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PENYESUAIAN LENGKUNG DAN PERMUKAAN G1 SECARA 
AUTOMATIK PADA BENTUK LUARAN IMEJ 

 

ABSTRAK 

 

Perkembangan pesat teknologi pengimejan menghasilkan sejumlah besar data 

yag boleh dipergunakan bagi pengumpulan maklumat dan pengetahuan. Perwakilan 

bermatematik objek di bawah perhatian dari imej-imej, boleh dimanipulasi bentuk 

dan saiznya. Ini membantu dalam penganalisisan dan rekabentuk.  

 

Sebagai suatu proses kejuruteraan undur, sasaran adalah untuk menghasilkan 

bentuk luaran bermatematik, imej kontur 2-D sesuatu objek secara automatik. 

Kemudian pembinaan semula suatu objek atau permukaan 3-D dari imej-imej 

keratan rentas akan dihasilkan, juga secara automatik. Antara objektifnya adalah 

untuk mendapat suatu perwakilan yang boleh dipercayai, cepat dan mempunyai 

ketepatan yang fleksibel.  

 

Kebanyakan pendekatan kepada pembinaan semula daripada kontur, 

menghasilkan permukaan C0 atau C1 dengan jejaring tiga segi. Teknik kami 

menghasilkan suatu lengkung bersesuaian kontur sesatah dan seterusnya permukaan 

G1 daripada siri kontur-kontur yang memuaskan secara geometri. 

 



 xii 

Mula-mula sekali, bentuk luaran kawasan di bawah perhatian diambil. Dengan 

menggunakan nilai-eigen matriks kovarian dan konsep lingkungan sokongan , titik 

penjuru dikesan.  Titik-titik penjuru ini adalah dalam pelbagai darjah kelicinan.    

 

Penyesuaian lengkung dilakukan dengan penyisipan titik-titik penjuru dan 

penghampiran data lain yang tinggal. Kubik-kubik  Bezier nisbah G1 yang 

ditentukan secara lelaran, disesuaikan antara titik-titik penting ini. Pemberat 

diubahsuai secara automatik untuk mendapat lengkung terdekat kepada titik-titik 

data digital seperti dikehendaki. Suatu parameter global panjang lengkuk dihampiri 

pada ketepatan ditentukan untuk setiap splin di setiap kontur. Lengkung kontur 

bersebelahan kemudian digabung untuk membina permukaan.  

 

Kejituan permukaan dikawal oleh suatu ukuran toleransi. Toleransi tinggi 

memberi suatu imej kasar manakala toleransi rendah menghasilkan imej lebih halus.  

Imej halus ini akan memerlukan pengiraan yang lebih. Rupa-bentuk  boleh 

dikenalpasti daripada data titik-titik penjuru dan diasingkan. Oleh itu, beberapa 

bahagian daripada  keseluruhan permukaan boleh dihasilkan secara berasingan. 

Teknik ini adalah automatik sepenuhnya.  
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AUTOMATIC G1 PARAMETRIC FITTING OF CURVES AND SURFACES 

TO OUTLINES OF IMAGES 
 

 

ABSTRACT 
 

Rapid advancement in imaging technologies produces massive amount of 

data which can be harnessed for information and knowledge gathering. 

Mathematical representations of objects of interest from these images are  amenable 

to manipulation of shapes and sizes, thus aiding analysis and design. 

 

As a process in reverse engineering, we aim to automatically reproduce a 

mathematical outline of a 2D contour based image of an object. Next we will 

reconstruct a 3D object (surface) from its cross-sectional images. It is our objective 

to have a representation which is reliable, reasonably fast and with flexible accuracy. 

 

  Most existing approaches to shape reconstruction from contours, yield C0 or 

C1 surfaces with triangular meshes.  Our technique produce a geometrically 

pleasing, G1 curve fitting of planar contours and a G1

First the outlines of the region of interest are extracted from the 2D image. 

Then using eigenvalues of covariance matrix and employing the concept of region of 

support, corner points of the outlines which are of varying degrees of smoothness 

are detected. Curve fitting is done by interpolating corner points and approximating 

the rest of the data. G

 surface from these series of 

contours.  

 

1 rational Bezier cubics, iteratively determined, are fitted 



 xiv 

piecewise between these significant points.  The weights are adjusted automatically 

to get curves that are as close as needed to the digitized data points.   A global arc 

length parameter is approximated at specified accuracy, for the spline at each 

contour. Adjacent contour curves are then blended together to form the surface.  

