# INFLUENCE OF PROCESS PARAMETERS ON FARNESYL LAURATE PRODUCTION BY ENZYMATIC ESTERIFICATION IN PACKED-BED REACTOR

NAZIRA BINTI KHABIBOR RAHMAN

UNIVERSITI SAINS MALAYSIA 2010

# INFLUENCE OF PROCESS PARAMETERS ON FARNESYL LAURATE PRODUCTION BY ENZYMATIC ESTERIFICATION IN PACKED-BED REACTOR

by

# NAZIRA BINTI KHABIBOR RAHMAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

**OCTOBER 2010** 

#### ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah the Al-Mighty for His strengths and blessings in completing my master by research. I would like to thank my supervisor, Professor Dr. Azlina Harun @ Kamaruddin for her infinite perseverance, enthusiasm and patient guidance and assistance through the graduate program and thesis process. I would also like to thank my co-supervisor, Dr. Mohamad Hekarl Uzir for his incessant support, guidance and constructive comments during my study. I have greatly benefited from a number of useful discussions with both of them, particularly with regard to the enzymatic issues. To Associate Professor Dr. W.J.N. Fernando, thanks for your guidance in mass transfer study.

I would like to express my gratitude to the Dean School of Chemical Engineering, Professor Dr. Azlina Harun @ Kamaruddin for her support and help towards my postgraduate affairs. Also I am very much indebted to Ministry of Science, Technology and Innovation (MOSTI) for providing the financial support National Science Fellowship (NSF). Not to forget, to all technicians and staffs of School of Chemical Engineering for their cooperation and warmest helping hand, I wish to convey my deepest gratitude and sincere thank you. Special thanks to Mr. Shamsul Hidayat, Mr. Faiza and Mrs. Latifah for their valuable help during the completion of my research.

To all my friends, Kak Aziah, Kak Siti Fatimah, Eka, Khonisah, Rahmah, Khalilah and others, thank you so much for your motivation, sincere help, concern, moral support and kindness. Thanks for the friendship and memories. Finally, my deepest gratitude goes to my beloved parents Mr. Khabibor Rahman and Mrs. Arbahyah for their endless love and support that they have shown without fail for the entire duration of my postgraduate study. I know that I will not be able to repay all their sacrifices. To my wonderful brothers and sisters, thank you for your love and care. To those who indirectly contributed in this research, your kindness shall not be forgotten. Thank you so much.

Nazira Khabibor Rahman October 2010

# TABLE OF CONTENTS

| ACKN | NOWL                | EDGEMENTS                                                     | ii   |
|------|---------------------|---------------------------------------------------------------|------|
| TABL | E OF                | CONTENTS                                                      | iv   |
| LIST | OF TA               | BLES                                                          | viii |
| LIST | OF FI               | GURES                                                         | Х    |
| LIST | OF PL               | ATES                                                          | xiii |
| LIST | OF SY               | MBOLS                                                         | xiv  |
| LIST | OF AB               | BREVIATIONS                                                   | xvii |
| ABST | RAK                 |                                                               | xix  |
| ABST | RACT                |                                                               | xxi  |
| CHAI | PTER 1              | : INTRODUCTION                                                | 1    |
| 1.1  | The F               | avour and Fragrance Industry                                  | 1    |
| 1.2  | Enzyn               | natic Synthesis in the Preparation of Flavours and Fragrances | 4    |
| 1.3  | Feeds               | tock for Farnesyl Laurate Production                          | 5    |
| 1.4  | Proble              | em Statement                                                  | 7    |
| 1.5  | Research Objectives |                                                               | 9    |
| 1.6  | Organ               | ization of the Thesis                                         | 10   |
| CHAI | PTER 2              | 2: LITERATURE REVIEW                                          | 12   |
| 2.1  | Enzyn               | natic-catalyzed Esterification                                | 12   |
|      | 2.1.1               | Introduction to the Enzymatic Esterification Process          | 12   |
|      | 2.1.2               | Lipases and Its Application                                   | 15   |
|      | 2.1.3               | Lipase Biocatalysis in the Production of Esters               | 18   |
|      | 2.1.4               | Enzyme Immobilization                                         | 31   |
| 2.2  | Enzyn               | natic Catalysis in Non-aqueous Media                          | 32   |
|      | 2.2.1               | Solvent Systems                                               | 34   |
|      | 2.2.2               | Water Activity: A Key Parameter in Lipase-catalyzed           | 35   |
|      |                     | Esterification Reactions                                      |      |
| 2.3  | Reacti              | on System in Enzymatic Esterification                         | 37   |
|      | 2.3.1               | Effect of Temperature                                         | 37   |
|      | 2.3.2               | Effect of Type of Fatty Acids                                 | 40   |

| 2.4 | Enzymatic Kinetics Study                                         | 42 |
|-----|------------------------------------------------------------------|----|
|     | 2.4.1 Ping Pong Bi Bi Mechanism                                  | 44 |
|     | 2.4.2 Ordered Bi Bi Mechanism                                    | 46 |
|     | 2.4.3 Enzyme Inhibition                                          | 47 |
|     | 2.4.3.1 Inhibition of Ping Pong Bi Bi                            | 50 |
|     | 2.4.3.2 Inhibition of Ordered Bi Bi Mechanism                    | 52 |
| 2.5 | Optimization Study                                               | 53 |
|     | 2.5.1 Experimental Strategy                                      | 53 |
|     | 2.5.2 Design of Experiment (DOE)                                 | 55 |
|     | 2.5.3 Response Surface Methodology (RSM)                         | 56 |
|     | 2.5.3.1 Central Composite Rotatable Design (CCRD)                | 57 |
|     | 2.5.3.2 Analysis of the Data                                     | 60 |
| 2.6 | Mass Transfer Studies                                            | 63 |
|     | 2.6.1 External Resistance to Mass Transfer                       | 65 |
| 2.7 | Packed-Bed Reactor (PBR)                                         | 67 |
| 2.8 | Summary                                                          | 70 |
|     |                                                                  |    |
| СНА | PTER 3: MATERIALS AND METHODOLOGY                                | 71 |
| 3.1 | Materials and Chemicals                                          | 71 |
| 3.2 | Equipment and Facilities                                         | 73 |
| 3.3 | Overall Experimental Flowchart                                   | 73 |
| 3.4 | Enzymatic Esterification: Batch Reaction                         | 75 |
|     | 3.4.1 Screening Process                                          | 75 |
|     | 3.4.1.1 Effect of Different Lipases                              | 76 |
|     | 3.4.1.2 Effect of Different Solvents                             | 76 |
|     | 3.4.1.3 Effect of Different Fatty Acids                          | 77 |
|     | 3.4.2 Optimization of Batch Esterification of Farnesol           | 77 |
|     | 3.4.2.1 Effect of Temperature                                    | 78 |
|     | 3.4.2.2 Effect of Lipase Loading                                 | 78 |
|     | 3.4.2.3 Effect of Agitation Speed                                | 78 |
|     | 3.4.2.4 Effect of Substrate Molar Ratio                          | 78 |
|     | 3.4.2.5 Central Composite Rotatable Design (CCRD)                | 79 |
|     | 3.4.3 Water Activity Studies: Pre-equilibrium of Reaction Medium | 80 |

| 3.5 | Kineti        | cs Studies                                              | 81  |
|-----|---------------|---------------------------------------------------------|-----|
|     | 3.5.1         | Determination of Initial Rate of Reaction               | 81  |
|     | 3.5.2         | Determination of Kinetic Parameters                     | 82  |
| 3.6 | Conti         | nuous Esterification in Packed-Bed Reactor (PBR)        | 82  |
|     | 3.6.1         | Optimization of Continuous Esterification of Farnesol   | 85  |
|     |               | 3.6.1.1 Effect of Substrate Flow Rate                   | 85  |
|     |               | 3.6.1.2 Effect of Packed-Bed Height                     | 85  |
|     | Ce            | entral Composite Rotatable Design (CCRD)                | 86  |
| 3.7 | Mass          | Transfer Studies in a Packed-Bed Reactor (PBR)          | 87  |
| 3.8 | Analy         | tical Analysis                                          | 87  |
|     | 3.8.1         | Fourier Transform Infra Red Spectroscopy (FTIR)         | 87  |
|     | 3.8.2         | Gas Chromatography (GC)                                 | 89  |
| 3.9 | Calcu         | lation of Molar Conversion                              | 89  |
|     |               |                                                         |     |
| CHA | <b>PTER</b> 4 | 4: RESULTS AND DISCUSSION                               | 90  |
| 4.1 | Analy         | tical Results                                           | 91  |
| 4.2 | Repro         | ducibility of Experimental Data                         | 93  |
| 4.3 | Batch         | Reaction                                                | 94  |
|     | 4.3.1         | Screening Process                                       | 94  |
|     |               | 4.3.1.1 Effect of Different Lipases                     | 95  |
|     |               | 4.3.1.2 Effect of Different Solvents                    | 97  |
|     |               | 4.3.1.3 Effect of Different Fatty Acids                 | 99  |
|     | 4.3.2         | Development of the Design of Experiment (DOE)           | 101 |
|     |               | 4.3.2.1 Development of Regression Model Equation        | 103 |
|     |               | 4.3.2.2 Model Adequacy Check                            | 103 |
|     |               | 4.3.2.3 Effect of Esterification Process Variables      | 106 |
|     |               | 4.3.2.4 Optimization Analysis of Esterification Process | 118 |
|     |               | Variables                                               |     |
|     | 4.3.3         | Water Activity Studies                                  | 119 |
| 4.4 | Enzyn         | ne Kinetic Studies                                      | 123 |

