

4.4.1.2 Water flow rate and seepage-velocity     77 

4.4.1.3 Optical Microscope Observation     78 

4.4.1.4 Field Emission Scanning Electron Microscope (FE-SEM)  80 

4.4.1.5 Compressive strength      81 

4.4.2 Effect of rice husk (RH) and sugar cane waste (SC) on porous  

alumina in plaster mould        81 

4.4.2.1 Density and porosity       82 

4.4.2.2 Water flow rate and seepage-velocity     85 

4.4.2.3 Optical Microscopy Observation     88 

4.4.2.4 Compressive strength       91 

 

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion          93 

5.2 Suggestions for future work        96 

 

REFERENCES          97 

APPENDIX A          104 

APPENDIX B          105 

APPENDIX C          107 

PUBLICATIONS          109

         



viii 
 

LIST OF TABLES  

        Page 

2.1   Some characteristic of molten metal filters     10 

2.2   Physical properties of alpha alumina      13 

2.3   Comparison between closed-cell and open-cell polyurethane foams  17 
       
 3.1 Properties of alumina powder (a high purity 99.99%)    26 
 
3.2   Properties of the specification of polyvinyl alcohol (PVA, 87-90%)  

hydrolyzed         27 
 

3.3   Composition for preparation alumina of slurry     29 

3.4   Composition preparation of alumina slurry in mould    33 

4.1   The of XRF analysis for alumina, rice husk and sugar cane waste   47 

4.2   Sample preparation with different sintering temperatures    53 

4.3   Density and apparent porosity of samples added with PVA    64
    

4.4   Compressive strength with added PVA and sintered at 1250 oC   68
  

4.5   Chemical composition of alumina slurry      77

   

4.6   The density and porosity of the porous ceramic in the mould method    78
    

4. 7  The compressive strength versus density and porosity sintered    82 

at 1250 oC 3 hrs 

 

               

 

 

 

 

 



ix 
 

LIST OF FIGURES 

                   Page 

2.1   Alumina crystal structure       12 

2.2   Phase transformation portion for alumina phase    13 

2.3   The closed cell pore polymeric foam       18 

2.4    Before sintering and after sintering pore forming agent is burned out  19 

2.5   Examples of natural porous materials      23 

3.1   Sponge with dimension (15 x15 x25 mm)      
25  

3.2   Sugar cane waste fibers before ground and (B) Sugar cane powder (SCP) 28 

        after ground          

3.3   Rice husk before ground and (B) Rice husk powder (RHP) after ground 28 

3.4   Flow chart to optimize the processing in alumina foams    30 

3.5   Flow chart showing sintering process of alumina foams    32 

3.6   Flow chart to produce porous the processing alumina cakes   33 

3.7   The simple mold to prepare for alumina cakes      34 

3.8    (A) Porous alumina foams after sintering (B) Porous alumina cake   35 

         after sintering         

3.9    Schematic illustration of the liquid displacement method for measuring  37 

        density and porosity of a porous sample       

3.10   The apparatus for testing of water flow in porous alumina body  38 

3.11   Apparatus for testing compressive strength      40 

4.1   SEM micrograph of Al2O3 particles       44 

4.2   SEM micrograph of PVA particles      45 

4.3   SEM micrograph of Rice husk (RHP) particles     46 

4.4    SEM micrograph of sugar cane waste powder (SCP) particles   46 

4.5    Variation of viscosity different alumina content in the slurries           49 



x 
 

4.6   The curves relationship of porosity and density of porous alumina   50 

        after  sintering 1550 oC for 3 hrs 

4.7    Stereo micrographs of sintered porous alumina foams decreased from  

different alumina contents (a) 67wt.%Al2O3, (b) 63wt.%Al2O3,  

(c) 57wt.%Al2O3 and (d) 54wt.%Al2O3 and sintered at 1550oC   51 

4.7 The SEM micrographs of porous alumina foams with alumina  

contents (a) 67wt.%Al2O3, (b) 63wt.%Al2O3, (c) 57wt.%Al2O3 and  

(d) 54wt.%Al2O3 which were sintered at 1550oC           52 

4.8    Density of samples sintered at 1250, 1350, 1450 and 1550oC    54 

4.9    Porosity of samples sintered to 1250, 1350, 1450 and 1550oC   55 

4.10   Water flow rate in samples sintered to 1250, 1350 and1450oC   56 

4.11   Seepage-velocity of samples sintered to 1250, 1350, 1450 and 1550oC 57 

4.12   Stereo-optical micrographs of porous alumina foams sintered at 1250oC of the   

samples (a) 63wt%Al2O3 (b) 57wt%Al2O3 (c) 54wt%Al2O3 with    
magnification 50X        59 

4.13   Stereo-optical micrographs of porous alumina foams sintered at 1350oC  

of the samples (a) 63wt%Al2O3 (b) 57wt%Al2O3 (c) 54wt%Al2O3  

with magnification 50X       60 

4.14   The SEM micrographs of porous alumina sintered at 1250oC of samples  
(a) 63wt%Al2O3 (b) 57wt%Al2O3 (c) 54wt%Al2O3 at magnification 100X)  61 
 

4.15 SEM micrographs of porous alumina 57wt.%Al2O3 sintered at  
different temperatures: (a) 1250, (b) 1350, (c) 1450 and (d) 1550oC  62 
 

4.16 Compressive strength of samples sintered to 1250, 1350, 1450 and 1550oC  63  

4.17 Water flow rate and seepage-velocity of the samples sintered at 1250oC  65 

4.18   Stereo-optical micrographs of porous alumina foams sintered  
at 1250 oC for samples (a) 63wt%Al2O3/PVA, (b) 57wt%Al2O3/PVA and  66 
(c) 54wt%Al2O3/PVA with magnification 50X. 