 

Surface accuracy is controlled by a tolerance measure. A high tolerance 

gives a coarse image while low tolerance produces finer images, albeit with more 

computation. Features can be identified from the corner points data and isolated. 

Thus, certain parts of the whole surface can be produced separately. Our technique is 

fully automatic. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

 

In engineering, medical sciences, digital art and other computer-based 

applications, there is a great need to create a computer representation of existing 

objects from some measured data. Most times, this representation need to be an 

accurate, consistent model of the original as it is used for numerically controlled 

precise manufacturing, for further designing and analysis, or to be used in 

verification and identification purposes such as in 3D face recognition and facial 

expression simulation and in facilitating medical procedures. It could also be simply 

an efficient method of storing visual data taking up drastically reduced storage 

space. 

 

Medical industry and services produce copious amount of images through its 

imaging facilities like computed tomography (CT), magnetic resonance imaging 

(MRI), positron emission tomography (PET) and confocal microscopy.  The 

acquired scans are usually segmentally parallel sections.  A 2D or 3D reconstruction 

of explicit models of interest, generate better understanding of its shape, structure 

and geometrical characteristics which are a great help in diagnostic considerations  

and surgical preparations. It is also a great aid in biological research.  
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Recent advances in scanning devise like the laser scanners easily produce 

real 3D data.  Also called range data, it gives geometric and texture information of 

an object. This type of data can  also be utilized in reconstructing  surfaces of solids 

or models.   

 

A 2D and 3D mathematical model will render itself well to manipulation of 

shape and size which is most applicable to computer-based applications like plastic 

surgery, animation and data verification. In face recognition and medical use for 

example, reliably accurate facial models are required. For animation or digital art, 

image details are not really wanted but speed of data transfer is of importance. Thus 

a coarser model is sufficient. Variation in accuracy of such models is an advantage. 

 

 

1.2 Objectives 

 

The first objective of this thesis is to automatically reproduce the outline of 

contour-based images in 2D. As a method in reverse engineering, it is created by 

way of digitizing an image that already exists and then fitting G1

Arabic font is chosen as it is difficult to fit because of its cursive character, 

having varying curvatures and cusps. Contours of anatomy or tumors bore certain 

similarities with outline shape of Arabic characters. Both are mostly circular based, 

 curves 

automatically to the outline of the digitized images. These planar reproductions will 

be applied to font and medical images. 
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containing smooth curves and corners. The work on Arabic fonts is extended to 

medical images. 

 

A second objective is to build up an automatic mathematical parametric 3D 

representation of a face from a series of planar contours.  What is needed is a 

reliable reproduction of a particular individual’s face and not a generic one obtained 

from a few measured data. The representation should also be readily manipulated in 

shape and size.  This work will try to visualize the 3D surface of a face (notably 

Asian) or a particular anatomy of a face, as an effort of  reconstruction after 

deformation.  

 

Being automatic, it releases doctors and researchers  from doing repetitive 

manual delineation. But more importantly, it furthers the depth of analysis whereby 

the object under study now has a definable contour or boundary. Analysis of growth, 

effects of tumour growth on its surrounding tissue or bone and visualizations of 

deformation and reconstruction of anatomy before and after surgery are some of its 

possible uses.  

 

It is also our objective to not only have a reliable representation, but also a 

fast one and easily accessible. Some  medical softwares like 3D Slicer  need  a 

dedicated workstation for its 3D visualizations. The program would just stop 

responding on a common laptop. Our algorithm will be built in Mathematica on a 2-

CPU laptop with 2 GB RAM.  
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1.3 Review of Techniques 

 

There are 3 major ways in creating 3D models from 2D images; volume 

visualizations, polygonal modelling and using parametric patches. In volume 

visualizations, the sequence of 2D images are stacked on top of one another and a 

3D matrix of voxels is created by raster interpolation of adjacent images along the z-

axis. The object of interest in the volume data set can be extracted by 2D or 3D 

segmentation procedures. For further refinement of the rugged boundary, the 

marching cubes algorithm of Nielson (2003) is usually used to construct a 

polyhedral model for representation of the object. This high resolution surface 

model comprises many tiny triangles. Algorithms of this category give good results 

but are very time consuming. 

