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Introduction 
     The new method to modeling fatigue crack 
propagation compare with the classical 
inference is stochastic method. One approach to 
stochastic modeling is to randomize the 
coefficients of an established determinictic 
model to represent material inhomogenity 
(Ditlevsen and Olsen,1986). A random process 
to generate a stochastic data by multyplying the 
deterministic dynamics of fatigue crack growth 
(Lin and Yang, 1985; Spencer et al., 1989). The 
nonlinear stochastic differential equations are 
used to model a process of fatigue crack 
propagation (Kloeden and Platen, 1995). 
Statistical data required for risk analysis is 
prepared by Kolmogorov forward and backward 
diffusion equation. This equation require 
solutions of nonlinear partial differential 
equations (Ishikawa et al., 1993; Bolotin, 1989). 
The best way to solve these nonlinear partial 
differential equations are by using numerical 
method. From numerical method, fine-mesh 
models using finite element is created (Sobczyk 
and Spencer, 1992). The probability distribution 
function of the crack length is analytically 
approzimated the solution of Ito equations 
(Casciati et al, 1992). The algoritm for real-time 
estimation of fatigue crack damaged by using 
underlying principle of extended Kalman 
filtering have developed for an on-line 
execution of damage estimation (Ray and 
Tangirala, 1996). The stochastic damage state 
are computed on-line by constructing the 
stochastic differencial equations in the Wiener 
setting as opposed to the Ito setting. The 
development of a lognormal distributed crack 
length (LDCL) model is done by Ray et. al, 
1997) and verifies the model predictions with 
the experimental data of fatigue crack growth 
(Virkler et al., 1979; Ghonem and Dore, 1987) 
for 2024-T3 and  7075-T6 aluminium alloys. 
Initial crack scenarios are randomly defined by 
probabilistic approach and cracks evolution is 

computed using dual boundary element method 
and fracture mechanics law (Kebir et. al., 2001).   
This paper presents the development of an 
inspection programs for the fatigue crack 
propagation, is an enhancement of an earlier 
program (Kebir et. al., 2001), and the major 
differences between these two programs are 
summerized below. 
1. The crack propagation is modeled using the 
combination of Beasy software and the random 
function from matlab program.  
      Linear elastic fracture mechanics can be 
used in damage tolerance analyses to describe 
the behavior of cracks. Crack behavior is 
determined by the values of the stress intensity 
factors which are the function of an applied load 
and geometry of the cracked structure. The 
crack growth process is performed by the 
analysis of the crack extension. The stress 
intensity factors had evaluated and the crack 
path was defined in terms of the stress intensity 
factors. 
 
Law of Fatigue Crack Propagation 
       In the year of 1963, Paris and Erdogan 
created a Paris law as in equation (1) that still 
using until today. 
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Kmax - Kmin is stress concentration and C and M 
is materials properties. 

For the crack initial, Wöhler curve assumed 
that fatigue life average at certain point for 
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where  2.28 ,  IQF = 176 MPa ,  Slim = 59 MPa ,   
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Sm = average stress. In linear elastic fracture 
mechanics there are several mixed-mode 
propagation criteria. The stress intencity factor, 
Ki  controls the near tip stress field as (Lawn and 
Wilshaw, 1975) 
 
Monte Carlo Method 

In the area of fatigue reliability, an 
estimation of probability of failure is required. 
Variability in crack growth rate is because of 
the variation in material. The computational 
tools are required in the assessment of the effect 
of flaws and defects on the structural integrity 
of safety critical components. Fatigue crack 
propagation is inherently a random process 
because of the in homogeneity of material, 
connected with its crystal structure and with 
variations of convective film coefficient at the 
structure’s surface due to it non-smoothness and 
other similar reasons (Cherniavsky A.O., 1996). 
Each points have a stress intensity factor value, 
Keef  and material residual strength due to fatigue 
failure. These properties represent the limit state 
in structural fatigue reliability problems. They 
are also subjected to variations and considered 
random variables. If the value of Keff over than 
critical value Kic, then the probability to fail is 
high. So, the value of probability for that point 
to fail is given by Monte Carlo simulation. 

