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Figure 7.11 Photonic band structure for photonic crystals of teflon rods 
( 2ε = ) in copper slab at 0.5f =  for H polarization. 
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Figure 7.12 Photonic band structure for photonic crystals of teflon rods 

( 2ε = ) in copper slab from 0.8
2

a
c

ω
π

=  until 1.2
2

a
c

ω
π

=  at

0.5f =  for H polarization.  Shaded areas are the band 
gaps. 
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Figure 7.13 Photonic band structure for photonic crystals of FR-4 rods 
( 4.9ε = ) in copper slab at 0.5f =  for H polarization. 
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Figure 7.14 Photonic band structures for photonic crystals of FR-4 rods 160 
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( 4.9ε = ) in copper slab from 0.8
2

a
c

ω
π

=  to 1.2
2

a
c

ω
π

=  at

0.5f =  for H polarization. Shaded areas are the band 
gaps. 
 

Figure 7.15 Photonic band structure for photonic crystals of GaAs rods 
( 12.96ε = ) in copper slab at 0.5f =  for H polarization. 
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Figure 7.16 Photonic band structures for photonic crystals of GaAs 
rods ( 12.96ε = ) in copper slab at 0.5f =  for H 

polarization from 0.8
2

a
c

ω
π

=  to 1.2
2

a
c

ω
π

= . Shaded areas 

are the band gaps. 
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Figure 7.17 Photonic band structure of GaAs rods with filling fraction 
0.5f = in copper media in H polarization. Magnetic field 

distribution at frequencies (b) 1499 THz, (c) 743 THz, (d) 
176 THz. 
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Figure 7.18 Photonic band structure for vacuum rods in copper for E 
and H polarization at 0.5f = in square lattice. 
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Figure 7.19 Photonic band structure for GaAs rods in metal in E and H 
polarization mode 0.5f = in square lattice.  
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Figure 7.20 Photonic band structure for vacuum rods in copper for E 
and H polarization at 0.5f = in triangular lattice. 
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Figure 7.21 Photonic band structure for GaAs rods in metal in E and H 
polarization mode 0.5f = in triangular lattice.  
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Figure 8.1 3D view of waveguide in CST MWS 
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Figure 8.2 Reflection coefficients (S11) of waveguide from 0 until 
0.1THz. 
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Figure 8.3 Photonic band structure of ordinary square lattice structure 
with vacuum rods in FR-4 ( 4.9ε = ). 
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Figure 8.4 Photonic band structure from Γ  to X. 
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Figure 8.5 The designed waveguide. 
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Figure 8.6 Field distribution at frequency f = 0.05 THz. 174 

Figure 8.7 Field distribution at frequency f = 0.50 THz. 174 
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Figure 8.8 Field distribution at f = 0.94 THz. 
 

175 

Figure 8.9 Band structure of photonic crystals with copper rods in FR-
4 ( 4.9ε = ) for radius = 0.17 mm and lattice constant = 
0.93 mm. 
 

176 

Figure 8.10 Photonic band structure for Γ-X. 
 

177 

Figure 8.11 3D view of the photonic crystals base with copper rods in
FR-4 
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Figure 8.12 3D view of the microstrip with photonic crystals base 
 

178 

Figure 8.13 Normalized transmission coefficients of the microstrip 179 
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List of Abbreviation 

2D = 2-dimension 

3D = 3-dimension 

CST MWS = CST Microwave Studio Packages 

E Polarization = Electric Polarization 

FDFD = Finite Difference Frequency Domain 

FDTD =Finite Difference Time Domain 

FEM = Finte Element Method 

FR-4 = Flame Resistant 4 

GaAs = Gallium Arsenide 

H Polarization = Magnetic Polarization 

LHM = Left Handed Material 

MEEP = MIT Electromagnetic Equation Propagation 

PCs = Photonic Crystals 

PTFE  = Polytetrafluoroethylene 

SiO2 = Silicon Dioxide 
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KAJIAN STRUKTUR JALUR FOTONIK UNTUK HABLUR FOTONIK 
LOGAM 

 
   ABSTRAK 

Hablur fotonik ialah sejenis struktur buatan yang berkala. Keunikan sifatnya 

merupakan satu daripada tajuk yang paling banyak dikaji sejak 20 tahun lalu. Para 

penyelidik percaya bahawa struktur ini boleh mengatasi halangan yang dihadapi 

sekarang dalam bidang penyelidikan berkaitan nano-optik. Dalam tesis ini, sifat 

hablur fotonik diselidik. Satu daripada parameter paling penting yang mempamerkan 

sifat atau ciri-ciri hablur fotonik adalah struktur jalur fotoniknya.  

 Dalam tesis ini, suatu persamaan gelombang satah (plane wave equation, 

PWE) digunakan untuk mengira struktur jalur fotonik. Vakum, teflon, silikon 

dioksida, FR-4 dan galium arsenida digunakan untuk mencampur, memadan serta 

mengkaji  struktur jalur fotonik. Keputusan yang diperoleh menjelaskan beberapa 

kejanggalan sifat hablur fotonik yang terdapat dalam kajian literatur. Dalam kajian 

literatur, jurang jalur cenderung wujud pada kontras dielektrik yang tinggi, 

sebagaimana yang diramal oleh John D. Joannopoulos dan para pekerjanya, tetapi 

tidak ditemui dalam kajian ini.  

