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MEMBRAN NITROSELULOSA ALIRAN SISI BAGI KEGUNAAN KIT 
DIAGNOSIS: SINTESIS, PENCIRIAN DAN PENILAIAN PRESTASI 

 

ABSTRAK 

 

Membran nitroselulosa (NC) aliran sisi merupakan salah satu keperluan 

utama dalam bidang bioperubatan kerana keupayaan pengikatannya yang baik, ciri-

ciri pembasahan yang tinggi dan tahap penompokan belakang yang rendah. Walau 

bagaimanapun, masih terdapat banyak cabaran dalam kaedah pembuatan membran 

untuk mensintesis dan mengawal morfologi membran bagi memenuhi keperluan 

keseluruhan aplikasi imunoasai (immunoassay), di mana ia merupakan fokus utama 

penyelidikan ini. Dalam penyelidikan ini, membran NC aliran sisi telah berjaya 

dihasilkan melalui penyongsangan fasa kering. Kajian terperinci mengenai kesan 

formulasi (polimer, pemilihan bahan tambahan dan kepekatan serta fungsi air sebagai 

pembentuk liang) dan keadaan proses (ketebalan dan suhu pengeringan) telah 

dijalankan. Perubahan morfologi dan ciri-ciri membran telah dianalisa dan 

dikategorikan dalam kumpulan berfungsi, keporosan, saiz liang, taburan saiz liang, 

kekasaran permukaan, ketebalan berkesan, masa sisi penyumbuan (wicking) bagi 

keupayaan pengikatan protein dan masa sisi penyumbuan cecair untuk memahami 

ciri-ciri dan kualiti membran yang telah disintesis. Dalam kajian ini, membran-

membran dengan diameter liang minimum dari 1.3 hingga 7.5 μm boleh dihasilkan 

dengan mudah dengan mengenalpasti interaksi-interaksi yang terlibat antara 

formulasi yang didapati dan pembolehubah-pembolehubah proses acuan. Reka 

bentuk campuran proses berpalang telah menunjukkan formulasi acuan optimum 

dengan mempertimbangkan faktor-faktor proses sebagai: 4% berat NC, 82% berat 

pelarut (5:3 nisbah MA:E), 10% berat IP, 2% berat air dan 2% berat gliserol pada 
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suhu pengeringan 27oC dan masa penyejatan selama 3.05 minit. Kajian ini juga 

mendemonstrasikan pengubahsuaian morfologi membran melalui teknik regangan 

unipaksi terma mekanikal. Berdasarkan keputusan ujikaji kesan regangan, keputusan 

eksperimen, analisa AFM dan FESEM menunjukkan dengan jelas bahawa morfologi 

membran telah diubah suai akibat kesan regangan (pemanjangan, suhu dan kadar 

regangan). Seperti yang diramal oleh reka bentuk komposit pusat (CCD) kaedah 

permukaan gerak balas (RSM), keadaan regangan optimum adalah pada 18 % 

pemanjangan, 35 oC suhu dan 0.07 mm/s kadar regangan, yang mana memberikan 

kadar aliran sisi tertinggi dan prestasi pengikatan masing-masing 579.0 s/4cm dan 

4496.50 μg/cm2. kajian prestasi membran bagi bintik protein dan immunoasai aliran 

sisi dijalankan setelah formulasi, keadaan acuan dan teknik pengubahsuaian telah 

didapati mempunyai kawalan yang baik dalam meghasilkan membran NC aliran sisi. 

Kajian bintik protein mendedahkan kesan kepekatan protein adalah penting dalam 

mempengaruhi ciri-ciri pengikat membran berbanding dengan kesan isipadu protein. 

Dalam immunoasai aliran sisi, prestasi keseluruhan membran yang disintesis adalah 

hampir sama dengan membran komersial (HF240), di mana ia telah menghasilkan 

satu garis pengikatan yang jelas dengan hanya 21 saat lebih lama dalam masa sisi 

penyumbuan. Model resapan sisi diperolehi dalam kajian ini telah ditentusahkan 

apabila data model dibanding dengan data ujikaji dengan nilai R2 yang tinggi. Model 

yang dibangunkan adalah fleksibel dan teguh (robust), sesuai digunakan bagi resapan 

pelbagai dimensi dan juga sesuai untuk resapan Lysozyme. 
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LATERAL FLOW NITROCELLULOSE MEMBRANE FOR DIAGNOSTIC 
KIT APPLICATION: SYNTHESIS, CHARACTERIZATION AND 

PERFORMANCE EVALUATION 
 

ABSTRACT 

 