 
4.19   SEM micrographs of porous alumina sintered at 1250 oC for samples  

(a)63wt%Al2O3/PVA,(b)57wt%Al2O3/PVAand(c)54wt%Al2O3/PVA  
at magnification 100X.        67 

4.20   Density of sintered at 1250oC alumina foams versus (wt.%) of sugar cane   69 



xi 
 

added   
          
4.21   Porosity of sintered at 1250oC alumina foams versus (wt.%) of sugar cane   70 

added             

4.22    Water flow rate of porous ceramic sintered at 1250oC    71 

4.23    Show the water Seepage -velocity of porous ceramics sintered at 1250oC 72 
 

4.24    Stereo-optical micrographs of porous alumina foams sintered at 1250oC  
for samples 54wt%Al2O3/PVA-SC, with (a) 5wt. %,  (b) 10wt.% and (c) 

15wt.%,  
of sugar cane wastes added magnification 50X.    74 
 

4.25   SEM micrographs of porous alumina sintered at 1250oC of samples  

(a) 63wt%Al2O3/PVA-SC, (b) 57wt%Al2O3/PVA-SC and    75 

(c) 54wt%Al2O3/PVA-SC, at magnification 50X). of    

samples Sp5PVSC, (a) 5%, (b) 10% and (c) 15% of sugar cane    

            wastes added with magnification 50X. 

4.26   Compressive strength vs SC contents of porous alumina ceramic sintered  

at 1250oC          76 

4.27   Flow rate and velocity of porous alumina sintered at 1250oC    78 

4.28   Stereo-optical micrographs of porous alumina foams sintered at 1250oC 
samples (a) 63wt.%Al2O3M/PVA, (b) 57wt.%Al2O3M/PVA and (c) 
54wt.%Al2O3M/PVA with magnification 50X.    79 
 

4.29   SEM micrographs of porous alumina foams sintered at 1250 oC  

          of the samples (a)     63wt.%Al2O3M/PVA, (b) 57wt.%Al2O3M/PVA and   80 

        (c)    54wt.%Al2O3M/PVA  

 4.30   Densities of porous alumina ceramic with added the rice husk  82 
 
4.31   Porosity of porous alumina ceramic with added the rice husk   83 
 
4.32  Density of porous alumina ceramics with adding sugar cane waste   84 
 
4.33  Porosities of porous alumina ceramics with added sugar cane waste 85 
 
4.34 Water flow rate of water throughout on porous ceramics with adding   86 



xii 
 

sugar cane   
             

4.35  Seepage-velocity of water throughout on porous ceramics with  86 
 addition  rice husk 

 
4.36 Flow rate of water throughout on porous alumina with adding sugar cane  87
        
4.37  Velocities of water throughout on the porous ceramics with added sugar  88 

cane waste         
  

4.38  Stereo-optical micrographs of porous alumina sintered at 1250oC 
54wt.%Al2O3M/PVA-RH (a) 5wt.%RH, (b) 10wt.%RH and (c) 15wt.%RH 
with magnification 50X.        89 
         

4.39  Stereo-optical micrographs of porous alumina sintered at 1250oC  

54wt.%Al2O3M/PVA-SC: of (a) 5wt.%SC, (b) 10wt.%SC and   90 

(c) 15wt.%SC, with magnification 50X 

4.40  Compressive strength of porous alumina ceramic with adding rice husk  91 

4.41  Compressive strength of porous alumina ceramic with adding sugar cane  92 

 

 



xiii 
 

LIST OF ABBREVIATIONS 
 
 
 
°C : Degree Centigrade 

Å : Angstrom 

AC : Alternating current 

Al2O3: Aluminum Oxide 

approx : Approximately 

PVA : Polyvinyl alcohol  

PFA: Pore-forming agent 

SCP: Sugar cane waste  

RHP: Rice husk powder 

V: Volume  

Vs: Seepage- velocity 

A: Area  

C : Compressive strength  

 : Porosity 

F: Newton  

PPI: Number of pore per inch 

D : Dissipation Factor 

DTA : Differential Thermal Analysis 

ED : Electron Diffraction 

ED : Electron Diffraction 

EDAX : Energy-Dispersive X-Ray Spectroscopy 

EDS : Energy Dispersive Spectroscopy 

EDX : Energy Dispersive X-Ray 

EMI : Electromagnetic Interference 

FEG : Field Emission Gun 

FWHM : Full Width at Half Maximum 

g : gram 

g/mol : gram per mole 



xiv 
 

Gd : Gadolinium 

H2O : Water 

Hc : Coerceivity 

HRTEM : High resolution transmission electron microscope 

K : Kelvin 

kg m-3 : kilogram per cubic meter 

kJ/g : kilojoule per gram 

LC : Inductance-Capacitance 

LCR : Inductance Capacitance Resistance 

LRTEM : Low Resolution Transmission Electron Microscope 

ml : milliliter 

ml/min : Milliliter per minute 

mm : Millimeter 

MPa : Megapascal 

nm : nanometer 

PPMS : Physical Properties Measurement System 

Rp : Parallel Resistance 

rpm : revolution per minute 

SEM : Scanning Electron Microscopy 

TEM : Tranmission Electron Microscopy 

TG : Thermal Gravimetry 

TG-DTA : Thermogravimetry- Differential Thermal Analysis 

XRD : X-ray Diffraction 

μm : Micrometer 

Ωm : Ohm meter 

 



xv 

 

PENGHASILAN ALUMINA BERLIANG TERSINTER DENGAN KAEDAH 

KERANGKA SPAN DAN AGEN PEMBENTUK LIANG MENGGUNAKAN 

SUMBER BIO SEMULAJADI 

 