Malangnya, kaedah berangka PWE terhad kepada bahan dielektrik bebas 

frekuensi. Oleh itu, suatu persamaan baru untuk bahan dielektrik yang mengandungi 

komponen logam (bahan bersandar frekuensi) diterbitkan. Persamaan ini lebih umum 

berbanding dengan kajian penyelidik terdahulu. Struktur jalur fotonik vakum, teflon, 

FR-4 dan galium arsenida yang mengandungi rod kuprum dilakar bagi pengutuban E 

dan H.  Rod kuprum dalam teflon bukan merupakan hablur fotonik  dalam kedua-dua 

susunan kekisi segi empat sama  dan segi tiga bagi pengutuban E.  Sebaliknya,  

semua bahan boleh berfungsi sebagai hablur fotonik bagi mod pengutuban H dalam 

kedua-dua susunan kekisi termasuk teflon. Dalam susunan zon Brilouin, arah Γ-X 
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menunjukkan kesan kejanggalan halaju kumpulan yang ditemui pada jalur terendah 

ketiga untuk semua bahan bagi pengutuban H. Sifat metabahan tangan-kiri (left-

handed metamaterials, LHM) ditemui untuk semua bahan dalam semua susunan 

kekisi bagi pengutuban E.  Satu model analitik baru tditerbitkan untuk frekuensi 

plasma berkesan pengutuban  E  daripada data simulasi dengan menggunakan 

analisis statistik.  

Berdasarkan pengiraan terbaru ini, kaedah PWE digunakan untuk mengira 

struktur jalur fotonik yang mengandungi rod dielektrik dalam medium logam (bahan 

bersandar frekuensi). Oleh itu, suatu persamaan baru diterbitkan. Persamaan ini 

digunakan untuk melakar struktur jalur fotonik untuk medium kuprum yang 

mengandungi rod vakum, teflon, FR-4 dan galium arsenida bagi pengutuban E dan 

H.  Rod FR-4 dalam kuprum bagi pengutuban E  dalam susunan kekisi segi empat 

sama dan segi tiga pula tidak berfungsi sebagai hablur fotonik. Selain itu, semua 

bahan lain boleh berfungsi sebagai hablur fotonik bagi pengutuban E dan H dalam 

susunan kekisi segi empat sama dan segi tiga. Bahan yang digunakan dalam kajian 

ini tidak memberi kesan terhadap jurang jalur kerana jurang jalur yang sama muncul 

pada julat yang sama bagi frekuensi normal  dalam mod pengutuban H. Serakan 

negatif dan frekuensi plasma berkesan yang rendah dikesan bagi rod vakum dan rod 

teflon dalam kuprum nagi mod pengutuban E, yang merupakan sifat LHM. 

Kejanggalan halaju kumpulan dan kesan plasmon permukaan dikesan untuk semua 

bahan dalam mod pengutuban H. Akhir sekali, panduan gelombang dan mikrostrip 

digunakan untuk aplikasi hablur fotonik. 
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AN INVESTIGATION OF PHOTONIC BAND STRUCTURE FOR 
METALLIC PHOTONIC CRYSTALS 

ABSTRACT 

Photonic crystals are artificial periodic structures. Their unique properties are one of 

the most extensively studied topics in the past 20 years. Researchers believe that this 

structure can overcome the challenge that we are facing nowadays in the nano-optics 

related research field. In this thesis, the nature of photonic crystals has been 

investigated. One of the most important parameters that exhibits the characteristic or 

properties of photonic crystals is the photonic band structure.  

In this thesis, a plane wave equation (PWE) has been used to calculate the 

photonic band structure of photonic crystals. Vacuum, teflon, silicon dioxide, FR-4, 

and gallium arsenide are used to mix, match, and study the photonic crystal photonic 

band structure. Our results clarify the discrepancies of photonic crystals property in 

the literature. In the literature, the band gap tends to appear at high dielectric contrast 

of photonic crystals, which was predicted by John D. Joannopoulos and coworkers, 

but was not found in this investigation. 

 Unfortunately, the PWE numerical method is limited to frequency-

independent dielectric materials. Therefore a new equation for the dielectric 

materials containing metallic components (frequency-dependent materials) has been 

derived. This equation is much more general compared to the previous studies by 

other researchers. The photonic band structures of vacuum, teflon, FR-4, and gallium 

arsenide containing copper rods are plotted for E and H polarization. Copper rods in 

teflon are not photonic crystals in both square and triangular lattice arrangements for 

the E polarization. But all the materials can work as photonic crystals for the H 

polarization mode in both square and triangular lattice arrangements including teflon. 
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In Brillouin zone arrangements, the direction of Γ-X showed the group velocity 

anomaly effect found at the third lowest band for all the materials in H polarization. 

Properties of left-handed metamaterials are found for all the materials in all lattice 

arrangements in the E polarization. A new analytical model is derived for the 

effective plasma frequency of E polarization from the simulation data using 

statistical analysis. 

By utilizing this new calculation, the plane wave expansion method is used to 

calculate the photonic band structure of photonic crystals containing dielectric rods 

in metallic media (frequency-dependent materials). Thus a new equation is derived. 