Lateral flow nitrocellulose (NC) membrane is one of the main requirements 

in the biomedical field due to its excellent binding capacity, high wetting properties 

and low background staining. However, there are still many challenges in the method 

of membrane fabrication in order to synthesise and control the membrane 

morphologies to fulfil the whole range of the required immunoassay applications, 

which is the main focus of this research. In this research, lateral flow NC membrane 

was successfully fabricated via dry phase inversion. Detailed studies on the effects of 

formulation (polymer, additive selection and concentration as well as the role of 

water as pore former) and process conditions (thickness and drying temperature) was 

carried out. The varied membrane morphologies and properties were examined and 

characterized in terms of functional group, porosity, pore size, pore size distribution, 

surface roughness, effective thickness, lateral wicking time of liquid and protein 

binding ability in order to comprehend the properties and qualities of synthesised 

membranes. In the study, membranes with mean pore diameter from 1.3 to 7.5 μm 

could be produced easily by identifying the interactions among the formulations and 

casting process variables. Crossed mixture-process design resulted in the optimum 

casting formulation by considering the process factors of: 4 wt.% of NC, 82 wt.% of 

solvents (5:3 ratio of MA:E), 10 wt.% of IP, 2 wt.% of water and 2 wt.% of glycerol 

at 27 oC of drying temperature and 3.05 min of evaporation time. The study also 

demonstrated the modification of membrane morphology via uniaxial thermal-

mechanical stretching technique. Based on the result of the stretching effect 
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experiment, experimental results, AFM and FESEM analyses clearly showed that the 

membrane morphologies were modified by the stretching effects (elongation, 

temperature and stretching rate). As predicted by central composite design (CCD) of 

response surface methodology (RSM), the optimum stretching condition was found 

at 18 % of elongation, 35 oC of temperature and 0.07 mm/s of stretching rate, which 

gave the highest lateral flow rate and binding performances of 579.0 s/4cm 4496.50 

μg/cm2, respectively. Membrane performance in protein dot and lateral flow 

immunoassay were carried out after the said formulation, casting condition and 

modification technique were found to possess good control in producing lateral flow 

NC membrane. The protein dot study disclosed that protein concentration has a 

significant effect on the membrane binding properties compared to protein volume. 

In an lateral flow immunoassay, the overall performances of the synthesised 

membrane was in agreement with the commercial membrane (HF240), where it 

produced a sharper binding line with merely 21 second longer in lateral wicking 

time. The lateral diffusion model derived in this study was confirmed by the 

comparison of model data with that from the experiment with high R2 values. The 

model is flexible and robust to be applied in different diffusion lengths and also well 

fitted to the diffusion of Lysozyme.  
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Membrane overview 

Membrane can be described as the selective barrier between two phases, 

impermeable to specific particles or substances when exposed to the action of driving 

force (Zeman and Zydney, 1996; Cheryan, 1998). The relationship between the 

generated flow and the applied force is governed by the nature of the chemical 

substances and also by the membrane itself (Pinto et al., 1999). Permeation through 

membranes can happen via convection, diffusion or electro migration, depending on 

either electrical potential, concentration, pressure or temperature gradient 

(Strathmann, 1990).  

 

For the past three decades, technological advancement in membrane has 

attracted the attention of chemists, chemical and biotechnical engineers due to their 

unique separation principle, i.e. selective transport and efficient separation compared 

to other unit operations (Saxena et al., 2009). Among various types of membranes, 

the polymeric membrane has led the market in membrane separation industries 

mainly because of its competitive performances and economics (Perry and Green, 

1997). Nonetheless, selection of a suitable polymer for membrane synthesis is not a 

trivial task as specific membrane for specific application requires unique sets of 

characteristics, in terms of chain rigidity, chain interactions, stereo-regularity, and 

polarity of its functional groups (Zeman and Zydney, 1996). Besides, the polymer 

has to be competitively priced to comply with the low cost criteria of membrane 

separation process. The more commonly used polymers in membrane synthesis are 
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cellulose acetate, cellulose nitrate or nitrocellulose, polyamide, polyethersulfone 

(PES), polyacrilonitrile, and polyvinylidinefluoride (PVDF) (Zeman and Zydney, 

1996).   

 

Generally, research and development for membranes are market oriented 

depending on the needs and demands. By determining the quantitative relationship 

between membrane structure and its casting properties (i.e. formulation and casting 

condition), a fine polymer structure can be engineered to satisfy social requirements 

(Neogi, 1996). Flowchart in Figure 1.1 summarizes the relationship between social 

needs and the membrane development through the knowledge of membrane structure 

and its physical properties. As shown in Figure 1.1, consumer demand is initially 

transformed into membrane physical properties. From the required membrane 

physical properties, the membrane structure is designed. By governing the membrane 

fabrication method and its casting properties, membrane with specific characteristics 

and desired performances can be manufactured. 

 

 

  

 

 

 

 

 

 

 

Figure 1.1: Relationship between market demands and membrane developments 

Market demands 

Transformation of social needs to 
technical requirements 

Correlation between membrane 
casting conditions 

Membrane structure 

Structure design through material 
selection and fabrication 

Membrane physical properties 
& performances

Membrane manufacturing 
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1.2 Lateral flow nitrocellulose (NC) membrane 

Similar to the microporous membrane, lateral flow NC membrane consists of 

a matrix of randomly oriented fibres or beads that are bonded together to form a 

tortuous maze of flow channels, as shown in Figure 1.2 (Cheryan, 1998). The 

separation of membrane is accomplished by size-exclusion mechanism in which both 

pore diameter and analyte size become the main parameters. In general, membrane is 

characterized by the pore size between 0.05 µm to about 12 µm. This range of pore 

size is very suitable to be used in microfiltration and well known for their effective 

properties to detect low concentration bacteria or viruses (Cheryan, 1998). 