A large crack size of the populations 
dominates the failure probability at the 
beginning of the failure process. In the long 
term, the small crack sizes may have the most 
dominant effect on the failure probability 
because of flaw. Flaws occur from defect like 
surface roughness, scratches or weld defects of 
random sizes from manufacturing process. 
(Yang et. al).  

The number of stress exceedances per 
function gives the probability of exceeding a 
given stress at a critical location.  The accidence 
function is often used as input for damage 
tolerance analysis (Lincorn). 

Properties and variation in service conditions 
also variability in crack growth rate. The 
variability in experimental data on fatigue crack 
growth kinetics reflects contributions from 
material property variations, environmental and 
other uncontrolled variables. That’s why the 
crack propagation is considered under random 
property. 

The special interest gained in the 
probabilistic approach has significant 
advantages over the deterministic approach for 
the structural integrity assessments for example 
of aging aircraft. The state of damage of the 
stucture via Probability Dencity Function (PDF) 
is one of the factors that probabilistic approach 
can be taken into account (Tong Y. C.). This 
method is capable of providing information 
because it takes many qualities of the safe-life 
and damage tolerance. The time taken and 
costing of this method is lower compare to the 
deterministic which used in the past. So, it is 
useful for regarding inspection and life 
extension problems. 

The Monte Carlo Method that gives the 
quantitative method is declared as integrated 
multi-count. If the calculation is not used 
random number that is over of value N=1010, so 
the result will be a function (valued vector) 

 
R ( )Nξξξ ...,, 21                             (3) 

 
for the following Nξξξ ...,, 21  random number. 
This is malfunction estimator for   
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This method is just suitable for the problems 
that using the integrated function. Using some 
of Monte Carlo technique will give the 
difference application in modeling. For simple 
example, 1 D integrated is used for malfunction 
estimator as in equation (5) 
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where ( )1,02Lf ∈  or in other word, 

if  exist, so θ also exist. The 

effective ratio of two Monte Carlo method is 
defined by the calculation of n
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estimator, θ and varians (σ1

2 and σ2
2) for each of 

them. So, the effective of method 2 to method 1 
is: 
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If the calculations is not depending on method 1 
and directly get the mean result, the effective 
ratio is not exchanged. Usually, it is enough to 
take n1 dan n2 in Equation (6), as a quantity of 
that function,  is valued in each method. In 
any problems, the effective ratio is a result from 
varians ratio, 

( )∗f

2
2

2
1 σσ  and work ratio, 21 nn . 

The varians ratio is depend fully on the Monte 
Carlo method while work ratio depend on the 
Monte Carlo method and also the factor of the 
calculation machine.   
 
Boundary Element Method 

The two-dimensional numerical stress 
analysis was carried out using the boundary 
element method. BEM is well-suited for crack 
problems by modeling only the boundaries. In 
order to create the BEM super-element stiffness 
matrix for a cracked domain we have adopted a 
method based on Dual Boundary Element 
methodology in which it is required to write the 
dual equation too. They are displacement and 
traction boundary integral equations.  

The internal or edge surfaces that include no 
area or volume and across which the 
displacement field is discontinuous, are defined 
as mathematical cracks. For symmetric crack 
problems only one side of the crack need to be 
model and a single-region boundary element 
analysis may be used. However, the solution of 
general crack problems cannot be achieved in a 
single-region analysis with the direct application 
of the boundary element method, because the 
coincidence of the crack boundaries gives rise to 
a singular system of algebraic equations. The 
equations for a point located at one of the 
boundaries of the crack are identical to those 
equations for the point with the same 
coordinates but on the opposite surface, because 
the same integral equation is collocated with the 
same integration path, at both coincident points 
(Brebbia & Dominguez.).  