| 4.5  | Conti | nuous Esterification in a Packed-Bed Reactor (PBR)       | 128      |
|------|-------|----------------------------------------------------------|----------|
|      | 4.5.1 | Development of the Design of Experiment (DOE)            | 128      |
|      |       | 4.5.1.1 Development of Regression Model Equation         | 130      |
|      |       | 4.5.1.2 Model Adequacy Check                             | 130      |
|      |       | 4.5.1.3 Effect of Esterification Process Variables       | 133      |
|      |       | 4.5.1.4 Optimization Analysis of Esterification Process  | 138      |
|      |       | Variables                                                |          |
| 4.6  | Summ  | narized Data for Batch and Continuous Packed Bed Reactor | 139      |
|      | Syste | ms                                                       |          |
| 4.7  | Mass  | Transfer Studies                                         | 141      |
|      | 4.7.1 | The Reaction Control Model                               | 142      |
|      | 4.7.2 | The Mass Transfer Control Model                          | 143      |
|      | 4.7.3 | The Experimental Investigations                          | 144      |
|      |       |                                                          |          |
| СНА  | PTER  | 5: CONCLUSION AND RECOMMENDATIONS                        | 148      |
| 5.1  | Conc  | usions                                                   | 148      |
| 5.2  | Reco  | nmendations                                              | 150      |
|      |       |                                                          |          |
| REF  | EREN( | CES                                                      | 151      |
|      |       |                                                          |          |
| APPI | ENDIC | ES                                                       | 173      |
| APPE | ENDIX | A Photographs of Commercial Immobilized Lipases and      | 173      |
|      |       | Molecular Sieve                                          |          |
| APPE | ENDIX | B Standard Calibration Curve and GC Chromatogram for La  | uric 175 |
|      |       | Acid                                                     |          |
|      |       |                                                          |          |

# LIST OF PUBLICATION

176

# LIST OF TABLES

Page

| Table 1.1 | 2004-2008 Estimated sales volume in millions for lavor and fragrance industry leaders (Leffingwell & Associates, 2009)        | 3   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.1 | The common methods to remove water from the reaction system<br>in laboratory experiments and industrial processes (Xu, 2003)  | 14  |
| Table 2.2 | A literature survey of lipase-catalyzed ester synthesis                                                                       | 19  |
| Table 2.3 | Optimum temperature of various lipases used for the production of various esters                                              | 39  |
| Table 2.4 | Types of enzyme inhibition                                                                                                    | 48  |
| Table 2.5 | Central composite designs (Tobias and Trutna, 2006)                                                                           | 59  |
| Table 2.6 | R <sup>2</sup> value in the Response Surface Methodology                                                                      | 62  |
| Table 3.1 | List of chemical and materials used                                                                                           | 72  |
| Table 3.2 | Properties of the commercial immobilized lipase                                                                               | 72  |
| Table 3.3 | List of equipment and facilities                                                                                              | 73  |
| Table 3.4 | List of solvents used for screening of suitable reaction system                                                               | 77  |
| Table 3.5 | Runs of experiment required for the optimization purpose                                                                      | 80  |
| Table 3.6 | Experimental design results for esterification of farnesol with lauric acid                                                   | 86  |
| Table 4.1 | Experimental design matrix and results for esterification of farnesol with lauric acid using Lipozyme RM IM in batch reaction | 102 |
| Table 4.2 | Analysis of variance (ANOVA) for the fitted quadratic model for optimization of reaction conditions in batch study            | 104 |
| Table 4.3 | Statistical parameter obtained from the ANOVA for batch study                                                                 | 104 |
| Table 4.4 | The preset goal with the constraints for all the independent factors and response in numerical optimization for batch study   | 119 |
| Table 4.5 | Optimum condition found by Design-Expert <sup>®</sup> software in the esterification of farnesol for batch study              | 119 |
| Table 4.6 | Kinetic parameters obtained for esterification of lauric acid with farnesol by Lipozyme RM IM in <i>iso</i> -octane system    | 127 |

| Table 4.7  | Experimental design matrix and results for esterification of farnesol with lauric acid using Lipozyme RM IM in continuous packed-bed reactor study | 129 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.8  | Analysis of variance (ANOVA) for the fitted quadratic model<br>for optimization of reaction conditions in continuous study                         | 131 |
| Table 4.9  | Statistical parameter obtained from the ANOVA for continuous study                                                                                 | 131 |
| Table 4.10 | The preset goal with the constraints for all the independent factors and response in numerical optimization for continuous study                   | 139 |
| Table 4.11 | Optimum condition found by Design-Expert <sup>®</sup> software in the esterification of farnesol for continuous study                              | 139 |
| Table 4.12 | Summarized data of experimental studies conducted in batch system                                                                                  | 140 |
| Table 4.13 | Summarized data of experimental studies conducted in continuous packed-bed reactor                                                                 | 140 |

# LIST OF FIGURES

Page

| Figure 1.1 | Esterification between farnesol and lauric acid (Leray, 2000)                                                                                                                                                           | 6  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.1 | A simple description of enzymatic esterification                                                                                                                                                                        | 13 |
| Figure 2.2 | Cleland convention diagram for Ping Pong Bi Bi mechanism                                                                                                                                                                | 44 |
| Figure 2.3 | Cleland convention diagram for Ordered Bi Bi mechanism                                                                                                                                                                  | 46 |
| Figure 2.4 | Plot of 1/v versus 1/[S] according to the method of<br>Lineweaver-Burk for (a) competitive inhibitor, (b)<br>noncompetitive inhibitor and (c) uncompetitive inhibitor<br>(Piszkiewicz, 1977)                            | 49 |
| Figure 2.5 | Cleland convention diagram for Ping Pong Bi Bi mechanism with dead end complex inhibition (Segel, 1975)                                                                                                                 | 51 |
| Figure 2.6 | Reaction sequence for Ordered Bi Bi mechanism with dead<br>end complex inhibition (Segel, 1975)                                                                                                                         | 52 |
| Figure 2.7 | Three type of central composite design (Halim, 2008)                                                                                                                                                                    | 59 |
| Figure 2.8 | Diffusion through the external boundary layer (Fogler, 2005)                                                                                                                                                            | 63 |
| Figure 3.1 | Overall experimental flowchart                                                                                                                                                                                          | 74 |
| Figure 3.2 | Schematic diagram of continuous packed-bed reactor                                                                                                                                                                      | 84 |
| Figure 4.1 | Infrared spectra of lauric acid                                                                                                                                                                                         | 91 |
| Figure 4.2 | Infrared spectra of farnesol                                                                                                                                                                                            | 92 |
| Figure 4.3 | Infrared spectra of farnesyl laurate                                                                                                                                                                                    | 92 |
| Figure 4.4 | GC chromatogram for esterification of lauric acid with farnesol                                                                                                                                                         | 93 |
| Figure 4.5 | Reproducibility of experimental data at 1.4:1 substrate molar ratio of lauric acid to farnesol, in organic solvent ( <i>iso</i> -octane), 0.92 g of lipase loading, 150 rpm of agitation speed and 45 °C of temperature | 94 |
| Figure 4.6 | Screening of different immobilized lipases (farnesol; 30 mM; lauric acid; 30 mM; solvent <i>iso</i> -octane; speed of agitation; 200 rpm; catalyst activity; 150 U/g; temperature; 37 °C)                               | 96 |

| Figure 4.7  | Effect of different solvents (farnesol; 30 mM; lauric acid; 30 mM; speed of agitation; 200 rpm; enzyme; Lipozyme RM IM; catalyst activity; 150 U/g; temperature; 37 °C)                                                               | 98  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.8  | Effect of different fatty acids (farnesol; 30 mM; fatty acids; 30 mM; speed of agitation; 200 rpm; enzyme; Lipozyme RM IM; catalyst activity; 150 U/g; temperature; 37 °C)                                                            | 100 |
| Figure 4.9  | Predicted versus actual percentage molar conversion of lauric<br>acid from esterification of farnesol for batch reaction                                                                                                              | 105 |
| Figure 4.10 | Individual effect of substrate molar ratio to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $x_1 = 40$ °C, $x_2 = 0.65$ g, $x_3 = 150$ rpm)                                          | 108 |
| Figure 4.11 | Individual effect of lipase loading to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $x_1 = 40$ °C, $x_3 = 150$ rpm, $x_4 = 1.2$ )                                                   | 110 |
| Figure 4.12 | Individual effect of temperature to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $x_2 = 0.65$ g, $x_3 = 150$ rpm, $x_4 = 1.2$ )                                                     | 112 |
| Figure 4.13 | Individual effect of agitation speed to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $x_1 = 40$ °C, $x_2 = 0.65$ g, $x_4 = 1.2$ )                                                   | 113 |
| Figure 4.14 | Effect of temperature and lipase loading to percentage molar conversion of lauric acid in esterification of farnesol. (a) Response surface plot. (b) Contour plot. (Constant condition : $x_3 = 150$ rpm, $x_4 = 1.2$ )               | 115 |
| Figure 4.15 | Effect of substrate molar ratio and lipase loading to percentage molar conversion of lauric acid in the esterification of farnesol. (a) Response surface plot. (b) Contour plot. (Constant condition: $x_1 = 40$ °C, $x_3 = 150$ rpm) | 117 |
| Figure 4.16 | Effect of initial water activity, $a_w$ on the synthesis of farnesyl laurate. Reaction conditions: 42 mM lauric acid; 30 mM farnesol; temperature: 45 °C; lipase loading: 0.92 g; agitation speed: 150 rpm; time: 5 hours             | 121 |
| Figure 4.17 | Water content profiles with respect to reaction time at various water activity values. Reaction conditions: 42 mM lauric acid; 30 mM farnesol; temperature: 45 °C; lipase loading: 0.92 g; agitation speed: 150 rpm; time: 5 hours    | 123 |
| Figure 4.18 | Double reciprocal of Lineweaver-Burk plot for different concentration of lauric acid (B)                                                                                                                                              | 124 |