 

 
 

Figure 1.2: Schematic of porous membrane with random oriented polymer matrix 
(Cheryan, 1998) 

 

One special feature of NC membrane is their high binding capacity and the 

large void volume between membrane pores. This binding affinity offers good 

accessibility for potential adsorption of protein molecules while the high pore 

connectivity contributes to rapid detection of analyte (Kung, 1991). Most of the 

membrane applications are based on the analytical protein blotting protocols, 

including protein immobilization, protein binding assays and lateral-flow 
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immunochromatography testing (Graf and Friedl, 1999; Beer et al., 2002; 

Czerwinski et al., 2005). This micro-pores membrane is capable of effectively 

removing red blood cell, bacteria as well as major pathogens and contaminants, as 

shown in Figure 1.3 (Kosh-Membrane-Systems, 2004).  

 

 
 

Figure 1.3: Filtration spectrum (Kosh-Membrane-Systems, 2004) 

 

1.3 Lateral flow NC membrane for biomedical application 

A large and growing number of membrane applications in biotechnology 

have been developed, where membrane modules are utilized for the collection of 

particles, particularly to meet the requirements of the bioprocess, food and 

pharmaceutical  industries (Ali et al., 2004; Sithigorngul et al., 2007; van Reis and 

Zydney, 2007; Gui et al., 2008). One of the most promising and potentially useful 
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applications of lateral flow membrane in biomedical is in the containment and 

metering device for controlled release of effectors such as drugs, fragrances, 

insecticides, and herbicides solutions (Saxena et al., 2009). 

 

The greatest sophistication in the exploitation of NC membranes as solid 

phase media is seen for pregnancy test kits. For such assays, a ligand specific for an 

analyte (normally, but not necessarily an antibody) is immobilized onto the 

membrane. Sample containing target analytes is solubilised with the detector agent 

and starts to move along the membrane strip. As the sample passes over the zone to 

which the capture reagent has been immobilized, the analyte-detector reagent 

complex is trapped. Colour developed proportionate to the amount of analytes is 

present in the sample (Zhang et al., 2006). 

 

1.4 Diagnostic kit 

In the field of medical diagnostics, the major limitation associated with 

conventional diagnostic techniques is that it is time consuming and involves complex 

procedures. Hence, there has been a growing interest in developing low-cost 

techniques for accurate and rapid diagnosis of various diseases. These needs have 

prompted the exploration of the membrane materials that are able to execute the test 

in the most efficient and rapid way (Lonnberg and Carlsson, 2001; Qian and Bau, 

2004).  

 

Different membrane materials have intrinsic binding affinity for different 

proteins. For diagnostic kits, the highly desired features are excellent membrane 

binding capacity and the large void volume between membrane pore for rapid testing. 
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Physical and chemical attributes of membrane affect the lateral flow rate and binding 

properties, which in turn affects the reagent deposition, assay sensitivity, assay 

specificity and test line consistency in the diagnostic kit (Jones, 1999). Among the 

membranes used in the immunological analysis (such as nitrocellulose, nylon, 

polysulfone or certain acrylic co-polymers membrane), the lateral flow NC 

membrane has long occupied the position of central importance in diagnostics based 

on their ability to undergo size and/or charged protein separation with high purity 

and permeation (Lonnberg and Carlsson, 2001; Qian and Bau, 2004).  

 

In recent years, the implementation of lateral flow diagnostics using 

adsorptive nitrocellulose (NC) membrane as chromatographic media is becoming 

more apparent (Czerwinski et al., 2005). It has become a preferred diagnostic tool 

primarily because it eliminates the need for trained personnel and expensive 

equipment (Oku et al., 2001; Qian and Bau, 2004). Additionally, storage and 

transportation at 4 °C are no longer required. The basis of all diagnostic kit is the 

antigen-antibody interactions among their large varieties of formats. Amid the 

diagnostic kit applications, enzyme immunosorbent assay (EIA) is the most common 

method due to its high sensitivity, specificity and reproducibility (Morais et al., 

1999).  

 

Briefly, lateral flow diagnostic kit is a test strip made of a flat and highly 

porous membrane. A known antigen is immobilized at predetermined location 

(capture zone) along the porous membrane. Test sample containing target analyte is 

mixed with the buffer solution and reporting agent such as colloidal gold. This 

solution is then introduced into the membrane by capillary forces. As the solution 
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flows along the capture zone, the analyte and/or the reporting agent would bind onto 

the immobilized antigen (Oku et al., 2001; Qian and Bau, 2004). The test result is 

clearly visible due to the appearance of red colour bands on the membrane strip. 

Development of colour is proportionate to the concentration of the bind analyte on 

the membrane surface. This technology is widely used in the hospital, laboratory 

medicine and life science research, to monitor infectious diseases in a more rapid and 

effective way.   