Kajian ini dijalankan untuk menghasilkan alumina berliang tersinter dengan 

kaedah kerangka span dan agen pembentuk liang menggunakan bahan sumber bio 

semulajadi. Alumina berliang telah dihasilkan daripada span polimer poliuretana 

yang direndam dalam buburan alumina. Yang dihasilkan daripada campuran serbuk 

alumina dan air suling dengan kepekatan yang berbeza, iaitu 54, 57 dan 63 peratus 

berat alumina (wt.%).  Span alumina yang telah direndam dengan buburan 

dikeringkan pada suhu 80oC di dalam ketuhar. Ia kemudiannya disinter pada suhu 

1250oC selama tiga jam. Pencirian terhadap sampel yang telah disinter dilakukan 

dengan menggunakan mikroskop imbasan elektron (FE-SEM) dan mikroskop optik 

untuk memerhatikan keadaan morfologi. Ujian mampatan juga dijalankan untuk 

menentukan kekuatan mekanik sampel tersebut. Kepekatan alumina yang berlainan 

memberikan nilai ketumpatan daripada 0.63 hingga 0.31 gcm-3 dengan keliangan 

relatif sebanyak 78.54 hingga 92.60 peratus, kadar aliran air 3.00 hingga 3.15 cm3/s, 

kelajuan resap 0.120 hingga 0.138 cms-1 dan kekuatan mampatan 0.45 hingga 0.60 

MPa. Mikrostruktur menunjukkan liang-liang yang kecil dan besar telah terbentuk 

dan saling berhubung. Agen pembentuk liang (PFA) yang digunakan untuk fabrikasi 

seramik berliang ini ialah hampas tebu (SC) dan serbuk sekam padi (RH). Selepas 

proses pembentukan dan pengeringan, jasad seramik tersebut juga disinter pada 

1250oC selama 30 minit. Keputusan yang diperiolehi menunjukkan bahawa 

penambahan SC memberikan nilai ketumpatan pukal dalam lingkungan 1.20 hingga 
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1.27 gcm-3, keliangan pada julat 60.86 hingga 65.64 %, kadar aliran 0.10 hingga 0.13 

cm3/s, kelajuan resap jasad daripada 0.014 hingga 0.03 cm/s dan kekuatan mampatan 

pada julat  1.06 hingga 1.57 MPa. Penggunaan RH pula menyebabkan keliangan dan 

kadar aliran berkurangan dengan peningkatan RH. Nilai ketumpatan sampel 

meningkat daripada 1.27 kepada 1.57 gcm-3. Hal ini menunjukkan bahawa hampas 

tebu (SC) dan sekam padi (RH) berpotensi untuk penghasilan bahan seramik alumina 

berliang. Walau bagaimanapun, berdasarkan keputusan yang diperolehi, SC didapati 

merupakan agen pembentuk liang (PFA) yang lebih baik berbanding RH. 
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DEVELOPMENT OF POROUS SINTERED ALUMINA BY A SPONGE 

SCAFFOLDING METHOD AND PORE FORMING AGENT USING 

NATURAL BIORESOURCES 

ABSTRACT 

Porous sintered alumina was developed using a sponge scaffolding method and 

pore-forming agents (PFA) using natural bioresources. The polymeric sponge 

method used a polyurethane foam soaked in an alumina slurry  prepared by mixing 

alumina powder and distilled water with different concentrations of alumina, i.e. 54, 

57 and 63 weight percent (wt.%) alumina. The soaked sponge was then dried in an 

oven at 80oC. It was then sintered at 1250 °C for 3 hours. A Field Emission Scanning 

Electron Microscope (FE-SEM) and an optical microscope were used to observe the 

morphology.  A compression test was also carried out to determine the mechanical 

property. The different alumina concentrations produced densities ranging from 0.63 

to 0.31 gcm-3 with relative porosities of 78.54 to 92.60 %, water flow rate 3.00 to 

3.15 cm3/s, seepage-velocity of 0.12 to 0.14 cm/s and the compressive strength 0.45 

to 0.60 MPa. The microstructure showed that small and large pores were formed and 

these were largely interconnected. Pore-forming agents (PFA) used for the 

fabrication of porous ceramics were sugar cane wastes (SC) and rice husk powder 

(RH).  After shaping and drying, the ceramic green bodies were also sintered at 1250 

°C for 3 hours.  The results obtained showed that when SC was added the bulk 

density ranged from 1.20 to 1.27gcm-3, porosity ranged from 60.86 to 65.64%, flow 

rate from 0.10 to 0.13 cm3/s and seepage velocity from 0.014 to 0.029 cm/s whilst 

the compressive strengths ranged from 1.06 to 2.05 MPa. When RH was added, the 

porosity and flow rate results were reduced with increasing RH. The density of the 

samples increased from 1.27 to1.57 gcm-3. It shows that both sugar cane wastes (SC) 

and rice husk (RH) are potentially capable to produce porous alumina. However, 

based on the results, SC was found to be a better pore-forming agent than RH. 
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CHAPTER 1 

INTRODUCTION 

 

 

1. Introduction  

Over the last few years, there has been increasing interest in porous ceramic 

materials which are particularly important for industrials applications: such as in 

chemistry, mechanical engineering, biotechnology, aerospace and electronics. For 

most industrial applications of porous ceramics, an open pore is required for gas and 

liquid filtration, membrane support, purification, thermal insulation, lightweight 

porous structure, catalyst and biomaterials (Gregorova and Pabst, 2007a).   

 

 Porous ceramics materials for filters need to have a high fraction of open 

porosity. In open pores, penetrating pores are necessary for industrial applications 

such as in filters or for gas distribution. Closed porous ceramic materials are used 

mainly for sonic and thermal insulators or low specific-gravity structural components 

(Ishizaki et al., 1998).  

 

Porous ceramic materials are important in many applications because of their 

high mechanical strength and uniform structural stability compared to polymers and 

metals. Porous alumina having a microstructure of continuous network of nanopores 

in its microstructure has been well studied for such application where there is need 

for high strength and high abrasion resistance.  

 

Porous polymeric materials are used in soft tissue applications which include 

polyurethane, polyamide, polyester, etc. Porous reconstituted collagen has been used 
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as artificial skin whilst braided polypropylene has been used as artificial ligaments. 