| Figure 4.19 | Double reciprocal of Lineweaver-Burk plot for different concentration of farnesol (A)                                                                                         | 125 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.20 | Comparison of experimental and simulated (theoretical) initial reaction rates                                                                                                 | 128 |
| Figure 4.21 | Predicted versus actual percentage molar conversion of lauric<br>acid from esterification of farnesol for continuous reaction                                                 | 132 |
| Figure 4.22 | Individual effect of packed-bed height to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $V = 1.2 \text{ ml min}^{-1}$ )      | 134 |
| Figure 4.23 | Individual effect of substrate flow rate to percentage molar conversion of lauric acid in esterification of farnesol. (Constant condition: $Z = 14$ cm)                       | 134 |
| Figure 4.24 | Effect of packed-bed height and substrate flow rate to percentage molar conversion of lauric acid in esterification of farnesol. (a) Response surface plot. (b) Contour plot. | 136 |
| Figure 4.25 | Regions of mass transfer limited and reaction limited reactions                                                                                                               | 142 |
| Figure 4.26 | Variation in packed-bed height and substrate flow rate for reaction limited model. (Constant condition: 45 °C and 1.4:1 lauric acid to farnesol molar ratio)                  | 145 |
| Figure 4.27 | Variation in packed-bed height and substrate flow rate for mass transfer limited model. (Constant condition: 45 °C and 1.4:1 lauric acid to farnesol molar ratio)             | 146 |
| Figure 4.28 | Lauric acid concentration at the external surface of immobilized enzyme, $S_i$ versus $R^2$ value for mass transfer limited model                                             | 146 |
| Figure B.1  | Standard calibration curve for lauric acid                                                                                                                                    | 175 |
| Figure B.2  | GC Chromatogram for lauric acid at concentration of 30 mM                                                                                                                     | 175 |

|           | LIST OF PLATES                                                                                                                                                                                                      | Page |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Plate 3.1 | Experimental rig of packed-bed reactor for continuous study                                                                                                                                                         | 83   |
| Plate 3.2 | Design of glass reactors with a jacketed glass tube                                                                                                                                                                 | 84   |
| Plate A.1 | Photographs of commercial immobilized lipases; (a)<br>Lipozyme TL IM ( <i>Thermomyces lanuginose</i> ); (b) Lipozyme<br>RM IM ( <i>Rhizomucor miehei</i> ); (c) Novozym 435 ( <i>Candida</i><br><i>antartica</i> B) | 173  |
| Plate A.2 | Photograph of molecular sieve particle (4 Å, 1/16 inch pellet)                                                                                                                                                      | 174  |

# LIST OF SYMBOLS

| Å                     | Angstrom unit                                                             |                                       |
|-----------------------|---------------------------------------------------------------------------|---------------------------------------|
| А                     | First substrate (alcohol / farnesol)                                      |                                       |
| $A_x$                 | Column cross section area                                                 | cm <sup>2</sup>                       |
| [A]                   | Initial concentration of farnesol                                         | mol $l^{-1} g^{-1}$                   |
| α                     | Alpha (axial distance from center point which makes the design rotatable) |                                       |
| a <sub>m</sub>        | Area of mass transfer                                                     | $\mathrm{cm}^2\mathrm{cm}^{-3}$       |
| a <sub>w</sub>        | Thermodynamic water activity                                              |                                       |
| В                     | Second substrate (free fatty acid / lauric acid)                          |                                       |
| BE                    | Enzyme lauric acid complex                                                |                                       |
| BEB                   | Dead end enzyme lauric acid complex                                       |                                       |
| [B]                   | Initial concentration of lauric acid                                      | mol $l^{-1} g^{-1}$                   |
| β,γ                   | Constant for Ordered Bi Bi mechanism                                      |                                       |
| <b>b</b> <sub>0</sub> | Constant coefficient                                                      |                                       |
| b <sub>i</sub>        | Coefficient for the linear effect                                         |                                       |
| b <sub>ii</sub>       | Coefficient for the quadratic effect                                      |                                       |
| b <sub>ij</sub>       | Coefficient for the interaction effect                                    |                                       |
| $C_0$                 | Substrate concentration in the bulk                                       | mol l <sup>-1</sup>                   |
| Cs                    | Substrate concentration at the surface of the immobilized enzyme          | mol $l^{-1}$                          |
| Ds/Dz                 | Concentration gradient along the column length                            | mmol l <sup>-1</sup> cm <sup>-1</sup> |
| E                     | Free enzyme                                                               |                                       |
| Ē                     | Modified form of enzyme                                                   |                                       |
| EA                    | Effective enzyme farnesol complex                                         |                                       |
| EB                    | Effective enzyme lauric acid complex                                      |                                       |

| EAB                         | Effective enzyme farnesol lauric acid complex                                       |                                        |
|-----------------------------|-------------------------------------------------------------------------------------|----------------------------------------|
| EA⇔E'P                      | Transition state of reaction                                                        |                                        |
| E'B⇔EQ                      | Transition state of reaction                                                        |                                        |
| EAB↔EPQ                     | Transition state of reaction                                                        |                                        |
| 3                           | Error                                                                               |                                        |
| $\mathcal{E}_{\mathcal{V}}$ | Void of fraction                                                                    |                                        |
| $K_{m,A}$                   | Michealis Menten constant for farnesol                                              | mol $l^{-1} g^{-1}$                    |
| $K_{m,B}$                   | Michealis Menten constant for lauric acid                                           | mol $l^{-1} g^{-1}$                    |
| $K_i$                       | Inhibition constant                                                                 | mol $l^{-1} g^{-1}$                    |
| $K_{s,A}$                   | Dissociation constant for substrate A                                               | mol $l^{-1} g^{-1}$                    |
| $k_m$                       | Mass transfer coefficient                                                           | m s <sup>-1</sup>                      |
| k <sub>r</sub>              | Reaction rate constant                                                              | $s^{-1}$                               |
| Log P                       | Partition coefficient of a given compound in the octanol and water two phase system |                                        |
| n                           | Sample size                                                                         |                                        |
| Р                           | First product (farnesyl laurate)                                                    |                                        |
| Q                           | Second product (water)                                                              |                                        |
| R <sup>2</sup>              | Coefficient of determination                                                        |                                        |
| R <sub>m</sub>              | Mass transfer rate                                                                  | mol cm <sup>-3</sup> min <sup>-1</sup> |
| RSD                         | Refractive Standard Deviation                                                       | %                                      |
| S                           | Lauric acid concentration at the bulk liquid                                        | mmol l <sup>-1</sup>                   |
| $S_0$                       | Lauric acid concentration at height of packing equal to zero                        | mmol l <sup>-1</sup>                   |
| $S_i$                       | Lauric acid concentration at the external surface of the immobilized enzyme         | mmol l <sup>-1</sup>                   |
| V                           | Substrate flow rate                                                                 | ml min <sup>-1</sup>                   |
| V <sub>max</sub>            | Maximum rate of reaction                                                            | $mol l^{-1}g^{-1} min^{-1}$            |

| V                              | Initial rate of reaction                             | $mol l^{-1}g^{-1} min^{-1}$ |
|--------------------------------|------------------------------------------------------|-----------------------------|
| x <sub>i</sub> ,x <sub>j</sub> | Factors (independent variables)                      |                             |
| Y                              | Response (molar conversion of lauric acid)           | %                           |
| Y <sub>b</sub>                 | Molar conversion of lauric acid for batch study      | %                           |
| Y <sub>c</sub>                 | Molar conversion of lauric acid for continuous study | %                           |
| Ζ                              | Packed-bed height                                    | cm                          |

# LIST OF ABBREVIATIONS

| ANN               | Artificial Neural Network                      |
|-------------------|------------------------------------------------|
| ANOVA             | Analysis of variance                           |
| CCD               | Central composite design                       |
| CCFC              | Central composite face centered design         |
| CCID              | Central composite inscribed design             |
| CCRD              | Central composite rotatable design             |
| CV                | Coefficient of variance                        |
| DOE               | Design of experiment                           |
| FID               | Flame ionization detector                      |
| FTIR              | Fourier Transform Infra-Red Spectroscopy       |
| GC                | Gas chromatography                             |
| H <sub>2</sub> O  | Water                                          |
| hr                | Hour                                           |
| ID                | Inner diameter                                 |
| IUN               | Interesterification units                      |
| KBr               | Pottasium bromide                              |
| Lipozyme<br>RM IM | Immobilized enzyme of <i>Rhizomucor miehei</i> |
| Lipozyme<br>TL IM | Immobilized enzyme of Thermomyces lanuginose   |
| 1                 | Liter                                          |
| mM                | miliMolar                                      |
| ns                | Not significant                                |
| Novozym<br>435    | Immobilized enzyme of Candida antartica B      |

- PLU Propyl laurate unit
- PBR Packed-bed reactors
- RCWB Recirculating water bath
- RSM Response surface methodology
- rpm Rotation per minute
- SD Standard deviation
- rpm Rotation per minute
- s Significant
- 3D Three dimensional

# PENGARUH PARAMETER PROSES KEATAS PENGHASILAN FARNESIL LAURAT OLEH PENGESTERAN BERENZIM DALAM REAKTOR LAPISAN TERPADAT

# ABSTRAK

Pengesteran berenzim menggunakan lipase telah terbukti mempunyai potensi dalam penghasilan ester. Di dalam penyelidikan ini, tindakbalas pengesteran dalam pelarut organik bermangkinkan lipase tersekatgerak telah dikaji secara sistem kelompok dan di dalam reaktor selanjar lapisan terpadat untuk sintesis farnesil laurat. Langkah pengoptimuman bagi proses pengesteran untuk kedua-dua sistem dikaji menggunakan perisian rekabentuk ujikaji dengan metadologi permukaan sambutan berdasarkan rekabentuk komposit putaran berpusat. Didapati Lipozyme RM IM daripada sumber *Rhizomucor miehei* adalah biokatalis paling efektif dan *iso*-oktana telah dipertimbangkan sebagai pelarut paling sesuai untuk proses pengesteran ini dengan memberikan penukaran molar asid laurik yang tinggi semasa proses penyaringan.