In a BEM problem it is possible to write the 
following relation between tractions (t) and 
displacements ( u ) 
 

H u= ∗ G t ∗ ;                        (7) 

 
since the G matrix is non-singular, it is possible 
to write 

t= G-1u ∗ H ∗                    (8) 
 

where the matrices H and G contain integrals of 
the fundamental solutions t and u respectively. 
       The Langrarian continuous or discontinous 
boundary elements is used to satisfied Cauchy 
Principle Value Integral which is defined as a 
displacement equation. The Hadamard principle 
value integral tranform the discontinuous 
element  to the continuity requirement for the  
finite-part integral. The discontinuous elemant 
is defined from all nodes which is an internal 
point. So, the traction equation is defined from 
the Hadamard principal value integral. 
       The principal value integral is performed 
the dual boundary integral equation to impose 
restriction on the discreatization.  By the 
changing the of the discontinuous quadratic 
elements, crack modeling is present 
Consider a Cartesian reference system, defined 
at the tip of a traction-free crack. The J-integral 
is defined as: 

      ( )dSutWnJ jj 1,1 −=         (9)  
  

where S is an arbitrary contour surrounding the 
crack tip; W is the strain energy density, given 

by  ijijεσ
2
1

, where σij and ε ij are the stress and 

strain tensors, respectively; tj are traction 
components, given by σijn ij, where ni are the 
components of the unit outward normal to the 
contour path. The relationship between the J-
integral and the stress intensity factors is given 
by: 
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where E' is the elasticity modulus E for plane 
stress conditions and E'=E/(1-ν2) for plane 
strain conditions.  

In order to decouple the stress intensity 
factors, the J integral is represented by the sum 
of two integrals as follows:  
 

111 JJJ +=                        (11) 
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Carry out a dual boundary element method 
stress analysis of the structure. Compute the 
stress intensity factors with the J-integral 
technique. Compute the direction of the crack-
extension increment Extend the crack one 
increment along the direction computed in the 
previous step. Repeat all the above steps 
sequentially until a specified number of crack-
extension increments is reached. 
 
Crack Modeling Strategy.  

The domain region is treated as a BEM 
super-element in BEASY of that it is necessary 
to calculate the related stiffness matrix and 
stress intensity factor effective, Keff by means of 
a DBEM.  

Carry out a dual boundary element method 
for stress analysis of the structure. Compute the 
stress intensity factors Keff, with the J-integral 
technique. Compute the direction of the crack-
extension increment Extend the crack one 
increment along the direction computed in the 
previous step. Repeat all the above steps 
sequentially until a specified number of crack-
extension increments are reached. 

The BEM super-element stiffness matrix and 
Keff, after condensation, has been inserted into 
Monte Carlo crack initial and crack propagation 
routine using MATLAB source code. The 
deterministic approach is also included by using 
the Wohler’s curve at 50%.   

By running a MATLAB analysis, it has been 
possible to calculate the cycle number for each 
of the propagation and the crack length (Figure 
1). The initial point also indicated by a random 
process.The modified data files in BEASY is 
run to have an update display.  
 
 
 
 
  
 
 
 
 
 
FIGURE 1 The criteria that have determine by 
random number.     
 
 

Results  
 
14 Holes Plate Analysis 

In order to validate the global probabilistic 
approach, the results were compared with the 
fatigue test on a plane plate with 14 free holes 
that was conduct by Kebir H. et. al. at 
Aerospatiale-Matra laboratory in Suresnes 
(France). The samples material was aluminum 
alloy 2024-T3 sheets with a thickness of 1.6 
mm. The load was applied on transversal 
direction as shown at Figure. 2. The Modulus 
Young of the sample was 72.7 GPa.   

900

Constraint
375

Hold hole

25

Load

25

Notch 1 Notch 24

 2  4 6    8 10   12 14  16 18    20 22   24
Notch No. 