As in the case of bone implants, the porosity encouraged tissue ingrowth (Edward 

2003). 

 

Introducing open pores in a material (producing open porous ceramics 

materials) changes the mechanical properties of materials. Two essential changes are 

a decrease in density and an increase in specific surface area. The changes generate 

useful properties (which are not observed in dense bodies) such as fluid permeability, 

filtration effects and thermal insulation capability. Narrow pore size distribution is 

important for porous filters, which allows for selective filtration. Materials with a 

bimodal pore size distribution are required for bioreactors, in which enzymes or 

bacteria are immobilized in the small pores and larges open pore are used as channels 

for transporting reactants products (Abe et al., 1992). A narrow pore size distribution 

for each pore mode is required for these applications.  

 

Large specific surface area is necessary for catalysis. In many applications of 

porous materials, highly open porosity is desirable to increase the specific surface 

area or fluid permeability. However, an increase in porosity decreases the mechanical 

strength. Low mechanical strength limits the operating conditions for porous 

materials, and consequently, increases the required dimensions of porous materials. 

Both high open porosity and high mechanical strength may be required 

simultaneously in order to use porous materials under severe operating conditions. 

Different applications of porous materials require different pore size. For instance, 

pores of atomic scale are required for gas separation or catalysis (Ishizaki et al., 

1998). 
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Therefore, the preparation of porous ceramics with controlled microstructure 

(porosity, pore size and pore shape) has been a subject of constant interest during the 

last decades and common processing techniques include dipping (sponge method) 

and slip casting techniques. The foams produced by dipping (sponge method) 

produce large pores, high porosity and uniform pore structure (Han et. al., 2003). The 

slip casting method produces pores in the nanometer size range and extremely high 

porosity. There are also other methods such as biomimetic processing (using 

pyrolized wood templates), ceramic hollow spheres process (e.g. alumina microball) 

and sacrificial (pyrolyzable) pore forming agents (PFA), i.e. synthetic organics or 

natural biopolymers which burn out during firing (Rice, 1998; Woyansky et al., 

1992).  

 

Although a great number of PFA has been proposed and used in ceramic 

technology, e.g. carbon (Lange et al., 1990; Balaszi et al., 2004), polyvinyl chloride, 

polystyrene, polyethylene (Corbin and Apte, 1999), wood flour (saw dust) and 

crushed nut shells (Rice, 1998; Woyansky et al., 1992), it seems that starch, a natural 

biopolymer consisting of amylase and amylopectin, has attained a prominent position 

as a PFA,  including its recent application as a combined pore-forming and body-

forming agent in starch consolidation casting. Moreover, as mentioned before, apart 

from its universal function as a PFA, starch can serve additionally as a body-forming 

agent in starch consolidation casting, due to its ability to swell in water at elevated 

temperatures, thus enabling ceramic green bodies to be fabricated by slip casting into 

nonporous molds of suspensions with starch. One example is porous alumina 

ceramics which had been reported to be produced using commercially available 

poppy seeds (Gregorova and Pabst, 2007a).   
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1.2    Problem statements  

Porous alumina ceramic are presently the focus of very active research and 

development activities. There are currently around 150 institutions working on 

ceramic foams worldwide, most of them focusing on their manufacture and 

characterization. Various companies are developing and producing these materials 

which are now being used in numerous industrial applications such as lightweight 

structures, biomedical implants, filters, electrodes, catalysts, and heat exchangers. 

(Lefebvre et al., 2008). 

 

Alumina is a well known as typical specific material for use at high mechanical 

properties, high performance and high temperatures. Thus alumina has a wide range 

of applications such as in automobile, engine, aerospace, equipments, etc (Gregorova 

and Pabst, 2007b).    

 

With growing demand for porous ceramics in industrial applications, a number 

of techniques have been developed for the fabrication of porous materials with high 

strength, catalytic activity, good erosion and corrosion resistance. These excellent 

properties of porous ceramic make it possible to be used in several operating 

conditions, compared to porous polymers, glasses and metal. In this study, porous 

alumina ceramics were fabricated using different processing for parameters 

comparison: 

 

(1) In term of methods, dipping and casting were used: dipping using 

polymeric sponge and casting of slip casting into plaster molds. 
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(2) In term of materials, pore forming agents used were polyvinyl alcohol 

(PVA), rice husk (RH) and sugar cane waste (SC), apart from the alumina 

powder base. 

 

All these parameters were optimized and characterized for related properties of the 

porous alumina ceramic material.  

 

1.3 Objectives 

1. To produce porous alumina using two different methods: dipping (a sponge 

scaffolding method) and casting method (using natural bio-resources: rice 

husks (RH) and sugar cane (SC), and PVA as the pore forming agents). 

2. To evaluate and compare properties of the products prepared by dipping 

methods with three different types of alumina slurries (Al2O3; Al2O3+PVA; 

Al2O3+PVA+SC). 

3. To evaluate and compare properties of the products prepared by casting 

methods with three different types of alumina slurries (Al2O3+PVA; 

Al2O3+PVA+SC; Al2O3+PVA+RH).   

 

 

1.4 Research Scope 

In general, the research work was divided into two parts which were described 

in detail as follows. The first part involved the use of a polymeric sponge method 

with three different types of slurries to produce porous ceramic alumina foams after 

sintering. The second part involved the use of a casting method (also three types of 

slurries) making full use of natural bioresources such as (rice husk and sugar cane 
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waste fibers).  The porous products from both methods were then characterized for 

their physical and mechanical properties such as density, porosity, flow rate, 

velocity, compressive strength, and while their morphology using an optical 

microscope and a field emission scanning electron microscope (FESEM).  
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CHAPTER 2 

LITERATURE REVIEW  

 

 

2.1   Porous ceramics  

Porous ceramic materials are defined as solids containing different types and 

percentages of pores. Generally porous materials have porosity of 20-95%, the 

percentage of pore volume to the total volume. Porous ceramics have been used in 

various applications from daily necessities, such as water filtration through porous 

ceramics, to uses in modern industries. Porous ceramics have been employed for dust 

and gas removal in high purity processes such as in semiconductor productions 

(Krasovitskii, 2007). 