 

In the polygonal modelling approach, the outlines of structure of interest are 

obtained at each slice. These  outlines or contours are stacked and a polygonal mesh 

is created between successive contours by connecting vertices or points on one 

contour to vertices (points) on the other. Meshes are either of triangular or 

rectangular form. This gives rise to the problem of corresspondence (how to connect 

vertices between contours), tiling (how to create meshes from edges) and branching 

(how to cope when there are slices with different number of contours).  

 

Polygonal or surface models and parametric patches are more difficult to 

construct initially, but they are faster, flexibly scaled, easily manipulated and usually 

are a more compact representation of the structure. They are also compatible with 
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surface-based  graphical tools available today and readily imported into CAD/CAM 

programs for further designing or manufacturing purposes.   

 

Most existing approaches to shape reconstruction yield C0

Johnstone and Sloan (1995) describe a method for creating Bezier surfaces 

from contours with cylindrical properties.  Song et al. (2006) use B-spline surface 

patches to reconstruct human faces from 3D point cloud data.  Eyad and Hassan 

(2007) segment the facial range data into several patches that is deemed to be 

 triangular surfaces 

where each triangular face is made up of 2 consecutive vertices from one contour to 

one vertex of the other contour. Fuchs et al.(1997) define the best reconstructed 

surfaces as the one with minimal surface area while Keppel (1975) bounds the 

maximum volume. Bajaj et al. (1996) provide a unified approach to solving the 

correspondence, tiling and branching problem by imposing three constraints on the 

surface when reconstructing. Stewart and McCracken (2002) discuss a semi 

automated system which uses neural network in the region delineation task with 

triangulation between contours.   

 

Fujimura and Kuo (1999) use isotropic deformation to create non self 

intersecting surfaces from nested contours citing that triangular tiling may at times 

gives rise to a visual artifact in the reconstructed shapes due to discontinuity in 

surface normal. Such discontinuity is less noticeable for rectangular tiling or free 

form surfaces. Triangular tilings which is piecewise linear also makes it difficult to 

incorporate feature corresspondence. Chen et al. (2007) give a correspondence 

determining algorithm followed by a hybrid tiling algorithm to tile contours. 
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adequately representing the surface. They then  reconstructed the human face with 

partial differential equation approximating the surface between 4 boundary curves 

for each patch.  

 

Chen et al.’s (2008) segmentation of confocal microscopy images is an 

example of 3D reconstruction in biomedicine. They use a template driven technique 

to produce 3D models of anatomic structure from series of images. Firstly, 

employing 3D segmentation method a template polyhedral model is produced. This 

model is then sliced giving 2D contours which acts as initial contours for the active 

snake contour models.  The next step is contour refinement which is done iteratively 

from slice to slice until the difference between 2 successive iterations reach a 

specified tolerance or the number of iterations exceed a specified number. These 

final contours are used to reconstruct the polyhedral model of the anatomy 

concerned.   

 

Mishchenko (2009) meanwhile, reconstruct neural tissue for large number of 

serial sections micrographs by first detecting the cell profiles of each image in the 

series with a multi-scale ridge detector. The adjacent profiles are then linked based 

on their shape and texture producing a 3D segmentation. 

 

If the serial profiles of object is mathematically represented the 3D 

representation can be made to  be amenable to manipulations and distortion. This is 

very useful in facial reconstruction surgeries and animation.  
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 Sarfraz (2002 – 2008) extract outlines of images and then approximately 

profiles them with parametric bezier spline curves. The approximation process 

involves getting boundary  of the planar object, detecting corner points and fitting 

curves to this boundary through the corner points and other additional points or 

knots when necessary to achieve good approximation.  Sarfraz (2002) uses least 

square fitting to approximate  C1

Sarfraz (2007b) fit piecewise parametric cubic spline interpolant with shape 

parameters, between corner points.  These parameters tightened or loosened the 

curves to fit the data. The optimal fit is obtained by optimizing the parameters using 

Stochastic Evolution technique developed by Saab (1991). Sarfraz (2008), use an 

iterative simulated annealing technique in adjusting shape parameters to optimally 

fit a G

 cubic spline to  the corner points (or points of high 

curvature). The approximation is made better by splitting the curve segment at 

points where the distance between the curve and the boundary is the greatest, and 

refitting it. Sarfraz (2007a) and Masood (2008), do not use the expensive least 

square fitting. In Sarfraz (2007a), the unknown middle control points of the Bezier 

cubic is obtained by exploiting the properties of a bezier curve. An optimal 

approximation  is found by moving the initial middle control points along its slope. 