 

1.5 Problem statement 

Considerable amounts of past researches have revealed that nitrocellulose 

(NC) membrane contributes tremendously in the field of medical biotechnology. 

Although many studies have been done on characterizing the application buffers and 

application systems employed, the roles and effects of membrane are less likely to be 

fully investigated or optimised. Such an omission is often due to the fact that the 

latter element is frequently considered fixed even before the beginning of the 

development process, leaving little opportunity for changes to be made. 

 

To achieve rapid disease detection using lateral flow diagnostics, the pores of 

NC membrane must be highly interconnected without sacrificing the physical 

strength of the membrane structure and its binding ability. The highly interconnected 

pores would hasten the lateral liquid flow rate in the membrane, due to the decrease 

in solute diffusion resistance across polymer matrix. However, these highly 

interconnected pores would reduce the membrane’s mechanical strength and 

decrease the availability of total membrane surface area for protein binding affinity. 

Consequently, it will reduce the sharpness of the protein capture line on the 
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membrane surface. Therefore, there is an urgent need to optimise the membrane 

morphology, in order to enhance its lateral wicking rate without sacrificing the 

binding affinity of the membrane. 

 
Unfortunately, development of lateral flow NC membrane remains a 

challenge, due to the lack of design methodology. Membrane fabrication techniques 

and the materials used are not disclosed by membrane developers. In membrane 

fabrication, chemical properties of polymer solutions and the casting conditions are 

closely associated with the membrane morphology. Different membrane structures 

provide for different lateral liquid flow rates and protein binding affinities.  Hence, 

research focusing on membrane properties such as pore size, pore size distribution, 

effective thickness and porosity are urgently needed to determine the structure of 

membrane film and subsequently the membrane performance which no doubt, one 

day will become the key driver of the country’s membrane technology. 

 

The membrane morphology is difficult to control for the exact desired pore 

size due to the complex membrane formation parameters and processes. In order to 

produce membrane with a wide range of morphology, various formulations are 

required. This will ultimately result in high cost, lengthy research and development 

process. To produce the desired membrane, parameters used to control the membrane 

morphology need to be screened out in the first place. Extensive research on 

characterization and modification of the membrane can benefit the development of 

membrane design methods and facilitate their use in immunoassay application, which 

could then lead to the development of the whole new generation of NC membranes.  

 

  8 



Although there are a number of membranes which can perform as transport 

medium in the diagnostic test strip, its application is almost universal to all kinds of 

diagnostic detection without much screening. The developed immunodiagnostic test 

strips are not able to cater for all applications, since different membrane materials, 

surface properties, structure and dimensions are required for a wide range of 

potential capture reagents. Thus, it is necessary to study the interrelationship between 

membrane morphology and performances of test strip, to meet the stringent 

requirements of diagnostic detection.  

 

All these limitations, in truth, can be easily resolved if the knowledge and 

membrane formation techniques are improved and expanded. 

 

1.6 Research objectives 

The primary objective of this study is to develop a lateral flow membrane 

which consists of micro pores structure and capable for biomedical application. The 

present study has the following objectives: 

1) To synthesise micro pores lateral flow nitrocellulose membranes for medical 

biotechnology application. 

2) To study the correlations and to control the interconnections between 

environmental factors and formulations on membrane properties and 

performances. 

3) To design and fabricate a membrane stretching machine to modify membrane 

morphology. 
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4) To investigate and optimize the effects of stretching parameters such as 

stretching rate, temperature and elongation on membrane properties and 

performances. 

5) To study the performances of synthesized NC membranes on 

immunochromatography tests. 

6) To model the lateral hindered diffusion of protein solutes (Lysozyme and 

BSA) in membrane and to validate the model from the experimental data.  

 

1.7 Scope of study 

In this study, techniques to produce lateral flow NC membrane using dry 

phase inversion method under controlled environment conditions were disclosed. In 

membrane formulation, the controlling parameters were polymer concentration, 

additive selection, additive (wetting agent) composition as well as concentration of 

pore former (water). Polymer concentration from 4 to 6 wt.% were used, to 

investigate the role of NC polymer in lateral flow immunochromatography testing. 

Investigations on the synthesised membranes with various wetting agents and pore 

formers (glycerol, SHS, PEG and water content) were carried out to identify the 

selection and concentration of the most suitable additive introduced into the casting 

solution. The water content studied was in the range from 1.5 to 5.5 wt.%. In the 

present study, membrane casting conditions such as drying temperature (27 to 53 °C) 

and casting thickness (600 to 800 um) had also been considered.  