 

Pores are classified into two types: open pores which are connected to the 

outsides of the materials, and closed pores which are isolated from the outside. 

Penetrating pores are a kind of open pores which have at least two openings located 

on both sides of a porous ceramic material (Ishizaki et al., 1998). 

 

In recent years, porous ceramics have become more important and are being 

developed for a variety of interesting applications such as thermal insulation, filter, 

lightweight materials, medical technology as well as electronics. For most industrial 

applications, materials with open pores are required. Porous ceramic materials such 

as filters and carriers for catalysts and bioreactors need to have a high fraction of 

open porosity. Penetrating pores are necessary for industrial applications such as 

filters or gas separation. Closed porous materials are used mainly for sonic and 
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thermal insulators, or low specific-gravity structural components (Ishizaki et al., 

1998). 

 

Introducing open pores in materials changes the material properties. Two 

essential changes are the decrease in density and the increase in surface area. The 

changes generate useful properties (which are not observed in dense bodies) such as 

fluid permeability, filtration effects and thermal insulation capability. Narrow pore 

size distribution is important for porous filters and allows selective filtration (Abe et 

al., 1992). Large specific surface area is necessary for catalysis. In many applications 

of porous materials, large open porosity is desirable to increase the specific surface 

area or fluid permeability. However, such an increase in porosity decreases the 

mechanical strength. 

 

Porous ceramics have also been developed with high temperature stability, 

strength, catalytic activity, as well as erosion and corrosion resistance. These 

excellent properties of porous ceramics make them suitable to be used in several 

practical conditions, compared with porous polymers, glasses and metals. In spite of 

these excellent properties, the potential of porous ceramics has not been fully 

realized because of their well-known problems (Schaefer, 1994). These shortcomings 

include: 

 

1.  brittleness, 

2.  absence of an integrated material manufacturing system,   

3.  lack of pore size control, 

4.  lack of continuous processing methods, 
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5.  use of processing/ sintering aids that limit toughness, 

6.  absence of technologies, and  

7.  absence of a model relating pore structure to mechanical properties. 

 

Problems 1, 2, 4, 5 and 6 are also applicable to dense ceramics. To overcome 

these difficulties, researchers of porous ceramics have to approach the scientific and 

technological problems of materials, from powder production of raw materials to 

quality control of the final products (Schaefer, 1994).  

  

 

2.2    Applications of porous ceramics 

2.2.1   Filters 

   There are many techniques for fluid separation. Filtration by passing a 

liquid or gas through a porous material to make it pure is a common separation 

method. Filtration is used for many applications requiring a particular particle size 

or pore size. Porous filters have been applied in many ways from dairy applications 

to high-tech processing. Many materials have been used as porous filters (Ishizaki 

et al., 1998).  

 

 

2.2.2   Dental implants 

   Recently, a new type of porous alumina dental implant has been designed. 

A biological seal is provided by a single-crystal alumina on its cervical portion and 

fixation capability in bone is provided by a porous alumina layer with an average 

interconnecting pore size of approximately 130 μm. These alumina porous implants 
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were expected to become closely attached to the gingival tissue and prevent 

contamination because they have a smooth and biocompatible surface in the 

cervical portion. With suitable pore sizes for bone in-growth this implant was 

expected to become fixed to the alveolar bone rapidly (Spector et al., 1988). As a 

porous material is implanted in the bone, the pore become filled first with blood 

which clots, then with osteoprogenitor mensenchymal cell, then, after 4 weeks, 

bony trabeculae. The in-growth created then becomes remodelled in response to 

mechanical stress (Edward et al., 2003) 

 

 

2.2.3    Molten metal filtration 

    For the production of metal casting, foam ceramic filters help to improve 

quality and productivity by removing non-metallic inclusion; the filters must be able 

to resist attack at high temperatures by a variety of molten metal which can contain 

such reactive elements as aluminium, titanium, hafnium and carbon. Thermal shock 

behaviour is obviously also important, which was found to be strongly dependent on 

unit cell size (increasing with increasing cell size) and weakly dependent on density 

(increasing with increasing density) (Montanaro and Jorand, 1998). The material 

selected depends on the material to be filtered and usually metallic oxides of various 

compositions as shown in Table 2.1. 
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Table 2.1 Some characteristics of molten metal filters (Sheppard, 1993; Montanaro 
and Jorand, 1998). 
 

Trade 
name 

Composition Application Benefits 

Coring 
77% Al2O3, 
23% SiO2 

Carbon low alloy, stainless 
steel 

Pouring temperature up 
to 1750oC. 

Cerapor 
Alumina, SiC, 
Cordierite, 
ZrO2 

Aluminium, iron, copper, 
bronze, steel zinc 

Laminated duplex and 
triplex construction. 

Udicell 
Alumina, 
mullite, ZTA, 
PSZ 

Superalloys, low- car bon 
Stainless steel 

Large volume up to 120 
tons 

Alucel 
92% alumina 
with mullite 
phase 

Nonferrous alloys Improved thermal shock 
resistance, smaller 
filters required. 

Selee Alumina, PSZ Aluminum, iron, steel High flow rates 

 

 

 

2.2.4    Hot gas cleanup 

    Hot gas cleanup is an application of high- performance, high-temperature 

particulate control ceramic filters which are expected to be beneficial not only to 

the advanced fossil– fuel processing technologies, waste incineration processes but 

also to diesel soot filtration. Development and utilization of hot gas filters depend 

on the creative design and use of new high-temperature materials (Montanaro and 

Jorand, 1998). Such filters must withstand variation in the effluent gas stream 

chemistry, variation in the nature and loadings of the entrained fines and 

oscillations in the effluent gas stream temperature and possible pressure, while still 

maintaining high particulate removal efficiencies with high flow capacity, 

relatively low pressure drop flow characteristic. During operation the filter must 

also withstand a variety of mechanical, vibrational, and thermal stresses. The 
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principal materials for these applications include alumina, mullite, cordierite, 

silicon nitride and silicon carbide. Both alumina/mullite and cordierite have been 

demonstrated to have certain advantages over non-oxide materials (Tutko et al., 

1984; Gabathuler et al., 1990). 