Splitting and refitting is done to achieve  accepted  threshold.  Masood (2008) also 

obtained the control points mathematically from the given curve. The technique 

produces a control points spread or CPspread where if the spread does not satisfy a 

threshold value, the curve will be subdivided. The technique is fast but since it does 

not approximate the error, the accuracy of the fit in absolute terms is not known, but 

is reflected in the CPspread.  

 

1 cubic spline to the segments formed by the corners and knots. Sarfraz 
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(2007c) obtain the knot points using a fuzzy randomized knot insertion technique. A 

cubic spline interpolant is fitted through all the corner and knot points. The 

approximation accuracy  of spline to the outline is measured by the distance of a 

chosen random point to the digitized outline. Thus much of the computation is 

reduced.  

 

The review for the particular techniques of boundary extraction, corner 

detection and arc-length re-parameterization will be dealt with in their particular 

chapters. 

 

 

1.4 Work scheme 

  

It is the aim of this work to fit geometric curves to the contours of digitized 

images. The whole process should be automatic. The work is started off with fitting 

of Arabic fonts that could preserve much of its cursive, smooth flowing calligraphic 

character. Arabic fonts are chosen for they contain varying geometric forms, i.e. 

curves of varying degree of smoothness, cusps, inflections and straight sections. 

Successful fitting of these characters bode well for fitting of any other images.  

 

The work is then extended to finding outlines of medical images which are 

very useful. Arabic fonts and medical images of anatomy or growth are similar in 

the sense that they are circular based, containing smooth curves and corners. There 

is actually extensive literature on finding the outlines.  
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The method consists of two main parts- segmentation and curve fitting. 

Segmentation involves digitizing the image, getting its outline or boundary, and then 

obtaining equidistant data points to represent the outline. Using a suitable corner 

detection method, the corners or corner data points of the outlines are identified. 

This first stage breaks the contour outline into segments at the corners. 

 

  The next stage fit curves to these segments.  A good fitting or representation 

of the outline will depend much on good determination of corner points.  Spurious 

corner points cause more segmentation than necessary whilst undetected corner 

points hamper optimum fitting which may again require additional segments.  More 

segments not only mean more computation but also a representation which is more 

fragmented and less smooth. 

 

The fitted curve should ideally be smooth and reproducing outlines which are 

accurate to the image it represents.  The curves will be approximating the contour 

data points and only interpolates some - primarily the corner points.  Goodness of fit 

will be measured by how close the curves are to the contour data points.  The curves 

need to be within a certain tolerance to them.  This tolerance is the maximum 

distance between the curve and any contour data points.   

 

The curves are made to be geometrically smooth at joints.  Mathematical 

smoothness is not preferred as loops may form in order to maintain this type of 

continuity at joints which is geometrically not pleasing.  
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The fitting is started off with G1 Bezier cubics. If the fitted curves does not 

satisfy the tolerance, the curve is framed in rational cubics. Automatic adjustments 

and determination of these weights using an iterative technique are employed to 

reach the tolerance. If the iterative limit is reached but the tolerance is still not 

satisfied, the curve is then split and refitted at additional points. The whole fitting 

process is repeated until the tolerance is reached. Thus the curves interpolate 

‘significant points’ –corners and the additional points- and approximate other 

boundary points to a certain specified tolerance. The curves are G1

Our technique produces a G

 composite 

rational Bezier cubics.   

 

The serial contours are stacked and blended together to form the surface. To 

do this, corresponding points on the contours are established and matched. This is 

done by reparameterizing  the contours in arc-length parameter. Since the analytical 

arc length reparameterization is almost impossible to do, an approximate tailored to 

the required accuracy will be obtained. A fast technique using cubic Bezier is used 

to parameterize the contour as functions of arc length. 

 

The surface is formed when the contours are interpolated using monotonic 

cubic Hermite interpolation, producing rectangular meshes.    

 

1 surface from cross sectional contour curves of 

images. Surface accuracy is controlled by a tolerance measure. A high tolerance 

gives a coarse image while a low tolerance produces finer, more accurate images, 

albeit with more computations. Features can be identified from the significant points 

data and isolated. Thus certain parts of the whole surface can be produced 
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separately; for example the nose or ears from a face. The technique is fully 

automatic except for determining the first boundary point of the first image cross 

section. See Figure1.1 for the full algorithm. 