This equation is utilized to plot the photonic band structures of copper media 

containing vacuum, teflon, FR-4, and gallium arsenide rods for E and H polarization. 

FR-4 rods in copper for E polarization in square and triangular lattice arrangements 

cannot is not functioning photonic crystals. Other than that, all other materials are 

functioning as photonic crystals for E and H polarizations in square and triangular 

lattice arrangements. The materials used in this research do not affect the band gap 

because the same band gap appears at the same range of the normalized frequency in 

H polarization mode. A negative refraction and low effective plasma frequency are 

detected for vacuum rods and teflon rods in copper for E polarization mode, which 

are the properties of left-handed metamaterials. The group velocity anomaly and the 

surface plasmons effect are detected for all the materials in H polarization mode. 

Finally, waveguides and microstrips are used for the application of photonic crystals. 
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Chapter 1  
Introduction 

 

1.1 Photonic Crystals 

Photonic crystals (PCs) are artificial periodic dielectric structures. All the dimensions 

of PCs can be tailored according to the need of scientists. Figure 1.1 shows the basic 

arrangements of PCs. In 1888, the one-dimensional periodic structure was studied by 

Lord Rayleigh (1888), who showed that such a system has a one-dimensional 

photonic band structure. It was only in 1987 that the concept of PCs was developed 

by Yablonovitch (1987) and Sajeev (1987). They proposed PCs in two dimensions 

and three dimensions as shown in Figure 1.1. Then, the theory of a periodic structure 

was used to build the fundamental theory for photonic crystals. Just as the periodicity 

of solid state crystals determines the energy band structure, the structuring of PCs at 

wavelength scales has turned out to be viable approach to the control of the photons.  

 In PCs, there is one unique property, which is the band gap. The band gap is a 

range of frequencies for which light is forbidden to propagate inside the crystals. 

There are two kinds of band gap: a partial band gap and a complete band gap. A 

partial band gap occurs in only one of the polarization modes, whereas a complete 

band gap occurs at the same place in both polarization modes. A crystal with a 

complete gap can serve as ideal mirror; on the other hand a partial band gap allows 

light propagation only along certain directions. The existence of band gaps in 

photonic crystals was described by a fundamental rule from Joannopoulos et al. 

(1997), who stated that a band gap appears in high dielectric contrast.   
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Figure 1.1: Illustration of 1-D, 2-D, and 3-D photonic crystals (Johnson, 2007). 

 

1.2 History of Photonic Crystals 

Photonic crystals have been studied rigorously in this decade. The study was first led 

by Yablonovitch (1987) and Sajeev (1987) who found that the periodic dielectric can 

control the flow of light. This discovery led to the advent of photonic crystals in 

physics. This is the beginning of photonic crystal research in the scientific area. It 

has become one of the most leading fields of research in the world, in which 

scientists try to understand the basic characteristic of the photonic crystals. They 

used the fundamental physics of the solid state to study it. The Bloch theorem, 

reciprocal lattice, and Brillouin zones were adapted from the original solid state 

physics understanding.  

 In analogy with the electronic band gaps of semiconductors, band structure 

graphs of periodic energy are used to describe the fundamental properties of photonic 

crystals. A periodic dielectric function may result in the formation of photonic band 

structures. An example of omnidirectional photonic band structures is shown in 

Figure 1.2 for the E polarization mode. It is a gallium arsenide slab with an array of 

18871887 19871987
2-D 

periodic in 
two directions 

3-D 

periodic in 
three directions 

1-D 

periodic in 
one direction 
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holes in vacuum which created a vacuum rods. The shaded grey area is the stop band 

of the designed photonic crystals.  In this area, waves are forbidden. 

 The extensive development of the solid state has opened up semiconductor 

technology. It built a strong base for manipulating the current development in the 

semiconductors. Although scientists have a good understanding of the propagation of 

electrons in solids, they have yet to manipulate light waves in solids. This 

breakthrough will open up a new era of information technology.  

 

Figure 1.2: Dispersion graph of photonic crystals. Two-dimension triangular lattice 
   with gallium arsenide as background material, embedded with vacuum 
   rods in E polarization mode (Sakoda, 2005). 

  

 Photonic band structures are used to determine the working frequency, 

structure, dimensions, and losses of photonic crystals. This can lead to applications in 
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antennas, filters, and waveguides. The reflection, localization, refraction, and 

transmission properties of PCs can be designed. Each of these properties can be used 

to create unique devices with lower losses. For example, using the localization 

characteristic of PCs, we can design a waveguide (Lin, 1998; Mekis et al., 1996; 

Simpson et al., 2006; Tse et al., 2004; Zhao and Grischkowsky, 2007; Ozbay et al., 

2003); using the band gap characteristic, we can design a reflecting mirror 

(Yablonovitch, 1987; Lodahl et al., 2004); using the refraction characteristic, we can 

design devices utilizing the super prism phenomena (Notomi, 2000) and negative 

refraction (Luo et al., 2002). Due to these unique characteristics of photonic crystals, 

scientists have thought of using photonic crystal arrangements for photonic circuits. 