 

 

2.2.5    Thermal insulators 

    A principal application of these porous ceramics is in the fabrication of 

thermal insulators due to their specific characteristics, such as thermal stability, low 

thermal conductivity, low density, resistance to thermal cycling, thermal shock 

resistance and low gas adsorption (Montanaro and Jorand, 1998). The net 

conductivity is affected by pore shape and interconnectivity.  

 

 

2.2.6  Catalysts  

Porous alumina ceramics are used as catalyst or as their carriers. High specific 

surface area is required for catalyst applications in order to increase the surface 

contact with reactants. Chemical stability is also necessary under corrosive 

conditions. At high temperatures, high specific surface area required for catalysts 

would decrease due to surface diffusion or evaporation – condensation. High thermal 

stability is an important property for high temperature applications, for example, 

catalyst for automobile exhaust gases. In this case of catalytic beds, it had been 

reported that the accommodation capacity for catalytic materials is an important 

property (Ishizaki et al., 1998). 
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2.3   Aluminium oxide (Al2O3) 

Alumina or aluminium oxide is the most widely used oxide ceramic material. 

The raw materials of this high performance technical grade ceramic are readily 

available and reasonably priced, resulting in good value for the cost in fabricated 

alumina shapes. With an excellent combination of properties and an attractive price, 

it is not surprising that fine grain technical grade alumina has a very wide range of 

applications. Figure 2.1 shows the crystal structure image of alumina. 

 

Figure 2.1 Alumina crystal structure [http://www.elantechnology.com/alumina] 

 

Aluminium forms a range of hydroxides. Some of these are well characterized 

crystalline compounds, whilst others are ill-defined amorphous compounds. The 

most common trihydroxides are gibbsite, bayerite and nordstrandite, whilst the more 

common hydroxide forms are boehmite and diaspore (Dibyendu, 2009). 

Commercially the most important form is gibbsite, although bayerite and boehmite 

are also manufactured on an industrial scale. Aluminium hydroxide has a wide range 

of uses, such as flame retardants in plastics and rubber, paper fillers and extenders, 

toothpaste filler, titania coating and as a feedstock for the manufacture of aluminium 

chemicals. Figure 2.2 shows the production of alumina from bayerite, gibbsite and 

diaspore. Table 2.2 shows the physical properties of alpha alumina. Alumina exists in 

Al 

O 
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many forms such as thermodynamically stable form at all the temperatures is alpha 

alumina.  

 

 

Figure 2.2 Production of alumina (Dibyendu, 2009) 

 

 
Table 2.2 Physical properties of alpha alumina (George and Laurence, 2003). 

Properties Value 

Chemical formula α-Al2O3 

Density 3.96g/cm3 

Melting point 2050°C 

Maximum operation temperature < 2000°C 

Specific heat 0.300 cal/g K (1000°C) 

Thermal flow rate  ability 0.1-0.4 W/cmK (25°C) 

Compression strength 2 GPa (25°C) 

  

 

 

 

Gamma 

Bayerite 

>150 oC 

Boehmite 

Gibbsite 

Delta Theta 

  Chi Kappa  

>430 oC 

Alpha alumina 

Alpha alumina 

>450 oC 
Diaspore Alpha alumina 

>150 oC 
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2.4   Porous alumina 

Porous alumina ceramics are widely used in many applications such as filter 

media, thermal insulator, lightweight porous structure and catalyst in biomaterials 

(Corbin et al., 1999; Toshihiro et al., 2006). Porous alumina ceramics can be 

fabricated via many techniques (Sheppard, 1993; Saggio et al., 1992; Mamata and 

Parag, 2008). These processes produced small pores in the micrometer range which 

can provide large surface areas. The preparation of porous ceramics with controlled 

microstructures as characterized by porosity, pore size and pore shape has been a 

subject of constant interest since the last decades (Liu and Miao, 2005; Gregorva and 

Pabst, 2007a). Amongst the processing techniques include slip-casting technique 

(nanometer size range and extremely high porosity), the use of polymeric foam 

templates (for large pores and extremely high porosity) and sacrificial pore forming 

agents (PFA) (Gregorva and Pabst, 2007b). The preparation and properties of porous 

alumina ceramics with high porosity and large pore size which have a high 

penetration rate greatly depend on the pore morphology, size and distribution of 

pores. 

 

 

2.4.1   Sintering of porous alumina  

   Sintering for porous ceramic materials is generally carried out in the 

temperature range from 1000 to 1700oC depending on the ceramic materials 

(Senguttuvan et al., 2001).   

 

Some porous alumina foams have been sintered at a temperature range from 

1400 to 1600oC, and it was found that the strength of alumina foam increases with 

increasing sintering temperatures (Peng et al., 2000; Maiti et al., 1984; Han et al., 
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2002 and 2003). The effect of sintering temperature on the foam strength had not 

been investigated in detail. In the production of porous materials by sintering, the 

powder characteristics, compaction techniques, sintering process and quality 

control evaluations are important. Most research on sintering focused on 

densification (Ishizaki et al., 1998). Simulations of sintering have also been 

developed to assess the mechanistic theories of sintering based on ceramics 

properties (Ken et al., 2001; Shinagawa et.,al 1996 and 1999). Some effects due to 

sintering temperature have been reported in the fabrication of porous alumina 

(Olevsky, 2000). 