Di dalam kajian proses pengesteran secara kelompok, parameter tindakbalas yang dikaji adalah suhu, kepekatan lipase, nisbah molar bahan tindakbalas asid laurik kepada farnesol dan kelajuan pengadukan. Keadaan optimum dalam kajian ini masing-masing adalah 0.92 g kepekatan lipase yang dioperasikan pada suhu 45 °C dan 150 rpm kelajuan pengadukan dengan 1.4 nisbah molar bahan tindakbalas asid laurik kepada farnesol. Penukaran optimal asid laurik sebanyak 94.81  $\pm$  0.84% dengan aras keyakinan 95% telah dicapai selepas 5 jam. Ujikaji terhadap kesan aktiviti air permulaan telah dijalankan untuk menentukan kandungan air optimum atau aras penghidratan yang diperlukan untuk proses pengesteran berlaku di dalam

sistem kelompok. Didapati Lipozyme RM IM aktif pada aktiviti air permulaan 0.11 dengan memberikan penukaran molar asid laurik yang terbaik iaitu sebanyak 96.80%.

Kinetik untuk proses pengesteran farnesol dengan asid laurik yang dimangkinkan oleh lipase juga dikaji. Model berdasarkan Bi Bi Bertertib bersama perencatan oleh asid laurik didapati sepadan dengan data kadar permulaan dan pemalar kinetik yang ditentukan dengan analisis regresi garis tidak lurus. Pemalar-pemalar kadar yang diperolehi adalah;  $V_{max} = 5.80 \text{ mmol } \Gamma^1 \text{ min}^{-1} \text{ g enzim}^{-1}$ ,  $K_{m}$ , farnesol = 0.70 mmol  $\Gamma^1$  g enzim $\Gamma^1$ ,  $K_{m}$ , asid laurik = 115.48 mmol  $\Gamma^1$  g enzim $\Gamma^1$ ,  $K_i = 11.25 \text{ mmol } \Gamma^1$  g enzim $\Gamma^1$  dan  $R^2 = 0.9892$ .

Dalam operasi selanjar menggunakan reaktor lapisan terpadat dengan penambahan turus molekul penapisan, keadaan optimum untuk ketinggian lapisan terpadat dan kadar aliran bahan tindakbalas masing-masing adalah 18.18 cm dan 0.9 ml min<sup>-1</sup>. Penukaran molar asid laurik sebanyak 98.07  $\pm$  0.82% telah diperolehi di bawah keadaan ini. Kajian pemindahan jisim luaran dalam sistem reaktor lapisan terpadat juga telah dikaji. Model terhad tindakbalas dan terhad pemindahan jisim digunakan untuk mengkaji samada pengesteran dalam reaktor lapisan terpadat dipengaruhi oleh terhad tidakbalas atau terhad pemindahan jisim. Keputusan menunjukkan persetujuan yang baik diantara model pemindahan jisim dan data daripada eksperimen yang diperolehi daripada operasi lipase tersekatgerak di dalam reaktor lapisan terpadat. Dalam kes ini penukaran asid laurik adalah dalam terhad pemindahan jisim.

# INFLUENCE OF PROCESS PARAMETERS ON FARNESYL LAURATE PRODUCTION BY ENZYMATIC ESTERIFICATION IN PACKED-BED REACTOR

## ABSTRACT

Enzymatic esterification using lipase has proven to be potential in the production of esters. In the present work, esterification reaction in organic solvent catalyzed by immobilized lipase was studied in batch and continuous packed-bed reactor system for the synthesis of farnesyl laurate. The optimization in esterification process for both systems was carried out using design of experiment software with response surface methodology based on central composite rotatable design. Lipozyme RM IM origin from *Rhizomucor miehei* was found to be the most effective biocatalyst and *iso*-octane was considered the most suitable solvent for this esterification process since they give high molar conversion of lauric acid during screening processes.

In batch esterification process studies, the reaction parameters investigated were temperature, lipase loading, substrate molar ratio of lauric acid to farnesol and agitation speed. The optimum condition in this study was 0.92 g of lipase loading operated at 45 °C and agitation speed of 150 rpm with the substrate molar ratio of lauric acid to farnesol of 1.4 respectively. The optimal conversion of lauric acid of 94.81  $\pm$  0.84% with 95% confidence level was achieved after 5 hours. Investigation on the effect of initial water activity (a<sub>w</sub>) was carried out in order to determine an optimum amount of water or hydration level needed for esterification process to occur in batch system. Lipozyme RM IM was active at 0.11 initial water activity since it gives best molar conversion of lauric acid value of 96.80%.

Kinetics of lipase-catalyzed esterification of farnesol with lauric acid was also investigated. A model based on Ordered Bi Bi with inhibition by lauric acid was found to fit the initial rate data and the kinetics parameters were evaluated by non-linear regression analysis. The kinetic constant obtained are;  $V_{max} = 5.80$  mmol  $1^{-1}$  min<sup>-1</sup> g enzyme<sup>-1</sup>,  $K_{m}$ , farnesol = 0.70 mmol  $1^{-1}$  g enzyme<sup>-1</sup>,  $K_{m}$ , lauric acid = 115.48 mmol  $1^{-1}$  g enzyme<sup>-1</sup>,  $K_i = 11.25$  mmol  $1^{-1}$  g enzyme<sup>-1</sup> and  $R^2 = 0.9892$ .

In continuous operation using packed-bed reactor with addition of molecular sieve column, an optimum conditions of packed-bed height and substrate flow rate were 18.18 cm and 0.90 ml min<sup>-1</sup>, respectively.  $98.07 \pm 0.82\%$  of molar conversion of lauric acid was obtained under this condition. An external mass transfer studies in packed-bed reactor system have also been studied. A reaction limited model and a mass transfer limited model were used in order to investigate if the esterification in the packed-bed reactor was influenced by reaction limited or mass transfer limited. The results showed very good agreement between mass transfer model and the experimental data obtained from immobilized lipase packed-bed reactor operation, showing that in this case the lauric acid conversion was mass transfer limited.

#### **CHAPTER 1**

### **INTRODUCTION**

### **1.1 The Flavour and Fragrance Industry**

Farnesyl esters are classified as sesquiterpenic esters which are organic compounds that present a great interest and importance in the food, cosmetic and pharmaceutical industries as flavour and fragrance substances. By definition, flavour is the sensory notion of a food or other substance, and is determined mainly by the sense of taste. Flavour compounds are sold primarily to the food and beverage industries for use in a wide range of consumer products, including soft drinks, confectionery, bakery goods, desserts and prepared foods. Fragrances are designed to emit a pleasant odour and are mostly used as consumer products such as soaps, detergents, cosmetic creams, lotions and powders, lipsticks, deodorants, hair preparations, candles, air fresheners and all purpose cleaners (Aarkstore Market Research Reports, 2010).

According to Aarkstore Market Research Reports, the global flavour and fragrance market was valued at approximately US\$16 billion in 2008. Business insights anticipate that the value of global flavour and fragrance market will grow at a current annual growth rate of 2.5% during 2008 to 2013 to reach a total value of approximately US\$18 billion in 2013 (Aarkstore Market Research Reports, 2010). Consumption of flavour and fragrance products in 2006 is estimated at well over US\$15 billion worldwide, composed of 13% aroma chemicals, 10% essential oils and other natural extracts, 29% fragrance production has been dominated by

the United States, Japan, and Western Europe in particular, France, United Kingdom, Germany and Switzerland and accounted as much as 74% of total consumption (Sri Consulting, 2007). An analysis conducted by ReportLinker reported that in the year 2008, the global flavour and fragrance industry is expected to remain stable in 2009 and 2010, but will grow again in the subsequent years (ReportLinker, 2009).