Photonic crystals are used to control the flow of photons in the photonic circuits as 

shown in Figure 1.3. This illustration is by Johnson (2007) from MIT, which he 

believes demonstrates the future of photonic circuits. Each of its components is made 

from photonic crystals. Beside that, photonic crystals also can be used to confine the 

flow of microwaves. So, photonic crystals are important in the development of 

micronanophotonics devices.  

 The basic characteristics of photonic crystals have led to their replacing of the 

conventional design of electronic devices. There are a few examples such as antennas 

(Poilasne et al., 1999; Chiau et al., 2005; Sharma et al., 2008; Brown and Parker, 

1993), fiber optics (Knight et al., 1998; Guenneu et al., 2003; Granpayeh, 2009), 

lasers (Painter et al., 1999), microstrips (Lopotegi et al., 2002; Shahparnia and 

Ramahi, 2004; Radisic et al., 1998; Parui and Das, 2004; Falcone et al., 2002), filters 

(Karim et al., 2005), photonic circuits (McGurn, 2000), superconductors (Mao et al., 

1996), solar cells (Chutinan et al., 2009), perfect lenses (Pendry, 2000), horns (Weily 

et al., 2003)， waveguides (Pile et al., 2005; Dai and Jiang, 2009; Zhao and 
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Grischkowsky, 2007), and biomedical and chemical sensors (Kurt and Citrin, 2005; 

Scherer and Qiu, 2003). Scientists also are beginning to use metallic photonic 

crystals to study the effect of surface plasmon polaritons (Feng et al., 2008; Hosseini 

et al., 2008; Crist et al., 2003; Ortuno et al., 2009; Barnes, 1999). Recently, scientists 

also found out that we can tailor the plasma frequency of metallic as desired with 

promising results (Xiaochuang et al., 2005; Brand et al., 2007; Qi and Yang, 2009). 

PCs made from plasma materials also have been studied by several scientists (Sakai 

et al., 2007; Sakaguchi et al., 2007; Qi and Yang, 2009). These show that the 

photonic band structure is very important in designing and characterizing all the 

devices mentioned above. 

 

Figure 1.3: Illustration of a photonic crystals circuit (Johnson, 2007). 

 

1.3 Numerical Methods 

There are different methods for finding the photonic band structure. (1) The plane 

wave expansion (PWE) method (Guo and Albin, 2003; Glushko, 2006; Zoli et al., 
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2003; Shi et al., 2005; Kuzmiak and Maradudin, 1997; Kuzmiak et al., 1994; Plihal 

and Maradudin, 1991; Hussein, 2009; Toader and John, 2004), (2) finite differences 

time domain (FDTD) (Sakoda et al., 2001; Ito and Sakoda, 2001; Li et al., 2005), and 

(3) super cell and finite differences frequency domain (FDFD) (Xu et al., 2003) have 

been tried by researchers. The materials of photonic crystals include frequency-

independent materials and frequency-dependent materials. It is a very easy approach 

to calculate the photonic band structure when using the frequency-independent 

materials. The new challenge is to analyze frequency-dependent materials in 

photonic crystals. This is because the calculation has to be modified to meet the 

requirement. Kuzmiak et al. (1994) modified the plane wave expansion method to 

study the band structure of photonic crystals containing metallic components. Later, 

they expanded the study using the plane wave expansion to study the field 

distribution of that structure (Kuzmiak and Maradudin, 1998). Sakoda and coworkers 

(Sakoda et al., 2001; Ito and Sakoda, 2001) modified the FDTD method to calculate 

the same structure as Kuzmiak. Moreno et al. (2002) used the multipoint method to 

calculate the band structure of metallic components. Ustyantsev et al. (2006) showed 

that the PWE method agreed very well with the FDTD method. But all the 

calculations are limited to waves in air. No calculations or examples involving 

materials other than air have been found in the literature. 

 In the literature, there are no photonic band structure calculations involving 

photonic crystals in metallic media (frequency-dependent materials). The calculation 

is very important because several optical properties are predicted to be found, such as 

negative refraction, effective plasma frequency, group velocity anomaly, and surface 

plasmons, which are very important for optical devices. So, the photonic band 
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structure will present a clear picture of all the optical properties of these types of 

photonic crystals in all directions.  

 The plane wave expansion method (PWE) was chosen for this thesis work 

because this method consumes less computational time to compute the band energy 

graph for all directions. Therefore, the efficiency is increased. Another reason the 

PWE method was chosen is that the lattice that we are considering has a symmetric 

structure which produces the best result when using the PWE method. Even though 

there is no noticeable difference between PWE and FDTD when calculating for the 

frequency-dependent materials, the advantage is that we don’t encounter the 

converging problem. The converging problem arises from the numerical dispersion 

that is commonly encountered by FDTD for a frequency-dependent material 

(Juntunen and Tsiboukis, 2000). The only solution is to increase the resolution of the 

calculation, which will increase the time as well. In order to calculate the photonic 

band structures of metallic photonic crystals using the PWE method, the dielectric 

function of ordinary PWE has to be modified because the dielectric function of 

frequency-dependent materials must be included in order to find the energy band. So, 

the main purpose of this research is to generalize a calculation method of photonic 

crystals for frequency-dependent materials that is able to include all the available 

solid materials.  