 

 

Figure 1.1      The main algorithm 
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All programming and rendering are done in Mathematica. The image of the 

Arabic font is scanned into the computer while Slicer-3D is used to access the 

computed tomography, CT images and for region thresholding. The 3D visualization 

technique is applied to a  set of 120 dicom images of the head at 1.5mm apart to 

visualize a human face. All work is done on a 1.83 GHz, 2 GB RAM computer 

laptop.  

 

 

1.5 Outline of thesis 

 

Chapter 1 states the motivation and objectives of the study. It also contains a 

review on the major ways of reconstructing 3D surfaces from 2D planar images and 

a scheme of work which details the methodology and main algorithm. 

 

Chapter 2 starts with the first step in the main algorithm which is boundary 

extractions. The next step of corner detection is  addressed in Chapter 3. It consists 

of a review of corner detection techniques, introduces and explains our technique 

and the subsequent results when applied to Arabic font images. 

 

Chapter 4 dwells on parameterization of the fitting curve  and how 

reparameterization can be done. Chapter 5 explains the fitting of G1 rational cubic 

Bezier between the corner points detected. The outline of the process is given in 

Figure.5.2. The technique is again applied to font images and the results are 

discussed. 
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Arc length reparameterization is dealt with in Chapter 6. A review of present 

techniques of arc length reparameterization can be found in the introductory section. 

The technique used in this thesis is presented and explained. The performance of the 

technique is evaluated on different shaped curves. As each contour of the planar 

images consists of many cubic rational curves composed together, a global 

parameter is necessary to sew them up. This is done at the end of Chapter 6. Chapter 

7 deals with Hermite blending of the contours.   

 

Chapter 8 discusses the results obtained by applying the algorithm to serial 

CT images of the head producing the facial image of a person. Chapter 9 concludes 

the thesis by giving an overview of the whole process of reconstruction and its 

results. 
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CHAPTER 2 

CONTOUR EXTRACTIONS 

 

 

Digital images of the Arabic letters are obtained by scanning its designed 

pictures. The CT scanned images are accessed through Slicer 3D and saved as 

bitmap images in the computer to be processed. The boundary is then extracted.  

There are many ways to get the boundary, such as in Avrahami and Pratt (1991), 

Gonzalez and Woods (2002) and other good edge detection techniques.  Some 

involve getting it directly from gray level images to minimize errors in detection. 

However getting the boundary from binary image is simpler and faster.  The font 

image here is considered a “simple” image i.e. without tremendous detail since it is 

two tone - black characters on white background, justifying the use of binary 

methods.  

 

However care is taken to lessen errors in detection. Preprocessing should be 

done before converting into binary image by thresholding.  A closed contour of one 

pixel thick is extracted from the binary image. 

 

2.1 Contour  extraction 

 

In this thesis the digital images obtained from scanning is smoothed out 

using a 7 by 7 averaging spatial filter. The resulting digital image is then converted 

into binary image by thresholding.    The boundary of the image is then extracted 

using a technique in mathematical morphology,       (A) =β A – ( A Ө B )  where A is 
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the set of all black pixels, B is the 3x3 structuring element and (A)β  is the boundary 

of set A.  The operations Ө and  represent  the operation of erosion and difference 

respectively.  

 

The chosen single-pixel, digitized data-points to represent the contours of the 

images are obtained by using a 7 by 7 spatial filter. This filter is made to move along 

the boundary, extracting the position of every third pixel on the boundary and 

throwing away, the intermediate two, as demonstrated in  Figure 2.3. The data-

points obtained are already ordered, either clockwise or anti-clockwise as desired.  

 

If the data-points of the contour are too close together, some points can be 

thrown out from the clockwise (anti-clockwise) arrangement.  The use of larger 

spatial filter (in the previous paragraph) to get wider-spaced data-points is not 

advisable as it may not be able to retain contour details especially at sharp corners. 

The products are contours made of data points that are approximately equidistant 

from each other. Here the distance is approximately three pixels. 

 

2.2 Contours of font images 

 

                                             

                                           a.                                                           b. 