There are more than 30 large companies that contribute to the flavour and fragrance industry. Table 1.1 shows the top 10 ranking of companies or leaders with estimated sales volume in millions in flavour and fragrance industry for the year of 2004 until 2008. The rank is based on US\$ equivalents and estimated sales volume is a final estimate as of October, 2009 (Leffingwell & Associates, 2009).

|      |                                          | Year   |                        |        |                        |        |                        |        |                        |        |                        |
|------|------------------------------------------|--------|------------------------|--------|------------------------|--------|------------------------|--------|------------------------|--------|------------------------|
|      |                                          | 20     | 04                     | 20     | 05                     | 20     | )06                    | 20     | )07                    | 20     | 08                     |
| Rank | Company                                  | US\$   | Market<br>Share<br>(%) |
| 1    | Givaudan                                 | 2346.9 | 13.3                   | 2108.9 | 13.2                   | 2387.9 | 13.3                   | 3647.0 | 18.4                   | 3828.7 | 18.9                   |
| 2    | Firmenich                                | 1782.1 | 10.1                   | 1752.1 | 11.0                   | 2052.1 | 11.4                   | 2512.8 | 12.7                   | 2474.1 | 12.2                   |
| 3    | International<br>Flavors &<br>Fragrances | 2033.7 | 11.5                   | 1993.4 | 12.5                   | 2095.4 | 11.6                   | 2276.6 | 11.5                   | 2389.0 | 11.8                   |
| 4    | Symrise                                  | 1540.3 | 8.7                    | 1360.2 | 8.5                    | 1623.0 | 9.0                    | 1860.8 | 9.3                    | 1837.4 | 9.1                    |
| 5    | Takasago                                 | 985.1  | 5.6                    | 898.3  | 5.6                    | 955.7  | 5.3                    | 1112.0 | 5.6                    | 1365.6 | 6.7                    |
| 6    | Sensient<br>Flavors                      | 499.2  | 2.8                    | 516.4  | 3.2                    | 535.4  | 3.0                    | 572.0  | 2.9                    | 591.0  | 2.9                    |
| 7    | T.Hasagawa                               | 490.4  | 2.8                    | 405.7  | 2.5                    | 394.4  | 2.2                    | 448.1  | 2.3                    | 500.3  | 2.5                    |
| 8    | Frutarom                                 | 196.8  | 1.1                    | 243.8  | 1.5                    | 287.2  | 1.6                    | 368.3  | 1.9                    | 473.3  | 2.3                    |
| 9    | Mane SA                                  | 345.1  | 2.0                    | 311.4  | 1.9                    | 380.0  | 2.1                    | 448.7  | 2.3                    | 462.9  | 2.3                    |
| 10   | Robertet SA                              | 275.7  | 1.6                    | 245.1  | 1.5                    | 291.8  | 1.6                    | 352.1  | 1.8                    | 422.0  | 2.1                    |

Table 1.1: 2004-2008 Estimated sales volume in millions for flavour and fragrance industry leaders (Leffingwell & Associates, 2009)

#### **1.2 Enzymatic Synthesis in the Preparation of Flavours and Fragrances**

The preparation of flavours and fragrances by isolating them from natural resources began in ancient times and majority of these products were prepared by chemical synthesis, or by extraction from plants. However, enzymatic synthesis is one area of biocatalysis which is increasingly being used in the manufacture of specialty chemicals, particularly molecules used in the flavour and fragrance industries, and as a component of foods and personal care products (Brenna, 2003; Schrader *et al.*, 2004). Moreover, the increasing sensitivity of the ecological systems supports the choice of environmentally friendly processes and consumers have developed a preference for 'natural' or 'organic' products, thus developing a market for flavours of biotechnological origin (Cheetam, 1997; Serra *et al.*, 2005).

Enzymes such as lipases are most explicitly used in the preparation of flavour and fragrance compounds. Lipases were the favourite biocatalyst because they show high selectivity including stereo-selectivity and give products of high purity and improved quality (Hilal *et al.*, 2006; Kraai *et al.*, 2008). Furthermore, they are easily available on large scale and remain active in organic solvents (Jaeger and Eggert, 2002; Serra *et al.*, 2005). Traditionally, enzymatic syntheses have been carried out in aqueous systems. However, enzymatic catalysis in organic solvents has significantly broadens the conventional aqueous-based biocatalysis. A key advantage in these type of reaction systems are, reduction in the enzyme substrate and/or product inhibition, the solubilization of hydrophobic compounds, the possibility of shifting thermodynamic equilibria towards the desired reaction (Oliveira *et al.*, 2001). Enzymatic synthesis in the modern biotechnology has put more emphasis on immobilization of enzyme onto solid supports. This is one way to overcome the drawbacks such as enzyme denaturation or inactivation by pH, temperature and organic solvents. Moreover, recovery of the enzyme for reuse is usually difficult, which limits their use due to high cost. Immobilization increases the mechanical robustness of the catalysts as their thermal stability and it enables easy separation of the immobilized catalyst from the reactant-product stream (Florentin *et al.*, 2010).

#### **1.3 Feedstock for Farnesyl Laurate Production**

Farnesol and lauric acid are the starting materials required for the production of farnesyl laurate via esterification process as feedstock. Farnesol and lauric acid are both derived from natural resources and thus it was considered attractive to study the enzymatic synthesis of farnesyl laurate in organic media since non-aqueous enzymology has potential applications in the industry compared to the conventional chemical synthesis of the esters. Until today, lauric acid has limited use in the esterification research using farnesol.

Farnesol or trimethyl dodecatrienol is one of sesquiterpenes and fragrance ingredient used in decorative cosmetics, fine fragrances, shampoos, toilet soaps and other toiletries as well as in non-cosmetic products such as household cleaners and detergents. Besides, farnesol is also a natural pesticide for mites and is a pheromone for several other insects. Its use worldwide is in 1-10 metric tones per annum (Lapczynski *et al.*, 2008). Farnesol is a natural organic compound found as a colourless liquid. It is insoluble in water, but miscible with oils. It is present in many essential oils such as citronella, neroli, cyclamen, lemon grass, tuberose, rose,

musk, balsam, and tolu. Esterification between farnesol and lauric acid can be represented in Figure 1.1.



Figure 1.1: Esterification between farnesol and lauric acid (Leray, 2000)

Lipases can accept a broad range of natural substance, thus, lauric acid was chosen as an acyl donor in the esterification of farnesyl laurate. Lauric acid or dodecanoic acid is a white powdery solid with a faint odor of bay oil or soap. It can be obtained from renewable raw materials such as oils and fats (Serri, 2006). Approximately 50% of coconut oil and palm kernel oil are lauric acid. Lauric acid is inexpensive, has a long shelf-life, and is non-toxic and safe to handle. Lauric acid is also believed to possess antimicrobial properties and is frequently exploited by pharmaceutical companies (Chua and Sarmidi, 2004). The exploitation of synthetic capability of lauric acid will promote sustainable chemistry.

### **1.4 Problem Statement**

Terpene ester as well as sesquiterpene ester has been used as the desirable flavouring and fragrance compounds. Organic esters are used in a variety of industries such as perfumery, flavour, pharmaceuticals, plasticizer, solvents, and intermediates. Esters are one of the most important natural fragrances. The traditional extractions from plant materials, steam distillation and direct biosynthesis by fermentation are the three generally used methods for flavour and fragrance production. However, these methods exhibit a high cost of processing and low yields of desired esters for a large amount of raw material (Abbas and Corneau, 2003; Ganapati and Trivedi, 2003; Ganapati and Lathi, 2004). In addition, steam distillation requires high energy consumption (Al-Marzouqi and Rao, 2006). Therefore, better processes with minimum processing cost need to be developed.

Chemical routes are being less favoured owing to the attendant problems such as poor reaction selectivity leading to undesirable side reactions, low yields, pollution and high cost of manufacturing. Thus enzymatic, particularly lipase synthesis flavour ester is gaining much attention from the researchers to enhance currently used method in the production of commercial ester compounds (Serra, 2005). The main problem of the enzyme catalyzed process is the high cost of the lipases used as catalyst. However, high operational stability of the immobilized lipase was reported in several studies (Chen and Wu, 2003; Polizzi *et al.*, 2007), making its recycle possible in a batch system, or its long use in a continuous system by regeneration of support, which reduces the incidence of catalyst cost. Furthermore, continuous synthesis of ester using immobilized lipase would be advantageous for mass production although most of the synthesis have been carried out in batch reactor (Pioa *et al.*, 2004).

Solubility is another problem in enzymatic approaches for flavour and fragrance production primarily in aqueous system because many flavours and fragrances are composed of relatively high molecular weight compounds that are poorly soluble or insoluble in water. Problems arise when both poor diffusion of these substances and mass transfer limitations are associated due to the reaction media that composed high amount of water (Gabelman, 1994; Krishna and Karant, 2002). Owing to the obvious advantages offered by the non-aqueous system, the use of organic solvents as a reaction medium may overcome this problem, thus, enhancing flavour and fragrance production. This system would increase the solubility of non-polar substrates and products, limit enzymes deactivation and shifting thermodynamic equilibria to favour ester synthesis over hydrolysis (Krishna and Karant, 2002).

Lipase catalyzed esterification in organic solvents has the advantage to remain active and catalyzed a wide range of esterification reactions. Therefore, after considering all the circumstances, esterification of farnesol with lauric acid using Lipozyme RM IM as the catalyst in *iso*-octane system was investigated as the present study. In this *iso*-octane system, one step esterification reaction was conducted in a batch process to get the optimum condition for the production of farnesyl laurate. High yields of product can be obtained since the solubility problem can be eliminated in *iso*-octane system. Both farnesol and lauric acid are soluble in *iso*-octane. Furthermore, this study aimed to develop an optimal continuous production of farnesyl laurate in a packed-bed reactor to investigate the possibility of large scale production further in order to suit the growing demand in biotechnology.

## **1.5 Research Objectives**

The main objective of this research project is to synthesize farnesyl laurate ester using enzymatic approach particularly by immobilized lipase. This research project aims to achieve the following specific objectives:

- To determine the best fatty acid, solvent and immobilized lipase which gives the highest conversion in the esterification of farnesyl ester during screening processes.
- 2. To study the effect of process parameters (temperature, lipase loading, agitation speed and substrate molar ratio) on the esterification of farnesyl ester by using immobilized lipase in batch system as the basis to conduct continuous study (packed bed height and substrate flow rate) in packed-bed reactor and optimization using Response Surface Methodology.
- To determine the kinetic parameters by evaluating two different mechanisms based on Ping Pong Bi Bi and Ordered Bi Bi mechanism for farnesyl ester synthesis using immobilized lipase in batch system.
- 4. To study the effect of external mass transfer by varying parameters such as packed-bed height and substrate flow rate in a continuous packed-bed reactor.