1.4 Photonic Band Structure (Energy Band) 

In a periodic system, ψk are the Bloch waves. The wave vector k is limited in first 

Brillouin zone. In order to understand wave propagation in a periodic system, all the 

Bloch waves in the first Brillouin zone are needed. The Bloch waves create a number 

of eigenvalues, each with a fixed wave vector. Those eigenvalues have angular 
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frequency ω. When the Bloch waves vary in the Brillouin zones, the eigenvalues also 

vary accordingly.  

 Band gaps are the most unique characteristic of photonic crystals. Multiple 

scattering occurs when a wave propagates through a periodic medium. This leads to 

the creation of constructive waves and destructive waves in the medium. As a result, 

there are constructive and destructive areas formed in the medium. Wave cannot 

propagate in destructive areas, therefore no energy can be transferred there. A band 

gap occurs in a certain frequency range where a propagation mode cannot be 

established. This is the reason a band gap exists in photonic band structure. In the 

boundary condition concept, each of the waves needs to fulfill a boundary condition 

when multiple scattering occurs. However, in a certain frequency range, some of the 

waves cannot fulfill the boundary condition in periodic structure. This causes the 

existence of a band gap. Fundamental wave propagation can be categorized in two 

modes: the electric polarization (E polarization) mode and the magnetic polarization 

(H polarization) mode. A band gap that exists in only one of the modes is a partial 

band gap. If a band gap exists in both of the modes it is a complete band gap.  

1.5 Left-Handed Metamaterials (LHMs) and Effective Plasma Frequency 

Left-handed metamaterials (LHMs) are a new class of material that has been 

discussed by several investigators (Luo et al., 2002; Pendry, 1996; Pendry and 

Ramakrishna, 2003; Pendry et al., 1998; Pendry, 2000; Luo et al., 2003; Povinelli et 

al., 2003). The main characteristics of this type of material are a negative refractive 

index and negative permeability. 

 The existence of this type of material would change the concept of optical 

science because of the negative refractive index. It can help to overcome the 
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limitation of normal optical properties. The main application of LHMs is the 

superlens effect. This effect can help to overcome subwavelength focusing (Pendry, 

2000). In the nature, all the materials possess only a positive refractive index. The 

smallest value of the refractive index for a known material in a vacuum is one. So, a 

question arises whether this class of materials really can exist. The first evidence for 

a negative refractive index was obtained by Shelby et al. (2001) using square copper 

split ring resonators and copper wire strips on fiberglass circuit board material. Then, 

Povinelli et al. (2003) and Luo et al. (2003) found that metallic photonic crystals can 

be used as LHMs. In this research, a series of photonic band structures for metallic 

photonic crystals using real materials was plotted. A negative slope is found in the 

photonic band structure if the material is LHM. The relationship for effective 

refractive index (Sakoda, 2005) in photonic crystals is  

  
1

2 2eff
a an
L c

ω
π

−Δ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.1) 

where a is the lattice constant, L is the thickness, and 
2

a
c

ω
π

Δ  is the slope of the 

photonic band structure. Then, the relationship of effective permeability (Huang et 

al., 2004) is  

 eff eff effn Zμ =   (1.2) 

where 1
1eff

rZ
r

+
=

−
and r is the complex reflectivity, which is smaller than one. 

 There is another property that has to be considered before a material is 

classified as an LHM is the effective plasma frequency. When the LHMs were first 

classified (Veselego, 1968), only negative refractive index (negative permeability) 
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cases were considered. More recently, Pendry (1996) found that photonic crystals 

that work as LHMs would couple with the low effective plasma frequency property. 

Effective plasma frequency and plasma frequency refer to two different physical 

parameters. Plasma frequency is used to describe the dielectric function of a bulk 

metal. This is well described in the Drude model (Nalwa, 2001): 

  
( )

2

( ) 1 p

i
ω

ε ω
ω ω γ

= −
−

 (1.3) 

where pω  is the plasma frequency and γ is the damping constant. But the effective 

plasma frequency ,p effυ  is the cutoff frequency of photonic crystal structures that 

involved a metallic component (Pendry, 1996). Metals are solid media and normally 

reflect the entire wave. But the Drude model predicts that when an electromagnetic 

wave is above a certain frequency, a metal is transparent and waves can penetrate 

through the metal. So, a low effective plasma frequency would make the metal 

transparent to waves at a lower frequency. Equations (1.4) through (1.7) are the 

analytical analysis of effective plasma frequency by several scientists.  

Pendry, 1996; Pendry et al., 1998: 

  
2

2
, 22 ln( )p eff

c
a a r

υ
π

=  (1.4) 

Sarychev and Salaev (2001): 
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Maslovski et al. (2002): 

  
( )( )

2
2

, 2 22 ln / 4p eff
c

a a r a r
υ

π
=

⎡ ⎤−⎣ ⎦
 (1.6) 

Tretyakov (2004): 

  
[ ]

2
2

, 22 ln( 2 ) 0.5275p eff
c

a a r
υ

π π
=

+
 (1.7) 

where a is the lattice constant and r is the rod’s radius. The effective plasma 

frequency is the minimum frequency for the first lowest band in a photonic band 

structure. For photonic crystals, which have extremely small filling fractions, the 

plasma frequency and effective plasma frequency should be the same. Researchers 

believe that the effective plasma frequency can be tailored by changing the 

arrangement of photonic crystals. Figure 1.4 shows the comparison of Equations 

(1.4) through (1.7). 
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Figure 1.4: The effective plasma frequency as the function of rod radius using the   
  expressions of (A) Pendry, 1996; Pendry et al., 1998, (B) Sarychev and  
  Shalaev (2001), (C) Maslovski et al. (2002), and (D) Tretyakov (2004),  
  where the lattice constant is 400 µm with copper rods in vacuum (Brand  
  et al., 2007). 
 