 

The membranes were characterized in terms of pore size, pore size 

distribution, porosity and effective thickness. Average pore sizes and thicknesses 

were measured using Field Emission Scanning Electron Microscope (FESEM), while 
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the membrane porosity was calculated through the correlation between membrane 

thickness, polymer weight and polymer density. The functional group of the 

synthesised membrane was further confirmed by using Attenuated Total Refectance-

Fourier Transform Infrared (ATR-FTIR). With regards to membrane performances, 

the tests on lateral wicking rate and protein binding ability of membrane were carried 

out. Membranes were tested under lateral diffusion of phenol red solution and 

deionised water in order to obtain the correlation between membrane pore 

connectivity and lateral wicking rate. In terms of protein binding ability, the 

membrane was evaluated by quantitative measurement of Bovine Serum Albumin 

(BSA) that bound onto the membrane surface. 

 

It is essential to find the correlations and optimum casting conditions for 

different membrane formulations. Thus, the experimental data were further studied 

using the Mixture-Process Crossed Design, to analyse the influences of casting 

formulation, casting conditions and their interactive effects on the final membrane 

structure. This was followed by determination of optimum casting condition and 

formulation from sets of experimental data collected. 

 

This research was continued with the modification of the membrane 

morphology through thermal mechanical stretching technique. A membrane 

stretching machine was designed for the purpose of modifying the morphologies and 

thus enhancing its performances. In this study, the membrane stretcher was designed 

based on the essential factors that influence the membrane pore structure, namely 

temperature, stretching speed and the extent of elongation. By using an in-house 

machine, the process variables such as stretching speed (0.02 to 0.12 mm/s), 
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temperature (25 to 75 °C) and elongation (4 to 22 %) were explored. The stretched 

membrane was then characterized by means of its pore size, thickness and porosity. 

Besides structural observation under FESEM, surface roughness of the stretched 

membrane was further confirmed by using the Atomic Force Microscopy (AFM). 

Response Surface Methodology (RSM) with Central Composite Design (CCD) was 

performed to study the effects of stretching parameters on membrane pore structures. 

A polynomial model was used to represent the significant effect of the operational 

conditions on selected responses.  

 

The membrane performance on protein dot staining was further tested using 

the optimized membrane. Investigations on the effects of protein concentration (0 to 

20 mg/ml) and volume quantity (1 to 3 μl) immobilised on the membrane surfaces 

were carried out. In this report, the main interest was to determine the sensitivity of 

membrane towards protein immobilisation through different protein volume and 

concentration. The synthesized NC membranes were assembled as diagnostic test kit. 

Its performance as immunoassay was tested and compared with the commercial 

membranes.  

 

On the last part of this research, investigation of the solute transport model 

was carried out. This study was confined to a model which originally developed from 

the Fick’s Second Law. Lateral hindered diffusion coefficients of protein solution 

(lysozyme and BSA) in each membrane were determined. The diffusion coefficients 

were then correlated with the membrane pore sizes. 
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1.8 Organization of the thesis 

This thesis consists of seven chapters. A brief introduction on membrane 

principle with strong emphasis on nitrocellulose membrane was outlined in Chapter 1 

(Introduction). Descriptions on membrane applications in lateral flow diagnostics 

were also included in this chapter. This was followed by problem statements in order 

to provide some basis to set the research direction. Based on the defined problem 

statement, research objectives and scopes of the study were elucidated.  

 

Classifications of membranes were revealed in Chapter 2 (Literature Review). 

Past research works on the development of NC membrane as well as the potential 

application in immunochromatography analysis were discussed extensively. NC 

membrane synthesized via dry phase inversion method, including the casting 

formulation and casting condition were reviewed and highlighted. The common 

modification methods on membrane morphology were also outlined and discussed in 

this chapter. The following section of the chapter included the working mechanism 

and conditions of immunochromatography testing.  

 

In Chapter 3 (Membrane Diffusion Model), special attention was given on the 

solute transport model. It did not cover all the theories, but provided a summary of 

theories that were most frequently used to describe liquid diffusion. Mathematical 

derivation of the transport model for lateral diffusion in NC membrane was 

explained in details. 

 

Chapter 4 (Materials and Method) provided details of materials and 

experimental procedures. These procedures included membrane preparation methods, 
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detailed setup and operating conditions for membrane modification, characterization 

techniques, performance evaluations for synthesized membranes as well as the lateral 

diffusion test in the membrane. 

 

Chapter 5 (Synthesis, Characterization and Modification) and Chapter 6 

(Performance Evaluation and Modeling) were the core of this thesis, which presented 

and discussed all the important findings based on the present experimental works. 

The experimental studies were carried out based on the objectives outlined in Section 

1.6. In Chapter 5, the studies could be generalized as membrane fabrication, 

characterization, modification of membrane morphology and statistical analysis to 

investigate the significance of several main parameters against membrane fabrication 

and modification. Meanwhile, Chapter 6 focused on evaluation of membrane 

performances (dot staining and immunochromatography testing) and modeling of 

lateral hindered diffusion of protein (lysozyme and BSA) in a lateral flow membrane 

system.  