 

 

2.4.2   Density and porosity of porous alumina 

 Density and porosity are important properties of porous ceramics. An 

increase in porosity leads to enhanced specific properties of porous ceramics such as 

gas permeability and absorption. The porosity of the porous ceramics ranges widely 

from 20 to 95%, depending on the production process (Zhang et al., 2007). Density 

and porosity are often measured by fluid displacement methods based on the 

Archimedean principle. Liquid such as water, toluene and alcohol are usually used 

with this method (Ishizaki et al., 1998). 

   

 

2.4.3   Pore size of porous alumina  

 The pore size of porous ceramics ranges widely from atomic size to 

millimetre order. Different pore sizes are required for different application of porous 

ceramics materials but most porous ceramics materials do not have uniform pores. 

Hence, pore size distribution is also an important property. Narrow pore size 
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distribution, i.e. uniform pore size, is required in many applications, for instance 

filters (Toshihiro et al., 2006). 

 

Methods of evaluating exact pore size are important for the manufacture and 

application of porous materials. There are many methods of evaluating pore size of 

porous ceramic materials. Mercury porosimetry is commonly used to measure pore 

size and pore size distribution. For evaluation of sintered porous ceramic materials 

and green bodies, mercury porosimetry is usually used because it can be applied to 

evaluate pore sizes from 1mm to nanometers in diameter, as well as pore size 

distribution (Mikijeli et al., 1991). 

 

 

2.5   Fabrication of porous alumina 

2.5.1   Polymeric sponge method 

    Polymeric sponges (foams) are porous materials with remarkably high 

open porosity (~90%).  It could be used in the fabrication of ceramic foams 

(Woyansky et al., 1992; Senguttuvan et al., 2001). Using this fabrication method, 

the ceramic foam structure was obtained by coating ceramic slurry on polymeric 

foam. Ceramic foam filters are typically produced by impregnating an open cell, 

hydrophobic flexible foams material with an aqueous slurry containing a ceramic 

material, followed by squeezing the organic foam to remove excess slurry 

(Toshihiro et al., 2006). Ceramic foams with large pores of 50 μm-1 mm in 

diameter can be obtained by this method. 
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2.5.1.1   Polymeric sponge open cell foams 

     The use of open-cell alumina foams have been widely increasing given its 

diverse properties in various areas. Open-cell ceramic foams are useful for 

construction of light weight structures, as well as their use mainly in applications of 

fluid transport where the microstructure is needed. The insulation ability of this 

foam is related to the insulation value of the static air inside. One of the advantages 

that these lower density materials provide is a more economical yield (Angel, 

2005). 

 

Open cell foams of polymeric sponge are effective as a sound barrier, 

having about twice the sound resistance in normal frequency ranges as closed-cell 

foam. However, they are not recommended for hybrid applications. Characteristics 

of open-cell polyurethane foam include a softer appearance, as well as lower 

strength and rigidity than those of closed-cell foams (Lefebvre et al., 2008) are 

shown in Table 2.3. 

 

Table 2.3 Some characteristics between of open-cell and closed-cell polyurethane 
foams (Angel, 2005) 

Closed-Cell Open-Cell 
Highest insulating "R-Value" per inch 
(> 6.0) 

Good insulation value (R = 3.5) 

Low vapour permeability (low perm) Higher vapour permeability, but 
controlled 

Air barrier Air barrier at full wall thickness 
Increases wall strength   
Resists water (is a WRB  "Water 
Resistive Barrier") 

  

Medium density (1.75 – 2.25 g/cm3) Low density (0.4 – 1.2 g/cm3) 
Absorbs sound, especially bass tones Best sound absorption in normal noise 

frequency ranges 
  Economical yield 
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2.5.1.2    Polymeric sponge closed cell foams 

      Polymeric sponge closed-cell foams (Figure 2.3) have varying degrees of 

hardness, depending on its density. Normally, the strength of closed-cell is strong 

enough to work on without major distortion. Most of the cells or bubbles in the 

foam are not broken but piled together in a compact configuration. This makes it 

strong or rigid because the bubbles are strong enough to take a lot of pressure, like 

the inflated tires that hold up an automobile. The cells are full of a special gas, 

selected to make the insulation value of the foam as high as possible (Lefebvre et 

al., 2008). 

 

 

Figure 2.3 The closed cell pore structure 

 

 

2.5.1.3    Advantages and disadvantages of foams 

      The advantages of the closed-cell foam compared to open-cell foams 

include their higher strength and greater resistance to the leakage of air (Lefebvre et 

al., 2008) or water vapor, high fluid flow, as well as open-cell foams have a poor 

mechanical property.  

 

 

Pore  

Solid  
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2.5.2   Fabrication of porous alumina by pore-forming agent (PFA)  

 To increase open porosity, pore forming agents are mixed with ceramic 

powders. These materials are evaporated or burnt out during sintering and as a result 

pores are formed. Various pore forming agents have been used including potato 

starch (Bonekamp et al., 1989), coal (Abe et al., 1992), spherical polymer (Hayashi 

et al., 1991), Iodine fluoride (Shapovalov, 1994), etc. Figure 2.4 illustrates this 

method.  Pore forming agent is classified into two types: solid pore forming agent 

and liquid pore forming agent. The use of pore forming agents is effective in creating 

relatively large pores, in comparison with loosely packed samples. The pore shape 

created by pore forming agents can be controlled by the shape of the pore forming 

agent (Ishizaki et al., 1998). 

 
 
Figure 2.4 Formation of pore using pore -forming agent (A) before sintering and 
Figure (B) after sintering of (Ishizaki et al., 1998). 
 

 

2.5.2.1   Solid pore forming agents (SPFA) 

      Carbon black, charcoal powders and salicylic acid, for example, have 

been used as solid pore forming agents. The degree of open porosity, pore shape, 

and the pore size of porous materials made by this method depend on the volume, 

particles shape and size of the mixed pore forming agent, respectively. This method 

(A) (B)
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is, however, suitable for cost-effective preparation of porous materials with 

relatively large pores and high open porosity (Ishizaki et al., 1998).  