 The analytical models for effective plasma frequency have been discussed. 

Brand et al. (2007) claimed the models are too simple to explain the effective plasma 

frequency for the photonic crystals with metal rods. The analytical model included 

only the lattice constant and size of rods of the structure. The effect of the dielectric 

constant used has not been discussed and related with the analytical model. So, in 

this thesis a new analytical model will be developed using numerical data for small 

dimensions photonic crystals. Then, by utilizing these plots, an investigation has 

been carried out to check whether this class of materials can really exist in this 

world. 
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1.6 Materials 

In this research, several materials have been used to plot the photonic band structure. 

Some of the materials can create the photonic crystal effect. The investigation is 

needed because there still remain unknown properties of the materials suggested in 

this research that are used in photonic crystal structures. From photonic band 

structures, several properties can be investigated like band gap, negative refraction, 

strong curvature, group velocity anomaly, and slow light. These are the fundamental 

properties for scientists to use in understanding photonic crystals. The frequency-

independent materials that are used in this research were selected according to the 

high dielectric contrast condition. This criterion has been discussed by Joannopoulos 

et al. (1997) and Xu et al. (2005) who said that the band gap appears at high 

dielectric contrast. Dielectric contrast is defined as the ratio of the dielectric 

constants of the high-ε  and low-ε  materials: /high lowε ε . But this fundamental rule is 

just a general idea from Joannopoulus et al. (1997). So, a series of investigations is 

needed. 

 The materials used in this research include teflon (polytetrafluoroethylene), a 

flurorocarbon solid material that has a low dielectric constant, 2ε =  (James and 

Hall, 1989). It is widely used in high microwave frequency circuits. A flame-resistant 

4 (FR-4) material which is a very common and widely used material in the electronic 

industry, made from the woven fiberglass cloth with an epoxy resin binder (Coombs, 

2008). It has the dielectric constant 4.9ε = . So, an investigation was needed to see 

whether this material has the potential to become photonic crystals when paired with 

other materials. Silicon dioxide (SiO2), which has a dielectric constant 3.2ε = , was 
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also selected (Diebold, 2001). We also chose gallium arsenide (GaAs), which has a 

dielectric constant 12.96ε =  (Kasap and Capper, 2006). This creates a high 

dielectric contrast if paired with the low-ε  materials. Finally, copper was selected as 

a frequency-dependent material. The plasma frequency pω  of copper is 1914 THz or 

1
2

pa
c

ω
π

≈  for a 1-µm lattice constant structure (El-Kady et al., 2000). 

1.7 Simulation Software 

Calculation software is needed to compile all the derived equations. Matlab was 

chosen for this purpose as our calculation involved complex and large matrices and 

Matlab is able to handle it very well. So, the photonic band structures in this thesis 

are plotted using Matlab. The commercial simulation software CST Microwave 

Studio (CST MWS) was also used. This software shows very high performance in 

investigating electromagnetic structures especially antennas, waveguides, and solar 

cells. The package is also able to calculate the structures not only at microwave 

wavelengths but also at optical wavelengths. It uses the finite difference time domain 

(FDTD) method as its calculation engine. This is a different calculation method than 

the PWE used in this research. So, it can be used to make a comparison with the 

results in this research. It also provides the scattering parameters of the electronic 

devices. Therefore this software is used to design the electronic devices as discussed 

in Chapter 8 and do some verification of photonic crystals. MEEP is free 

electromagnetic calculation software based on the finite difference time domain 

(FDTD), developed by a group of scientists from Massachusetts Institute of 

Technology led by Steven G. Johnson. This software is needed to verify some of the 

data for photonic crystals. 
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1.8 Objectives 

In this research, there are several tasks which are left out in the literature and need to 

be studied. So, the objectives of the research can be summarized as below. 

1) To investigate several properties of photonic crystals by using the plane 

wave expansion method. 

In order to achieve the objective: 

i)  A new equation is derived to calculate the photonic band structures of 

dielectric media containing metallic components. 

ii)  A new equation is derived for the photonic band structures of photonic 

crystals with dielectric rods in metallic media. 

2) To derive a new analytical model using statistical analysis to explain the 

effective plasma frequency for both small dimensions photonic crystals 

containing metallic components and for small dimensions photonic 

crystals in metallic media.  

1.9 Thesis Overview 

Chapter 2 reviews the fundamental characteristics and basic calculations for photonic 

crystals. The calculations include the transformation of the reciprocal lattice in the 

Brillouin zone to be used in the plane wave expansion method. At the same time, the 

plane wave expansion method is reviewed. This method is used to investigate the 

photonic band structure of photonic crystals. Then, discussion on the effective 
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plasma frequency of photonic crystals and plasma frequency of metallic materials is 

also presented. 