### **1.6 Organization of the Thesis**

This thesis is divided into five chapters as follows;

**Chapter 1** gives the introductory of this research project. This chapter starts with the market demand in flavor and fragrance industry reported by market researcher. It also gives brief overview of the flavour and fragrance production which leads to the development of enzymatic synthesis. The problem statement and objectives of this research project are also stated clearly in this chapter.

**Chapter 2** describes the literature review from other researchers and methods applied in the present days for the industrial production of esters specifically in enzymatic-catalyzed esterification in non-aqueous media. It is followed by a discussion on advantages of using immobilized lipase in the esterification process. Reviews on kinetic, mass transfer and modeling of enzymatic esterification using statistical method are also covered.

**Chapter 3** describes the methods and analysis required for the esterification process. It also explained on the chemical requirements and equipments used throughout the whole process of this study. The subsequent topics describe clearly the methodology of this research project-synthesis using immobilized lipase, optimization, kinetic and mass transfer studies.

**Chapter 4** presents the results obtained from experimental runs and discusses on every effect of parameters on the synthesis of farnesyl laurate ester.

**Chapter 5** concludes the research project. Recommendations for future work related to this research project are also given.

### **CHAPTER 2**

### LITERATURE REVIEW

## 2.1 Enzymatic-catalyzed Esterification

Enzyme catalyzed esterification reactions have found many applications, ranging from the modification of vegetable oils for human consumption to the production of optically pure chemicals (Lortie, 1997). Historically, enzymatic catalysis has been carried out primarily in aqueous systems. However, water is a poor solvent for nearly all reactions in preparative organic chemistry. To displace the equilibrium in favor of synthesis, rather than hydrolysis, these reactions are performed in non-aqueous or microaqueous media dated back to the beginning of last century (Krishna and Karanth, 2002).

Esterification reactions between polyhydric alcohols and free fatty acids are catalyzed by lipases in water-poor organic solvents under conditions of low water activity or even solvent free systems. Further discussion on organic media and its suitability for enzymatic reaction will be described later in Section 2.2.1. Although ester synthesis can be done chemically with acid or base catalysis, the use of enzyme technology since many years ago offers the advantages of mild operating conditions, low energy requirement, accept a broad range of substrates, biodegradability, reduced side reactions, and specificity (Okumura *et al.*, 1979, Marlot *et al.*, 1985).

### 2.1.1 Introduction to the Enzymatic Esterification Process

Esterification is the reverse reaction of hydrolysis. This reaction is only possible and useful in a microaqueous reaction system where hydrolysis can be

minimized and controlled with limited amounts of water in the system. In waterabundant reaction systems, hydrolysis is the main reaction and it is difficult to make useful reaction for esterification. A large number of applications have been studied on the basis of extensive studies of microaqueous enzymology. This gives a variety of possibilities to exploit the enzyme technology for ester synthesis.

Esterification is the simple reaction between an organic acid and an alcohol. The reaction is depicted in Figure 2.1. Water is one of the direct products from the reaction and it has important effects on the shifting of reaction equilibrium. It has to be continuously removed from the reaction system in order to minimize the reverse hydrolysis reaction. Xu (2003) has summarized the common methods to remove water from the reaction system in laboratory experiments or industrial applications as shown in Table 2.1.

Water in the reaction system is in one way the reaction by-product, which should be removed in order to force the reaction to the product side. On the other hand, a certain dynamic water environment should be maintained in order to maintain high enzyme activity. This is especially important for the long-term use in an industrial plant.

$$RCOOH + R'OH \longrightarrow RCOOR' + H_2O$$

Figure 2.1: A simple description of enzymatic esterification.

Table 2.1: The common methods to remove water from the reaction system in laboratory experiments and industrial processes (Xu, 2003)

| Method                                                         | Description                                                                                                                                                                                                                               | Applications                    |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Vacuum evaporation                                             | The system is applied with vacuum and<br>optimum vacuum should be used to<br>maintain a certain water activity in the<br>reaction system. A too high vacuum may                                                                           | Industrial scale                |
| Membrane<br>pervaporation                                      | A membrane pervaporation system with<br>vacuum is applied to remove water from<br>the reaction system. A suitable water<br>activity in the reaction system can be<br>maintained by an automatic control<br>system with a humidity sensor. | Industrial scale                |
| Azeotropic solvent<br>distillation (external<br>drying agents) | A distillation system is applied and the distilled solvent or alcohol can be dried in a separate connected chamber with a drying agent. After drying the solvent alcohol can fed back to the reaction system.                             | Industrial scale                |
| Drying agent<br>(internal or external)                         | Drying agents such as a molecular sieve<br>or silica gel are added to the reaction<br>system to remove water. It is very useful<br>for large-scale plant operations.                                                                      | Industrial scale                |
| Air or N <sub>2</sub> bubble                                   | Bubbling by dry air or nitrogen can be<br>also used to remove water. It is useful in<br>small-scale experiments.                                                                                                                          | Laboratory scale                |
| Solvent engineering                                            | A hydrophilic solvent is used to extract<br>water and keep water away from the<br>reaction.                                                                                                                                               | Industrial and laboratory scale |
| Salt pair (internal)                                           | Salt pairs with certain water activity are<br>used to maintain the water activity of the<br>system.                                                                                                                                       | Laboratory scale                |
| Water activity<br>control (external)                           | Vapor phases in the reaction system are<br>circulated with the vapor phase of the<br>saturated salt solution or salt pair. Water<br>content or activity of the reaction system<br>can be thus regulated.                                  | Industrial and laboratory scale |

#### 2.1.2 Lipases and Its Application

Enzymes are considered as nature's catalysts. Most enzymes today are produced by the fermentation of biobased materials (Louwrier, 1998). There are six major groups of enzymes that can be categorized into oxido-reductase, transferase, hydrolases, lyases, isomerase and ligase. Of all of the enzymes, hydrolases are mostly employed for industrial biotransformation because of their biotechnological potential (Benjamin and Pandey, 1998).

Lipases (triacylglycerol acylhydrolases, E.C. 3.1.1.3) are part of the family of hydrolases and most frequently used enzymes in organic chemistry including for the enantioselective hydrolysis, transesterification, esterification and interesterification reaction (Effenberger *et al.*, 1997; Konigsberger *et al.*, 1999; D'Antona *et al.*, 2002; Jin *et al.*, 2003; Brady *et al.*, 2004; Long *et al.*, 2005; Ong *et al.*, 2005). Lipases are widely used because of their ready availability, low cost of production, and enormous utility in organic synthesis. Lipases from many different microbial sources are commercially available. Each of these lipases demonstrates its distinct substrate specificity which is known to be less stringent compared to other enzymes (de Zeote *et al.* 1994). In addition, lipases offer the usual advantages by enzymes, such as mild operating conditions, biodegradability, and so forth as mentioned earlier in Section 2.1. Thus, lipases have tremendous potential as industrial catalysts.

There are several applications of lipases. Its versatility makes lipases the enzymes of choice for potential applications in the food, detergent, pharmaceutical, leather, textile, cosmetic, and paper industries (Houde *et al.*, 2004; Fariha *et al.*, 2006). The lipase catalyzed transesterification in organic solvents is an emerging

industrial application such as production of cocoa butter equivalent, human milk fat substitute "Betapol", pharmaceutically important polyunsaturated fatty acids (PUFA) and production of biodiesel from vegetable oils (Jaeger and Reetz, 1998; Nakajima *et al.*, 2000). Akoh (1993) also reported that *Mucor miehei* (IM 20) and *Candida antartica* (SP 382) lipases were used for esterification of free fatty acids in the absence of organic solvent and transesterification of fatty acid methyl esters in hexane with isopropylidene glycerols.

Lipases can be used as biocatalyst in the production of useful biodegradable compounds. For example, 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Lipases can catalyse ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters (Linko *et al.*, 1998). In the textile industry, polyester has certain advantages including high strength, stretch resistance, stain resistance, machine washability, wrinkle resistance and abrasion resistance. Furthermore, lipases have found to be important applications in detergent industry as an addition to detergents which are used mainly in household and industrial laundry and in household dishwashers. To improve detergency, modern types of heavy duty powder detergents and automatic dishwasher detergents contain one or more enzymes, such as protease, amylase, cellulose and lipase (Ito *et al.*, 1998).

Lipases have also been used for addition to food to modify flavour by synthesis of esters of short chain fatty acids and alcohols, which are known as flavour and fragrance components (Macedo *et al.*, 2003). Earlier, lipases of different microbial origin have been used for refining rice flavour, modifying soybean milk and for improving the aroma and accelerating the fermentation of apple wine (Seitz, 1974; Fariha *et al.*, 2006). In pharmaceutical industry, lipases can be used to resolve the racemic mixtures and to synthesize the chiral building blocks. Chiral intermediates and fine chemicals are in high demand from the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. For example, lipase from *Candida antartica* (Novozyme 435) has been used for the kinetic resolution of racemic flubiprofen by the method of enantioselective esterification with alcohols (Zhang *et al.*, 2005) and lipase from *Candida cylindracea* has been used for resolving racemic mixture of baclofen that is normally used in the therapy of pain and as a muscle relaxant (Maulidhar *et al.*, 2001).

Besides pharmaceutical industry, lipases have found significant used in cosmetics industry. Unichem International (Spain) has used *Rhizhomucor miehei* lipase as a biocatalyst for the production of isopropyl myristate, isopropyl palmitate and 2-ethylhexylpalmitate for use as an emollient in personal care products such as skin and sun-tan creams, bath oils etc. Wax esters (esters of fatty acids and fatty alcohols) have similar applications in personal care products and also being manufactured enzymatically using *Candida cylindracea* lipase in a batch bioreactor (Fariha *et al.*, 2006).