 

 

2.5.2.2   Liquid pore forming agents (LPFA) 

      Liquid pore forming agent does not have the shortcomings of a solid pore 

forming agents in this respect. Porous alumina ceramics have been fabricated using 

(PFA) or slip casting method. They have been produced by using a bio-resource 

(poppy seed) in combination with a new ceramic shaping technique (Gregorova and 

Pabst, 2007a). In the processing of ceramic hollow spheres, sacrificial (pyrolyzable) 

(PFA), i.e. synthetic organics or natural biopolymers, were burned out during firing 

(Rice, 1998). Although a great number of PFAs have been proposed and used in 

ceramic technology, e.g. carbon (Lange et al., 1990; Corbin et al., 2001; Balaszi et 

al., 2004), polyvinylchloride, polystyrene, polymethylmetacrylate, polyethylene, 

wood flour (saw dust) and crushed nut shells, it seems that starch, a natural 

biopolymer consisting of amylase and amylopectin, has attained a prominent 

position including its recent application as a combined pore-forming and body-

forming agent in starch consolidation casting (Lyckfeldt and Ferreira,1998; 

Bowden and Rippey, 2002). Among the main reasons for the success of starch as a 

PFA in ceramics are hygiene and ecological concerns, easy handling and 

processing (including defect-free burnout), the easy commercial availability in 

arbitrary amounts, low cost and with constant, controlled quality, the rounded shape 

with well defined aspect ratio (usually close to unity, without large scatter) and the 

well defined size distribution for each starch type (Gregorova and Pabst, 2007a).  
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2.5.2.3   Advantages and disadvantages of PFA 

   In addition, by varying the weight percentage of the pore-forming agents, 

the material properties of a porous ceramic can be altered to meet the necessities of 

various applications (Balaszi et al., 2004). The advantages of slip casting as a 

forming method are mainly due to the complex geometries that can be shaped, and 

good material homogeneity is generally achieved.  Furthermore, the mould material 

is cheap. Slip casting is a method for powder-based shaping of ceramic components 

that has been used for a long time in the traditional ceramic industry for the 

manufacture of tableware and sanitary ware (Gregorova and Pabst, 2007b). 

   

 

The disadvantages are that a large-scale production normally requires many 

moulds and large areas, coupled with the fact that the plaster moulds have a limited 

durability, as plaster of Paris erodes/corrodes in water processing. To get around 

these problems a method called pressure slip casting or pressure casting has been 

developed. Instead of plaster moulds, moulds of polymeric materials are used, and 

these have a porosity consisting of larger pores that do not give the same capillary 

forces but require an externally applied pressure to drive the filtration process 

(Lyckfeldt 1997). 

 

 

2.5.3     Other method 

2.5.3.1   Sol-gel processing 

      Sol-gel processing is the most widely used and developed among various 

synthetic powder preparation methods. Sol-gel processing starts with a solution (sol) 

which becomes a gel. The solution can be prepared from either inorganic salts or 
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organic compounds which is then hydrolyzed and condensed to make a sol or a gel. 

One can stop at the sol stage which refers to the dispersion of particles of colloidal 

dimensions in a liquid, or processed to the gel state which refers to a three-

dimensionally-linked solid network with liquid filling the pore. These pores are 

interconnected in the wet gel making stage (Carter and Norton, 2007). 

 

 

2.6   Flow rate through porous media 

A porous medium means a material consisting of a solid matrix with an 

interconnected void, which supposes that the solid matrix is either rigid (the usual 

situation) or undergoes a small deformation. The interconnectivity of the pores (the 

void) allows the flow of one or more fluids through the materials (Chuanbin and 

Dong, 2010). 

 

Pore connectivity is a key parameter for solute transport and the geometrical 

arrangement of pores and solid entities is a central issue in the computational of 

small-scale processes. Several methods have been applied in the computational 

reconstruction of porous media, including pore networks consisting of pores and 

connecting throats, random networks where connectivity is based on statistical 

(Meile and Tuncay 2006). For examples of the natural porous media are beach sand, 

sandstone, limestone, wood and the human lung in (Figure.2.5). 

 

Filtration through a bed of granular media, usually sand, is a common method 

of potable water treatment and is also used for ‘cleaning’ of waste water effluent in 

situations where a high quality discharge is required. Although a superficially 

simple filtration, it is actually a highly complex process involving a number of 
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transport and attachment mechanisms. Theoretical consideration between the 

individual beds as it becomes clogged is thus highly complex (Boomsma et al., 

2000).  

 

 

Figure 2.5 Examples of natural porous materials:  (A) beach sand, (B) sandstone, 
(C) limestone, (D) rye bread, (E) wood, and  (F)  human lung (Boomsma et al., 
2000). 
 

 

 

 

 

 

 

 

(A) (B) 

(F) (E) (D) 

(C) 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

 

 

3.1   Introduction 

This chapter is composed of two parts. The first part introduced the 

experimental design to form suitable porous alumina (Al2O3) from the slurry. In this 

part, a polymeric sponge method was used by immersing the sponge into an alumina 

slurry. The second part used pore-forming agents from natural bioresources 

(PFANB) which was subsequently poured into a plaster mold. The alumina slurry 

was prepared using the same method as in the sponge method, followed by adding 

the natural bioresources. In both methods, the slurries were prepared by ball-milling 

the combination of materials to obtain a homogenous slurry or suspension. After 

shaping and drying, the samples were sintered and the sintered samples were 

characterised using various techniques such as FE-SEM, optical microscope, 

porosity, water flow rate. 

 

 

3.2   Starting Raw Materials 

The raw materials were carefully chosen because the ultimate properties of the 

finished products are very sensitive to purity of raw material compositions. In this 

work, high purity materials were used to prepare porous alumina ceramics, and the 

materials included: a polymeric sponge, alumina (Al2O3) powder, polyvinyl alcohol 

(PVA) and local natural bioresources (rice husk powder and sugar cane waste 

powder).  
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