Figure 2.1      Digitized images of  a.  “qaf”  and b.  “dal” 
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The digitized images of the Arabic font “qaf” and “dal” in Figure 2.1 are 

produced by scanning their designed images. The outlines of the fonts as in Figure 

2.2 are then obtained by mathematical morphology. These outlines are later replaced 

by equidistant data points obtained by the technique explained in Section 2.1. The 

data points are approximately three pixels apart as shown in Figure 2.3.  

 

                                                    

                                        a.                                                             b. 

Figure 2.2      Outlines of   a.  “qaf” and  b.  “dal” 

 

                                                                 

                                        a.                                                              b. 

Figure 2.3      Contour of  a.  “qaf” and  b.  “dal” 
 

 

 The result for the boundary extraction of CT scan images will be dealt with 

later together with its 3D visualization. 
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CHAPTER 3 

CORNER DETECTION 

 

3.1 Review 

 

Corner detection methods fall broadly into 2 categories – ones that act 

directly on gray levels and those that are based on boundaries.  There are two main 

techniques in gray level methods.  Template-based corner detection involves 

determining similarities between templates of specific angles with all sub-windows 

of the same size in the image.  This technique need a huge amount of computation.  

Gradient-based corner detection measures the curvature of an edge that passes 

through a neighborhood of the gray level image by using the edge strength and 

gradient of edge direction.  This method is not good at localizing corners. 

 

  Methods based on boundaries are simpler and faster. Boundaries are 

represented either by points or chain codes. Generally chain code methods like 

Freeman and Davis (1977), Rosenfeld and Johnson (1973), Rosenfeld and Weszka 

(1975), Beus and Tiu (1987), Rutkowski and Rosenfeld (1978), Cheng and Hsu 

(1988), Sankar and Sharma (1978) and Medioni and Yasumoto (1987) involve 

computing some measure or estimate of curvature or measure of significance at each 

point.  The corner points are those that are above a certain threshold and are a local 

maximum.  Most of these techniques are dependant on an input parameter which 

actually refers to the degree of smoothing used when calculating the estimates of 

curvature.  The Rosenfeld-Johnson (1973) corner detector is the k-cosine.  For point 

i with coordinates ),( ii y x ,  the k-cosine (cik ) is given as 
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( ) ( )kiikiiikkiikiiik
ik ik

ikik
ik y - y   ,x - x    b             ,y - y   ,x - x   a       where

b a
b  a

    c −−++ ==
•

=  

and k is the  variable degree of smoothing.  Corner points are those with cik

Witkin (1983) introduced scale-space analysis which deals with descriptions 

of the digital boundaries at multiple scales, integrating and managing them to get 

worthwhile information.  Mokhtarian and Mackworth (1986) further applied it to 

two-dimensional shapes, locating zero-crossings of curvatures. Lindeberg (1990) 

developed the scale-space theory for discrete signals.  Scale-space analysis of a 

signal is generally made by convolving it with the Gaussian kernel treating its 

parameter as a continuous scale parameter.  A scale-space map is produced where 

the arc length is shown along the x-axis and the scale parameter along the y-axis.  

The image in this half-plane shows location of curvature extreme or zero crossings 

 greater 

than a certain threshold and are local maxima.   

 

A large degree of smoothing means that the image is looked upon at a big 

scale thus losing the finer details or features of the curve.  On the other hand, a small 

degree of smoothing may give too much detail of which some may be spurious.  On 

a digital image which has multiple size features, a large degree of smoothing may 

result in undetected dominant or corner points, whereas a small degree may result in 

false corners being present. Sankar and Sharma’s (1978) algorithm do not require 

input parameters and takes into account various levels of detail but it is not effective 

for image with different size corners.  The problem of corner detection is not just 

about getting an accurate estimate of curvature but also a matter of scale or 

alternatively the localization of corners. 
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of curvature at varying scales.  Rattarangsi and Chin (1992), Ray and Ray (1997) 

and Asada and Brady (1986) detect corners using scale-space,  but these methods are 

computationally heavy and the dominant points need to be tracked down from the 

scale-space map.  The digital scale-space map is organized to a well-defined 

structure of a tree and later parsed to detect corners or dominant points.  Saint-Marc 

et al (1991) present an adaptive smoothing method to produce a new scale-space 

representation without using the Gaussian kernel.  The method iteratively convolves 

the signal with a small averaging mask weighted by a measure of the signal 

continuity at each point.  No tracking of dominant features is needed as the features 

are already correctly localized from the smoothing, but it is still computationally 

heavy. 