#### **2.1.3 Lipase Biocatalysis in the Production of Esters**

The benefits of employing lipase biocatalysis in ester production are obvious. Consequently, lipase biocatalysis has been intensively studied during recent years. The number of available lipases has increased considerably since the 1980s. This is mainly as a result of the enormous achievements made in the cloning and expression of enzymes from microorganisms, as well as an increasing demand for these biocatalysts. Instead of ester synthesis, extensive research proved that lipases are very effective biocatalysts for the synthesis of optically pure compounds. Moreover, they often exhibit very good stability, are active in a wide range of organic solvents and do not need cofactors (Bornscheuer and Kazlauskas, 1999; Liase *et al.*, 2000).

Reaction media for esterification processes have been conducted either in solvent free systems (aqueous media) or solvent systems. It has been demonstrated that in organic solvent systems, due to low water activity, the equilibrium can be shifted so that esterification reaction can occur. Besides reaction media, lipase modifications such as immobilization have several advantages to the esterification processes. Some of the advantages of immobilized lipases are simplified product recovery, increased the enzyme reusability, significant higher productivity in continuous operation as compared to the batch operation and improved in stability (Gabelman, 1994). In addition, Table 2.2 summarized the esterification process for various types of lipases with different types of alcohols and fatty acids either in solvent free system or solvent medium. Further discussion on immobilization of lipases will be described later in Section 2.1.4.

| Substrate         |                | Enzumo/Linoso           | Reaction          | Description                       | Doforonco            |  |
|-------------------|----------------|-------------------------|-------------------|-----------------------------------|----------------------|--|
| Alcohol           | Acid           | Enzyme/Lipase           | media             | Description                       | Kererence            |  |
| Geraniol          | Butyric acid   | Geotricum candidum      | Heptane /         | Immobilized on hydrophilic        | Marlot et al., 1985  |  |
| Menthol           | Lauric acid    | Aspergillus sp.         | diisopropyl       | support by adsorption /           |                      |  |
|                   |                | Mucor miehei            | ether / hexane /  | entrapment.                       |                      |  |
|                   |                | Hog pancreas            | benzene           | Support :                         |                      |  |
|                   |                | Alcaligenes             |                   | Adsorption – spherosil            |                      |  |
|                   |                | Candida cylingracea     |                   | XOBO15,XOBO75 from Rhone          |                      |  |
|                   |                | Rhizopus arrhizus       |                   | Poulene. Celite, porous glass,    |                      |  |
|                   |                | Rhizopus delamar        |                   | alumina, titania from corning.    |                      |  |
|                   |                | Pseudomonas             |                   | Entrapment - polyurethane         |                      |  |
| Geraniol          | Acetic acid    | Alcaligenes             | <i>n</i> -heptane | Physical state of these           | Langrand et al.,1988 |  |
| Isoamylic alcohol | Propionic acid | Aspergillus             |                   | preparations was a dried          |                      |  |
|                   | Butyric acid   | Aspergillus niger       |                   | mycelium/crude powder both of     |                      |  |
|                   |                | Candida rugosa          |                   | variable granulometry.            |                      |  |
|                   |                | Geotricum candidum      |                   | Mucor miehei was immobilized      |                      |  |
|                   |                | Fungal lipase           |                   | on a solid support.               |                      |  |
|                   |                | Mucor miehei            |                   | Aspergillus niger was in a liquid |                      |  |
|                   |                | (Gist-Brocades)         |                   | form, immobilized by adsorption   |                      |  |
|                   |                | Mucor miehei            |                   | on porous glass beads (Spherosil  |                      |  |
|                   |                | (Novo,Lipozyme)         |                   | XOBO75).                          |                      |  |
|                   |                | Penicillium cyclopium A |                   | Geranyl butyrate:                 |                      |  |
|                   |                | Penicillium cyclopium B |                   | <i>C.rugosa</i> (90%),            |                      |  |
|                   |                | Rhizopus arrhizus       |                   | M.miehei(96%),M.miehei            |                      |  |
|                   |                | Porcine pancreas(Rohm)  |                   | (lipozyme,93%), Porcine           |                      |  |
|                   |                | Porcine pancreas        |                   | pancreas (rohm,85%), R.arrhizus   |                      |  |
|                   |                | (koch-light)            |                   | (97%) conversion in 24hrs.        |                      |  |

Table 2.2: A literature survey of lipase-catalyzed ester synthesis

| Substrate      |                                                | <b>E</b>                                                                                                                                    | Reaction                                                                                                          | Description                                                                                                                                                                                                                                                           | D                                    |  |
|----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Alcohol        | Acid                                           | Enzyme/Lipase                                                                                                                               | media                                                                                                             | Description                                                                                                                                                                                                                                                           | Reference                            |  |
| Geraniol       | Butyric acid                                   | Rhizopus oryzea<br>(CBS 112-07)                                                                                                             | Pentane (90%)<br><i>n</i> -heptane<br>(91%)<br>Toluene (41%)<br>Diethyl ether<br>(21%)<br>Tetrahydrofuran<br>(2%) | Lyophilized whole cells of <i>R.oryzea</i> .<br>The reaction is adequately performed in solvents with high log P (pentane or <i>n</i> -heptane) even with water content remarkably higher than the substrate concentration.<br>Maximum activity is at 55-60°C (95%).  | Molinari <i>et al.</i> , 1995        |  |
| Citronellol    | Butyric acid                                   | Candida rugosa<br>Pseudomonas Fluorescens<br>Rhizopus japonicus                                                                             | Solvent free<br>system and<br><i>n</i> -hexane                                                                    | Highest conversion 98% without additional organic solvent.                                                                                                                                                                                                            | Wang and Linko, 1995                 |  |
| Geraniol       | Propionic acid<br>Butyric acid<br>Valeric acid | Esterase 30 000 (85%)<br>(Mucor miehei)<br>Rhizopus arrhizus (<10%)<br>Lipozyme (M.miehei, 66%)<br>Piccantase B (80%)<br>Esterase 193 (63%) | Solvent free<br>system                                                                                            | <i>Esterase 30 000</i> and <i>R.arrhizus</i><br>was used in powder form.<br>Lipozyme was immobilized onto<br>a macro porous anion-exchange<br>resin.<br>Conversion by esterase of geranyl<br>butyrate (85%), geranyl valerate<br>(85%), geranyl propionate<br>(<40%). | Karra-Chaabouni <i>et al.</i> , 1996 |  |
| Benzyl alcohol | Lauric acid                                    | Pseudomonas                                                                                                                                 | Benzene                                                                                                           | Ester yield 80% after 72 hrs using free and immobilized lipase in stirred tank bioreactor.                                                                                                                                                                            | Fukunaga <i>et al.</i> , 1996        |  |

| Table 2.2: Con  | tinued |
|-----------------|--------|
| 1 doie 2.2. Con | unucu  |

| Substrate       |                   | Ененесиіново              | Reaction              | Description                        | D.£                           |  |
|-----------------|-------------------|---------------------------|-----------------------|------------------------------------|-------------------------------|--|
| Alcohol         | Acid              | Enzyme/Lipase             | media                 | Description                        | Reference                     |  |
| 1-phenylethanol | Vinyl acetate     | Pseudomonas fluorescens   | <i>t</i> -butylmethyl | Eupergit C250L was the best        | Ivanov and Schneider,         |  |
|                 |                   |                           | ether                 | support for immobilization of      | 1997                          |  |
|                 |                   |                           |                       | lipase used.                       |                               |  |
| Geraniol        | Short-chain acids | Fusarium oxysporum        | Ethylene glycol       | Esterase – in dried powder form.   | Stamatis et al., 1998         |  |
| Geranyl acetate |                   | (well suited for the      | diacetate             | 85-95% conversion of geranyl       |                               |  |
| Various acetate |                   | production of short chain | Isopropyl             | acetate.                           |                               |  |
| and butyrates   |                   | geranyl esters)           | acetate               | Geranyl and butyric acid – no      |                               |  |
|                 |                   |                           | <i>n</i> -hexane      | inhibition of <i>F.oxysporum</i>   |                               |  |
|                 |                   |                           |                       | esterase activity by butyric acid  |                               |  |
|                 |                   |                           |                       | was observed even at high acid     |                               |  |
|                 |                   |                           |                       | concentration.                     |                               |  |
| Ethanol         | Oleic acid        | Rhizopus niveus           | Microaqueous,         | Biphasic system was more           | Tweddell et al., 1998         |  |
| tripalmitin     | triolein          | Mucor miehei              | biphasic ( <i>n</i> - | efficient than in microaqueous for |                               |  |
|                 |                   |                           | hexane-water)         | esterification but not for         |                               |  |
|                 |                   |                           | and surfactant-       | interesterification.               |                               |  |
|                 |                   |                           | enriched              |                                    |                               |  |
| ~               |                   |                           | biphasic system       |                                    |                               |  |
| Geraniol        | Fatty acid vinyl  | Celite-adsorbed lipase of | <i>n</i> -hexane      | With fatty acid vinyl esters as    | Nakagawa <i>et al.</i> , 1998 |  |
| Citronellol     | esters            | Trichosporon fermentans   |                       | acyl donors, the lipase catalysed  |                               |  |
|                 |                   |                           |                       | the synthesis of geranyl an        |                               |  |
|                 |                   |                           |                       | citronellyl esters with carbon     |                               |  |
|                 |                   |                           |                       | chains shorter than $C_6$ in with  |                               |  |
|                 |                   |                           |                       | yields of more than 90%.           |                               |  |