 In Chapter 3, some of the frequency-independent materials that are 

commonly used as photonic crystals are investigated. The photonic band structures 

are plotted with normalized frequency (
2

a
c

ω
π

) which lattice constant, a = 1.0 m and 

speed of light, c = 3.0 x 108 ms-1 to wave vector. The gap sizes of the materials are 

compared if the gap appears. So, the fundamental rule of photonic crystals, which is 

the relationship between the band gap existence and high dielectric contrast, is 

investigated. 

 In Chapters 4 and 5 we discuss the photonic crystals that consist of 

frequency-dependent materials. New equations for both E and H polarization are 

derived. A thorough discussion is presented on these different materials. These 

equations are used to calculate the photonic band structures of photonic crystals in 

dielectric media containing metallic components. Photonic band structures of 

different materials consisting of copper are discussed with normalized frequency 

(
2

a
c

ω
π

) with lattice constant, a = 1.0 µm and speed of light, c = 3.0 x 108 ms-1 to 

wave vector. Several properties of photonic crystals are obtained from the photonic 

band structure. 

 New photonic band structure equations for the photonic crystals that consist 

of dielectric rods in metallic media are presented in Chapters 6 and 7. These chapters 

discuss the photonic band structures of E and H polarization respectively. The focus 

is on the photonic band structures of photonic crystals that are made from different 

dielectric rods in copper media. The photonic band structures are plotted with 
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normalized frequency (
2

a
c

ω
π

) with lattice constant, a = 1.0 µm and speed of light, c = 

3.0 x 108 ms-1 to wave vector. The optical properties of photonic crystals are derived 

from the photonic band structures. 

  The photonic band structures described in Chapters 4 through 7 are used to 

obtain the analytical model of effective plasma frequency of photonic crystals in the 

E polarization mode. Waveguides and microstrips constructed from photonic crystals 

are presented in Chapter 8. Conclusions and possible extensions to our work are 

discussed in Chapter 9. 
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Chapter 2  

Photonic Crystals Theory and Methodology 
 

2.1 Introduction 

In this chapter the basic theory of photonic crystals will be introduced. The concepts 

of lattices and reciprocal lattices and the relation between periodic functions will be 

introduced as well as boundary conditions of different physical systems. Bloch's 

theorem and the Brillouin zone are also discussed. Then, the plane wave expansion 

method that is used for the frequency-independent material is also discussed.  

2.2 Lattices and Reciprocal Lattices Theory 

Photonic crystals are periodic dielectric structures. The lattices and reciprocal lattices 

theory are very important in understanding them. The reciprocal lattice is a very 

important concept in solid state physics because it helps us to obtain the band 

structures and understand the various properties of crystals (Khan, 2009).  

 We need to understand the translation of primitive vectors before we are able 

to understand the reciprocal lattice. To understand the translation vector, the 2-

dimensional lattice concept is needed. The translation of vectors a1, a2, and a3 are 

implemented; they are not all in the same plane and are linearly independent. A 3D 

lattice consists of all points with position vector T as shown below. 

  T = n1a1 + n2a2 + n3a3 (2.1) 

where n1 and n2 are integers. It can be used to present the lattice arrangement. The 

common arrangements in lattices are the square lattice and the triangular lattice. For 

reciprocal lattices, the definition will be 
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=2π ×
• ×

2 3
1

1 2 3

a ab
a a a

; =2π ×
• ×

3 1
2

1 2 3

a ab
a a a

; =2π ×
• ×

1 2
3

1 2 3

a ab
a a a

 (2.2) 

The points generated are 

  h k= +1 2G b b + lb3 (2.3) 

where h, k, and l are arbitrary integers that form the reciprocal lattice. So, for the case 

of 2-dimensional structures, the a3 and b3 will be ignored. 

 In the 2-dimensional periodic structure, the periodic function can be turned 

into 

  ( ) ( ) ( )f f f+ = + =1 2r a r a r  (2.4) 

This means that each of the periodic functions is repeating the same process in the 

unit cell. We can change the ( )f r to a Fourier series because ( )f r is a repeating 

periodic function: 

  ( ) ( )exp( )
G

f C i= ⋅∑r G G r  (2.5) 

where G is the reciprocal lattice that is defined in (2.3). 

2.3 Bloch's Theorem 

Bloch's Theorem is used for the study of wave propagation in a periodic system. This 

is a very important concept for the investigation of dielectric periodic systems. The 

eigen states ψk(r) of the one-electron Hamiltonian is
2

2 ( )
2

H U
m

= − ∇ + r=  where 

( ) ( )U U=r+T r  for all T in a Bravais lattice (Khan, 2009). So, it can be chosen to 
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have the form of a plane wave times a function having the periodicity of the Bravais 

lattice: 

  ( ) ( )i
k ke uψ = k rr ri  (2.6) 

where 

  ( ) ( )k ku u=r+T r  (2.7) 

for all T and ( ) ( )exp( )k k
G

u u i=∑r r G ri where k is the wave vector and G is the 

reciprocal lattice. 