 

Findings from these studies were summarized in Chapter 7 (Conclusions, 

Recommendations and Future Directions). Concluding remarks were given for each 

of the findings reported in Chapter 5 and Chapter 6, which included the membrane 

fabrication, membrane modification, statistical analysis, membrane performance 

evaluations as well as the modeling work. Based on the research findings and 

limitations encountered in the present works, recommendations and directions for the 

future research were suggested. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Membrane classification 

The most commercially utilized membrane in separation industry is made of 

polymeric materials. Polymeric membranes can be classified based on their surface 

chemistry, composition, morphology, production method or functionality. The 

clearest possible distinction is classification based on their nature, which is either 

biological or synthetic membrane (Mulder, 2003). These two types of membranes 

differ completely in structure and functionality. Biological membrane, with the 

exception of cell membrane, is thin sheets of tissues that cover various organs of 

human body or plant.  Synthetic membrane is a artificially created membrane which 

is intended for separation purposes in the industries (Pinnau and Freeman, 1999).  

 

Synthetic membranes are sub-classified by their composition, structure, and 

functionality. Composition refers to materials used to make the membrane, including 

polymers (for example cellulose nitrate, polyamide and polysulfone), ceramics, metal 

or carbon (Baker, 2000). Structure refers to the microstructure of the membrane in 

cross-section whether it is sponge type, fingerlike structure or composite. Membrane 

structure has proven to be an extremely illustrative route because the morphology 

determines the separation mechanism and hence the application.  For solid synthetic 

membranes, three types of membrane structure may be distinguished, mainly dense 

membranes, asymmetric membrane and porous membranes (Wrasidlo, 1986).  
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Dense membrane is a thin layer of dense material utilized in the separation of 

small molecules. Transport through these membranes is governed not only by 

diffusion, but also by the solubility of the chemical species present in the membrane. 

Permeability depends on the thicknesses and chemical nature of the membrane (Pinto 

et al., 1999). The structure of dense membrane can either be in a rubbery state or 

glassy state at a given temperature, depending on its glass transition temperature 

(Osada and Nakagawa, 1992).  

 

The term asymmetric is used to refer to membrane that shows important 

variation in the cross-section of their structure (Pinto et al., 1999). Asymmetric 

membrane is a composite membrane which has an active (skin) layers formed on top 

of the porous support. Both might be from different materials, which are selected for 

optimum functionality (Baker, 2000). 

 

Porous membrane comprises of a solid matrix with pore diameters ranging 

from 5 nm to 50 μm. These membranes are intended for separation of larger 

molecules such as solid colloidal particles, for microfiltration, ultrafiltration, and 

dialysis applications. The structure of porous membrane is closely related to the  

interaction between polymer and solvent, components concentration and molecular 

weight in solution (Osada and Nakagawa, 1992). Thicker porous membrane 

sometimes provides support for the thin dense membrane layer, forming asymmetric 

membrane structure. 

 

Functional classification of membranes is based on the transport phenomena, 

where membranes are classified according to the size of the intended separation 
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components, as shown in Table 2.1. For example, within porous membranes itself, a 

distinction is made between microfiltration (MF), ultrafiltration (UF) and reverse 

osmosis (RO), depending on the pore sizes and particle sizes involved (Bitter, 1991).  

 

Table 2.1:  Membrane pore size versus solutes separation in membrane processes 
(Cheryan, 1998) 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

RO retains all components other than solvent. Membrane for nanofiltration 

has pores larger than RO membrane but too small to allow permeation of organic 

compounds such as sugars. As shown in Table 2.1, ultrafiltration retains 

macromolecule or particle larger than about 1 nm to 50 nm. Microfiltration, on the 

other hand, is designed to retain particles in the micron range that is in the range of 

0.1 μm to 20 μm (Cheryan, 1998). Membranes for use in microfiltration have pores 
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which are visible under normal light magnification, while those for use in reverse 

osmosis and ultrafiltration will not show any visible pores (Kesting, 1980).  

 

2.2 Chronological development of nitrocellulose membrane 

The use of naturally occurring polymer as material in microfiltration dates 

from antiquity. However, history of synthetic polymeric membranes began in 1855 

after the invention by Fick (Cheryan, 1998). On his first synthetic membrane, he 

made it apparently out of cellulose nitrate to perform his diffusion studies (Kesting, 

1985). In the same year, it was Lhermite who first stated that permeation occurs due 

to the interaction of permeate species with the membrane. By varying the polymer 

concentration, Bechhold had prepared a series of microfiltration membranes with 

graded pore size in 1907. He is also the first to develop a method to measure the pore 

diameters by using air pressure and surface tension measurements (Cheryan, 1998).  

 

Until 1945, membranes with micron size were used primarily for diffusion 

studies, sizing of macromolecules and removal of microorganisms and particles from 

liquid (Cheryan, 1998). Since then, several major commercial developments in 

membrane science had taken place. However, before 1960, there was no significant 

membrane industry existed, probably due to the expensive cost, slow and unselective 

membrane performances (Baker, 2000). In 1960, Loeb and Sourirajan succeeded in 

developing a method of manufacturing asymmetric membrane. The obtained 

membrane had high permeability and led to the widest possible range of applications 

(Cheryan, 1998). 
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In 1963, it was first reported that nitrocellulose (NC) membrane has a strong 

adsorption on single stranded DNA (Nygaard and Hall, 1963). This NC membrane 

was later developed for blotting protein fractions from sodium dedecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and this process is made known as 

“Western Blotting”. At present, lateral flow NC membrane with high mechanical 

stability and tensile strength constitutes as important element for rapid diagnostic test 

strips (Mahendran et al., 2005). NC membrane has shown to be a common and 

convenient carrier material in small scale chromatography or protein electrophoresis 

manufacturing. 