Figure 2  Schematic diagram of plate 14 holes

       The initial structure was discretized with 
262 elements, in one zone with 1202 degrees of 
freedom. There got 897 internal points patches 
in the model. The numerical result has a good 
compromise between the test results. The total 
numbers of cycles with the probabilistic 
approach are closely similar to the test 
expressed in Fig. 4. In the deterministic 
approach, the propagation phase was so short. 
It’s because all the cracks assumed begin at the 
same time, since all the sites are undergoing the 
same stress level. So, the probabilistic approach 
has an advantage of giving the view of initial 
crack propagation.  

Random Number 

Sampling 
Cycle 

Number 

Sampling 
Max 

Principal 
Stress 

Dedicate 
Initial 
Point 
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                FIGURE 3  Fatigue prediction life 
 
The synthesis of the probabilistic results are 

expressed in Figure 4. A large crack size has 
dominated the failure probability at the 
beginning of the failure process. In the long 
term, the small cracks size may have the most 
dominant effect on the failure probability. The 
detail of the crack data presents by Table 1 
shows that the failure happened at a small crack 
at notch 21. 

 
 

Crack propagation at notch 1 to notch 24
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1.72E5

1.25E5
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0.73E5

0.50E5

Cycle
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1 24Notch no.

 
FIGURE 4 Life cycle of fatigue crack propagation 
by iterations. 

 
 

Center Member Bar 
Figure 5 shows a center member bar of car 

component that analysis by Monte-Carlo 
method for predicting fatigue crack propagation. 
The type of material is steel, which the Young 
Modulus, E is 200GPa. 

 
 
 
 
 

TABLE 1 Results of fatigue crack propagation 
 

x103 
Iteration Crack Length Cycle, N (x105) Point No. 

     1 0.0056 1.1154 2 
2 8.1702 1.2354 2 
3 0.1034 1.3454 1 
4 0.3706 1.5654 1 
5 0.2498 1.6154 1 
6 0.2077 1.6854 11 
7 0.0693 1.7354 12 
8 0.2219 1.7954 14 
9 0.2557 1.8854 18 
10 0.6363 1.9354 13 
11 0.1043 1.9954 16 
12 0.1557 2.0654 15 
13 1.67x108 (Fail) 2.1554 21 

 
 

 
 

FIGURE 5  A photograph of a center member bar 
 
Figure 6 illustrates the location of notches 

and loads at the center member bar model. Four 
notches and loads were applied with the range 
of fatigue stress 450-600 MPa.The Monte-Carlo 
simulation has been done to get the structure 
failure by completed 34 iterations. Figure 7 
shows the geometry displacement at iteration-
18. Fig. 11 shows the crack propagation at notch 
1, 2, 3 and 4 after 29 iterations. The longest 
crack, propagated at notch 4.  

Load

Notch 4 Notch 3 Notch 2

Load

Notch 1

ConstraintConstraint

 FIGURE 6 Side view of a center member bar. 
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         (a)             (b)           (c)      (d) 

(e) 
FIGURE 7  Crack at (a) notch 4 (b) notch 3 (c) notch 
2 and (d) notch 1. (e) geometry displacement after 29 
iterations. 

Figure 8 presents the crack length versus the 
life cycles of the center member bar. In 
gathering these data, the curve shape is divided 
in three phases. The first phase has a constant 
small crack length about 0.007 mm. On the 
second phase, the crack length is increased to 
0.1mm. However, the crack length was 
decreased to 0.01mm at the third phase, like the 
crack length at the first phase. However, the life 
on third phase is so short compare to the first 
phase. The structure is going to be fail at any 
time in this phase. The Monte Carlo analysis 
results show that the probability of a large crack 
passing close to a small crack depends on the 
large crack’s length and the density of the small 
crack.  

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8  Crack size versus life cycle. 
 
 

Conclusion 
From the research that had been done, the 

modeling of fatigue crack propagation by 
mathematical foundation for the BEM and 
probability method by Monte Carlo can give a 
good prediction of life cycle.   
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