| Substrate           |                  | Ененесийнаас            | Reaction      | Degenintien                         | D.f                     |  |
|---------------------|------------------|-------------------------|---------------|-------------------------------------|-------------------------|--|
| Alcohol             | Acid             | Enzyme/Lipase           | media         | Description                         | Kelerence               |  |
| Geraniol            | Propionic acid   | Esterase 30 000 (71.4%) | Solvent free  | No immobilization, lipases used     | Karra-Chaabouni et al., |  |
| Nerol               | Butyric acid     | (Mucor miehei)          | system.       | in powder form without further      | 1998                    |  |
| Hexanol             | Valeric acid     | Candida cylingracea     |               | purification.                       |                         |  |
| 2-hexanol           | Caproic acid     | (83.1%)                 |               | Yield increase when acid chain      |                         |  |
| Citronellol         | _                | Pseudomonas fluorescens |               | lenght increase $(C_2-C_6)$ .       |                         |  |
| Cis-3-hexanol       |                  | (80%)                   |               | M. miehei :                         |                         |  |
|                     |                  | Rhizopus arrhizus (11%) |               | - geranyl butyrate (60%), geranyl   |                         |  |
|                     |                  | R.niveus (3.4%)         |               | acetate and geranyl propionate      |                         |  |
|                     |                  | R.javanicua (4%)        |               | (30%), geranyl valerianate (74%)    |                         |  |
|                     |                  |                         |               | and geranyl caproate (85%)          |                         |  |
|                     |                  |                         |               | conversion.                         |                         |  |
| Monohydric          | Dihydroxystearic | Rhizomucor miehei       | DMF           | The percent conversion was          | Awang et al., 2000      |  |
| alcohol (1-octanol) | acid (DSHA)      | (Lipozym IM)            | Acetone       | higher in organic solvents with     |                         |  |
|                     |                  | Candida antartica       | Diethyl ether | log P (the logarithm of the         |                         |  |
|                     |                  | (Novozym 435)           | Chloroform    | partition coefficient of solvent in |                         |  |
|                     |                  |                         | Toluene       | octanol/water system) from 2.0 to   |                         |  |
|                     |                  |                         | Pentane       | 4.0.                                |                         |  |
|                     |                  |                         | Hexane        | Increasing the mole ratio of        |                         |  |
|                     |                  |                         | Heptane       | alcohol to acid above 2.0 did not   |                         |  |
|                     |                  |                         | Octane        | increase the percent conversion of  |                         |  |
|                     |                  |                         | Nonane        | ester.                              |                         |  |
|                     |                  |                         | Decane        |                                     |                         |  |
|                     |                  |                         | Dodecane      |                                     |                         |  |
|                     |                  |                         | Hexadecane    |                                     |                         |  |

| Substrate      |               | Б                                      | Reaction          | Description                       | D.£                    |
|----------------|---------------|----------------------------------------|-------------------|-----------------------------------|------------------------|
| Alcohol        | Acid          | - Enzyme/Lipase                        | media             | Description                       | Keierence              |
| Benzyl alcohol | Octanoic acid | Candida rugosa                         | Diisopropyl       | Cyclohexane was the best          | Matsumoto et al., 2001 |
|                |               |                                        | ether             | solvent.                          |                        |
|                |               |                                        | Chloroform        | Reaction follows Ping Pong Bi Bi  |                        |
|                |               |                                        | Toluene           | mechanism.                        |                        |
|                |               |                                        | Cyclohexane       |                                   |                        |
|                |               |                                        | <i>n</i> -heptane |                                   |                        |
|                |               |                                        | Iso-octane        |                                   |                        |
| Hexanol        | Acetic acid   | Dry mycelium of 4 strains              | <i>n</i> -heptane | Non immobilized enzyme.           | Gandolfi et al., 2001  |
| Geraniol       | Butyric acid  | of Rhizopus oryzea :                   |                   | Dry mycelium of 4 strains of      |                        |
| 2-octanol      |               | - R.liquefaciens                       |                   | Rhizopus oryzea proved effective  |                        |
|                |               | (CBS 260.28)                           |                   | for efficiently catalyzing the    |                        |
|                |               | - R.delamar (CBS                       |                   | synthesis of hexylacetate and     |                        |
|                |               | 328.47)                                |                   | butyrate, geranylacetate and      |                        |
|                |               | - R.javanicus (CBS                     |                   | butyrate. The esterification of   |                        |
|                |               | 391.34)                                |                   | racemic mixture of 2-octanol and  |                        |
|                |               | - R.oryzea (CBS                        |                   | butyric acid proceeded with high  |                        |
|                |               | 112.07)                                |                   | enantioselectivity (>97%) using   |                        |
|                |               |                                        |                   | CBS 260.28 and CBS 112.07.        |                        |
| Geraniol       | Acetic acid   | Candida antartica                      | Heptane           | Conversion reached 85% for        | Ikeda and Kurokawa,    |
| Citronellol    |               | (entrap-immobilized in                 |                   | geranyl acetate and 75% for       | 2001                   |
|                |               | cellulose acetate-TiO <sub>2</sub> gel |                   | citronellyl acetate after 80 hrs. |                        |
|                |               | fiber by sol gel method)               |                   | The activity of the fiber-        |                        |
|                |               |                                        |                   | immobilized lipase was not        |                        |
|                |               |                                        |                   | affected by bulk water content or |                        |
|                |               |                                        |                   | the produced water.               |                        |

| Substrate                                                                                                                                          |                                                                                                                     | Балана                                                                                                                                                                                       | Reaction                                                                                                                         | Description                                                                                                                                                                                             | Defenence                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Alcohol                                                                                                                                            | Acid                                                                                                                | Enzyme/Lipase                                                                                                                                                                                | media                                                                                                                            | Description                                                                                                                                                                                             | Kelerence                    |
| Methyl alcohol<br>n-propyl alcohol<br>n-butyl alcohol<br>n-hexyl alcohol<br>n-octyl alcohol<br>Lauryl alcohol<br>Myristyl alcohol<br>Cetyl alcohol | Lauric acid                                                                                                         | Lipolase 100L<br>(Thermomyces<br>lanuginosus/Aspergillus<br>oryzea)                                                                                                                          | <i>Iso</i> -octane                                                                                                               | <i>n</i> -butyl reacted with lauric acid<br>with highest reaction rate.<br>Esterification reaction using<br>reactor with 4 baffles and 6<br>blades turbine impeller.                                    | Shintre <i>et al.</i> , 2002 |
| Lauryl alcohol                                                                                                                                     | Lauric acid                                                                                                         | Candida rugosa                                                                                                                                                                               | Chloroform<br>Toluene<br>Hexane<br>Cyclohexane<br>Octane<br><i>Iso</i> -octane<br>No-solvent                                     | 95% of substrate conversion.<br><i>Iso</i> -octane exhibited the best<br>reaction media.                                                                                                                | Wu et al., 2002              |
| Ethanol                                                                                                                                            | Acetic acid<br>1-propionic acid<br>Butyric acid<br>Hexanoic acid<br>Valeric acid<br>Heptanoic acid<br>Octanoic acid | Rhizopus chinesis<br>Rhizomucor miehei<br>Candida rugosa<br>P. Pancreas<br>C. Lipolytical<br>Candida antartica<br>P. nitens<br>Mucor javanicus<br>R. arrhizus<br>A. niger<br>Pseudomonas sp. | Ethanol<br>Acetone<br>Tetrahydrofuran<br>Pentanol<br>Benzene<br>Cyclohexane<br>Hexane<br>Heptane<br>Octane<br>Nonane<br>Dodecane | Esters conversion more than<br>80%, ethyl hexanoate gives the<br>highest conversion in heptane.<br><i>Rhizopus chinesis</i> is the best<br>catalyst. Stability until 840-981<br>hrs (half life period). | Xu et al., 2002              |

| Substrate     |              | En anna d'Altra anna                                                                                                                                                                                    | Reaction                | Description                                                                                                                                                                                                                                                                                   | Defenence                            |
|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Alcohol       | Acid         | Enzyme/Lipase                                                                                                                                                                                           | media                   | Description                                                                                                                                                                                                                                                                                   | Kelerence                            |
| Butyl alcohol | Lauric acid  | Candida rugosa                                                                                                                                                                                          | Iso-octane              | Ester yield after 48 hrs were<br>around 30-40mM (~80%).<br>Enzyme stability until 30 days.                                                                                                                                                                                                    | Nagayama <i>et al.</i> , 2002        |
| Geraniol      | Butyric acid | Mucor miehei (Gist-<br>Brocades) – powder form<br>-for dehydrated substances,<br>the enzyme was dried over<br>$P_2O_5$ under vacuum for 24h<br>at room T, the acid and the<br>alcohol were dried by<br> | Solvent free<br>system. | Study the role of water activity.<br>Conversion yield after 75 hrs at<br>37 <sup>0</sup> C :<br>-both substrates and enzyme not<br>dried (71%)<br>-substrates dried, enzyme not<br>dried (75%)<br>-substrates not dried, enzyme<br>dried (72%)<br>-both substrates and enzymes<br>dried (73%) | Karra-Chaabouni <i>et al.</i> , 2002 |
| Geraniol      | Acetic acid  | Candida cylindracea lipase<br>was entrapped in organic<br>hybrid sol-gel polymers<br>(formed within nonwoven<br>fabric) made from<br>tetramethoxysilane<br>(TMOS) and<br>alkyltrimetoxysilanes.         | hexane                  | Protein immobilization efficiency<br>was 91% and the specific activity<br>of the immobilized enzyme was<br>2.6 times that of the free enzyme.<br>Excellent thermal stability for<br>immobilized enzyme.                                                                                       | Chen <i>et al.</i> , 2002            |