 

Significant progresses have been made in virtually every phase of membrane 

developments in membrane applications, formation processes, chemical structures 

and physical structures. Although the basic principles and methodologies have 

already been established, the tailor making and optimization of the membrane for 

specific applications had just begun. Over the past 40 years, solutions after solutions 

for these problems have been developed, making membrane-based separation 

process become one of the most common processes in separation industries. As we 

welcome ourselves into the 21st century, new development of membrane technology 

for immunodiagnostic will further widen the applicability of membrane in 

biomedical sector. 

 

2.3 Properties of NC membrane 

Chemistry of synthetic membrane refers to the chemical nature and 

composition of the membrane surface that is used in a separation process (Zeman and 

Zydney, 1996). The membrane surface chemistry creates important properties such 
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as hydrophilicity or hydrophobicity (relates to the surface free energy), ionic charges, 

chemical or thermal resistance, binding affinity for particles in a solution, and 

biocompatibility (in the case of bio-separation) (Zeman and Zydney, 1996). The 

membrane properties can be very different from its bulk composition, whereby 

polymer contributes specifically to physical or chemical nature of the membrane. 

 

2.3.1 Chemical and physical properties of NC polymer 

Nitrocellulose (NC) or cellulose nitrate polymer known as Type “RS” or 

Type “E” (11.8-12.3% N) is one of the famous polymers used in producing lateral 

flow membrane with high porosity, high pore connectivity and high binding affinity. 

NC is the first synthetic polymer and also the first polymer utilized in the preparation 

of a synthetic membrane in 1855 (Kesting, 1985). Its highly hydrophobic glassy 

polymer consists of cellulose that is nitrating by three nitrate groups per glucose 

molecule, as shown in Figure 2.1. 
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Figure 2.1: Chemical structure of nitrocellulose polymer 
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NC polymer is made by first order reaction of the cellulose through the 

exposure to nitric acid, as shown in Equation 2.1. The produced polymer is highly 

flammable and needs to be stored in wet condition to avoid explosion.  

OHONOHCOHCHNO 25327651063 3)(3 +→+               (2.1) 

 

In terms of the polymer chemistry, NC is categorised as Lewis acid and 

soluble in a wide range of low cost organic solvents such as acetone and methyl 

acetate (Kesting, 1985). It is utilized in substantial quantities in the production of 

microfiltration membranes either by itself or in conjunction with other cellulosic 

polymers, with the addition of solvents. Once widely utilized together with camphor 

as a general plastic known as celluloid, NC has surrendered most of these 

applications to cheaper and less flammable materials.  Nevertheless, its toughness, 

adhesive nature, and transparency has permitted it to remain competitive and 

survived as an item of commerce today (Mehta and Rajput, 1998).   

 

2.3.2 Structural and characterization of NC membrane 

The range of pores of NC membrane that can be manufactured is from 0.05 to 

about 12 µm, where this range of pores is very suitable for use in microfiltration 

(Kesting, 1985). In term of mechanical strength, NC membrane is more friable 

compared to analogous membranes from nylon, polysulfone, or certain acrylic co-

polymers (Ben Rejeb et al., 1998).  Nevertheless, the membrane is quite resistant to 

chlorinated hydrocarbons which are solvents or swelling agents for polymers 

including polysulfone, polycarbonate, and polyvinylidene fluoride (Kesting, 1985). 
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Compared to other cellulosic membrane, such as cellulose acetate or cellulose 

triacetate membrane, NC membrane is more resistive to shrinkage during autoclaving. 

 

Different membrane forming materials have intrinsic affinity binding 

capacity for different proteins. One of the special features of NC membrane is the 

high binding capacity and large void volume between the membrane pores. This 

feature offers good accessibility and large surface area for potential adsorption of 

protein molecules. A pure NC membrane has optimal protein binding capacity in the 

range of 80 to 100 μg/cm2 (Kung, 1991). Thus, most of the membrane applications 

are based on the analytical protein blotting protocols, including protein 

immobilization, protein binding assays and lateral-flow immunochromatographic 

testing (Graf and Friedl, 1999; Beer et al., 2002; Czerwinski et al., 2005). NC 

membrane assures the required membrane sensitivity level applied in an 

immunoassay. A NC membrane is capable to bind 50-80 μg/cm2 of single-stranded 

DNA while cellulose acetate membrane only binds 1 μg/cm2 (Oey and Knippers, 

1972).  