2.4 Filling Fraction and Brillouin Zone 

The filling fraction f is a very important parameter in photonic crystals. In 2-

dimensional systems, the filling fraction is defined as the percentage of cylinders that 

fill up a lattice. The maximum value of the filling fraction is one. The filling fraction 

is related to the rod size. So, each lattice arrangement has its own filling equation. 

The square and triangular lattice arrangement's filling fractions will be discussed in 

Sections 2.4.1 and 2.4.2 respectively. The Wigner-Seitz primitive cell of the 

reciprocal lattice is called the first Brillouin zone (Khan, 2009). The Brillouin zone is 

formed by joining other reciprocal lattice points to the origin followed by drawing 

perpendicular planes at the midpoint of these lines. We illustrate the definition in 

Figures 2.2(a) and (b) for square and triangular lattices respectively.  
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(a) Square Lattice 

 

 

 

 

 

 

 

 

 

 

(b) Triangular Lattice 

Figure 2.1: Irreducible Brillouin zones (red region) for (a) square lattice (b) 
triangular lattice. 
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2.4.1 Square Lattice  

Equations (2.8) to (2.10) show the vector positions of the irreducible Brillouin zones 

for the square lattice.  

  ( )0,  0x yk kΓ → = = , (2.8) 

  ,  0x yX k k
a
π⎛ ⎞→ = =⎜ ⎟

⎝ ⎠
, (2.9) 

  ,  x yM k k
a a
π π⎛ ⎞→ = =⎜ ⎟

⎝ ⎠
 (2.10) 

 Calculation of the eigenfunctions is made in the first Brillouin zone of the 

photonic crystal structure. Two-dimensional square lattice photonic crystals are 

investigated. The arrangement is shown in Figure 2.2(a) and 2.2(b). It is the 2D 

crystal composed of a regular square array of circular dielectric cylinders. 
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Figure 2.2: Photonic crystals of 2 dimensional square lattice in (a) cross-sectional 
view and (b) top view. 

 

The lattice parameters a for the primitive translation vectors are 

  a1 = a (1, 0), a2 = a (0, 1)  (2.11)
  

while the vectors of the reciprocal lattice are 

  b1 = 2 (1,0)
a
π , b2 = 2 (0,1)

a
π  (2.12) 

The filling fraction of the square lattice is 

  2 2f R aπ=  (2.13) 

2.4.2 Triangular Lattice 

Equations (2.14) to (2.16) show the vector position of the irreducible Brillouin zones 

of the triangular lattice. 

  ( )0,  0x yk kΓ → = = , (2.14) 

  2 2,  
3 3x yX k k
a a
π π⎛ ⎞→ = =⎜ ⎟

⎝ ⎠
, (2.15) 

  20,  
3x yM k k
a
π⎛ ⎞→ = =⎜ ⎟

⎝ ⎠
 (2.16) 

(b) 

a1 

a2 

x 

y 
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where a is the lattice constant. 

. 

 

 

 

 

 

Figure 2.3: Top view of the 2-dimensional triangular lattice photonic crystals. 

 

 Figure 2.3 shows the arrangement of 2-dimensional crystals composed of an 

array of circular dielectric cylinders in a triangular lattice. So, we derived the 

reciprocal translation vectors as below. The primitive vectors are 

  a1 = a (1, 0), a2 = 1 1( , 3)
2 2

a  (2.17) 

then the reciprocal translation vectors are 

  b1 = 2 1(1, 3)
3a

π
− , b2 = 2 2(0, 3)

3a
π  (2.18) 

The filling fraction of the triangular lattice is  

  2 2(2 3)f R aπ=  (2.19) 

2.5 Plane Wave Expansion Method  

In this section, the plane wave expansion method is reviewed. The band gap appears 

in photonic band structure of photonic crystals. The wave propagation will be 

inhibited in this area. So, to understand this band gap, the photonic band structure 

must be plotted. Then, from this photonic band structure, we learn the fundamental 

a1 

a2 
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characteristics of photonic crystals such as transmittance spectra (Sakoda, 1995), 

refractive index (Pendry, 2000), propagation mode (Reinhard et al., 2008), and group 

velocity (Kuzmiak and Maradudin, 1998)  

2.5.1 Formula 

 We are interested in the eigenmodes of the radiation field, and the interaction 

between the field and matter. So, the calculation begins with Maxwell's equations. 

This calculation has been discussed by Sakoda (2005). The purpose of the review 

here is for the investigation of frequency-independent materials and later derivation 

for frequency-dependent material. The general form of the Maxwell's equations with 

the assumption that free charges and electric current are absent is shown as below. 

  
( , ) 0D r t

→

∇⋅ =  (2.20) 

  
( , ) 0B r t

→

∇⋅ =  (2.21) 

  ( , ) ( , )E r t B r t
t

→ →∂
∇× = −

∂
 (2.22) 

  ( , ) ( , )H r t D r t
t

→ →∂
∇× =

∂
 (2.23) 

where E is the electric field, D is the electric displacement, H is the magnetic field, 

and B is the magnetic induction. Magnetic materials are not under our investigation. 

So, we assume that the magnetic permeability μ  of the photonic crystals is µ0, that 

of free space. The relationship as below is obtained. 

  ( , ) ( , )B r t H r tμ
→ →

= D  (2.24) 
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