 

Liquid migration speed which depends on the membrane diffusion resistant is 

another important feature of NC membrane (Oey and Knippers, 1972). Technically 

speaking, liquid migration trend reflects the surface properties and porosity of the 

membrane, and probably be used in the membrane homogeneity measurement. The 

distribution of the liquid solution in the membrane strip can occur in two ways, either 

perpendicularly through the membrane or through slip flow on one side of the 

membrane strip (lateral flow liquid distribution) (Konopka et al., 2002). Wicking test 

is used to determine the liquid migration speed at which a liquid sample moves along 
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the membrane strip. An easier parameter to measure the liquid flow rate is the 

capillary flow time (s/cm), which is defined as the time required for liquid to move 

along and fill completely the membrane strip of defined length. 

 

2.4 Potential application of NC membrane in immunoassay 

Membrane separation process has experienced a remarkable growth in the 

biomedical industry. In recent years, lateral flow immunochromatographic assays 

have been widely introduced in the field of biomedical and healthcare analysis, due 

to their high sensitivity and specificity, rapid testing, inexpensive manufacturing cost 

and user-friendly operating procedure (Newman and Price, 1997; Hampl et al., 2001; 

Czerwinski et al., 2005; Wang et al., 2006). A large number of tests are available for 

the detection of infectious diseases (Schramm et al., 1998; Zhang et al., 2006), food 

hygiene (Bird et al., 1999; Hatta et al., 2002; Aziah et al., 2007), fertility test and etc. 

Use of these kits will translate to the swift detection of fatal diseases, which will help 

to save lives.  

 

Membrane is probably the single most important material used in lateral flow 

immunodiagnostic strip. The choice of a membrane largely depends on the protein-

binding capacity, porosity and lateral wicking speed of the membrane. Among the 

membranes, lateral flow NC membrane is known as the most popular transport 

medium in an immunoassay (Lonnberg and Carlsson, 2001; Qian and Bau, 2004). 

The flow-through biosensors based on protein or DNA micro-arrays make use of thin 

porous nitrocellulose membrane, where such micro-array methods can detect specific 

interactions between the analyte and the spotted capture probes including DNA 

hybridisation, disease diagnosis and genome research (Kurt et al., 2008). 

  23 



NC membrane has long occupied a position of central importance in medical 

and immunological analysis due to its excellent wetting properties, high binding 

capacity and low background staining  (Morais et al., 1999; Sun et al., 2008). The 

membrane has been widely used in a vast fields of study, such as protein research 

(Lonnberg and Carlsson, 2001; Czerwinski et al., 2005), lateral flow 

immunochromatography testing (Mahendran et al., 2005), protein immobilization 

(Bialopiotrowicz and Janczuk, 2002) and  western blotting (Oehler et al., 1999). The 

used of NC membrane made possible the development of immunoassay based on the 

interaction between antibodies and antigens, as well as the refinement of 

immunodiagnostic into lateral-flow, point-of-care assays (Beer et al., 2002; Oh et al., 

2009). 

 

2.5 Development of NC membrane 

Studies of the membrane surface and internal layers are fundamental in the 

development of lateral flow membrane as one of the processing materials in 

medicine and health care analysis devices. If the membrane structures can be 

controlled precisely, various kinds of immunological analysis can be performed 

effectively and accurately. 

 

Porosity and pore size are the key factors to determine the membrane quality 

and performance. Membrane with smaller pores or lower porosity would exhibit 

higher resistance in lateral flow rate, and thus converting to a longer liquid wicking 

time. Contrary, bigger membrane pore or higher porosity contributes to a faster 

liquid wicking time but at the expense of membrane protein-binding ability. Besides, 
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the mechanical properties can be adversely affected if the membrane pore is too large 

and if there is incomplete connection between the polymer particles (Kesting, 1985).  

 

Membrane production is, nonetheless, a very sensitive process. Several 

strategies are cited in order to control the membrane morphologies, including the 

fabrication techniques, formulations and preparation conditions (Lin et al., 1998; 

Chan and Tsao, 2003). The mechanism of membrane formation was said to be rather 

complex as there are various fabrication factors need to be considered during the 

casting stage, and its final performance is strongly dependent on those fabrication 

factors. In membrane formulation, factors that need to be taken into account are the 

choices of casting materials, composition of casting solution and gelation-

crystallization behaviour of the polymer (Pinnau and Koros, 1993; Vaessen et al., 

2002). At the same time, parameters of the casting process such as relative humidity, 

casting speed, casting thickness, evaporation time and drying temperature also need 

to be considered simultaneously. By manipulating the initial phase transition and 

rheological factors, the porous membranes can be prepared at desired pore size, 

porosity, thickness, and surface roughness (Mulder, 2003; Meier et al., 2004; Khayet 

et al., 2005). 

 

2.5.1 Membrane fabrication technique: Phase inversion 

Numerous methods are known for generating the thin film membrane with 

micron-scale closed pores or opened pores structures. These include sintering, 

stretching, track-etching, sol-gel process, vapour deposition, solution coating and 

phase inversion, as shown in Table 2.2 (Kesting, 1985; Cheryan, 1998; Mulder, 

2003). Each of these methods results in different membrane morphology, porosity 
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