 

Corners can be seen as the dominant projecting angles in a figure. A region 

of support for a digitized corner point consists of all the data points in the figure that 

bear the point as the dominant one. To Langridge (1972), each boundary point of a 

closed curve should have its own view of the curve and a dominant point’s view 

constitutes a meaningful region of support of the curve, which should block the view 

from the neighbouring non dominant points.  Teh and Chin (1989) observed that 

dominant points’ detection depends not only on the accuracy of the measure of 

significance (curvatures) but mainly precise determination of support.  They show 

that several methods give better detection when their region of support is determined 

well.  In their paper, they propose a method that first determines the region of 

support for each point based on its local properties, and then computes measures of 

relative significance of each point.  Dominant points are then detected by a process 

of non maxima suppression.  The adaptive region of support for a point i is 
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computed from the length of the chord joining points of the left and right arm and 

the perpendicular distance of  i to the chord.  The region of support is symmetric. No 

input parameter is needed.  The algorithm seems to perform well on images 

consisting of multiple size features.  Wu (2003) uses adaptive bending value to find 

region of support and a break-point detection procedure to find dominant points.  

Bending value for point i is defined as; 

( ) ( ) ( ) ( ){ }ikiik-iikiik-iik y - yy - yx - xx - xmax    b ++ ++= ,  

Starting with k=1, bik is calculated until bik < bik+1

Mathematical morphology has also been used to detect corners.  Peak and 

valley extraction of an object produce areas around corner points. Zhang and Zhao 

(1997) shrink corner portion to a single corner according to boundary information.  

Lin et al (1998) modified the morphological corner detectors so that they can find 

the actual corner points.  The method is effective in detecting corners of tremendous 

objects but it is difficult to choose a suitable structuring element – whether a square, 

rhombus or circle – to fit working purpose. Liu et al (2001) uses the method on 

morphologic skeleton.  The input source image here is represented as a polygon.  

 and k is taken as the length of 

region of support of the point i.  This method is fast and needs no input parameters. 

 

Tsai (1997) used neural networks for a robust detection and localization 

regardless of object orientation in the image.  Curvature here is associated with the 

angle between the forward and backward arms.  Points with local maximum 

curvature are considered as corners.  However the region of support still has to be 

identified.  It gives good detection for polygonal and curved objects in arbitrary 

orientation but for ones with only moderate scale changes. 
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Corners are obtained by detecting the zero radius of the maximum plate on the 

morphologic skeleton.  The method is good for noisy images, but its hardware 

implementations are complex as it uses a Gauss filter for noisy images.  

Mathematical morphology method always has one advantage over the other 

methods;  it is fast and simple since all calculations are done only on integers, not on 

floating point numbers.   

 

Many methods detect spurious corners for circular objects of varying radii.  

In overcoming this, Tsai et al. (1999), propose a different way of measuring corners.  

Their method is based on eigenvalues of the covariance matrix over a region of 

support.  If points form a linear or almost linear line, the small eigenvalue will be 

close to zero.  Bigger curvature between points in the region of support results in 

bigger values for the small eigenvalue of the covariance matrix.  A point is said to be 

a corner if its small eigenvalue exceeds a predetermined threshold.  Corners are 

further separated by at least k points, where k denotes the half-length of region of 

support.  This method assumes a symmetric region of support.  It gives robust 

detection for object shapes containing various curved and circular arcs.  However 

the way to get the region of support was not prescribed.  The authors suggested the 

method proposed by Teh and Chin (1989) to be used for the region of support.  

 

Guru and Dinesh (2004) said that the left arm and right arm of a point are not 

necessarily of the same length and it is more reasonable and natural for the region of 

support to be asymmetric.  They proposed a non-parametric method that used a 

small eigenvalue of the covariance matrix of a sequence of connected points to get 

an asymmetric region of support.  It is known that for a straight line segment, the 
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small eigenvalue in the continuous domain is zero.  The corners are then determined 

based on a set of rules regarding size of region of support, limit value and curvature 

value.  The limit value of a point i is the number of boundary points for which the 

point i is an end point of their region of support.  Curvature at point i is the 

reciprocal of the angle made by the left and right arms at i.  The method is said to be 

computationally efficient, giving no spurious corners on smooth curves and is 

invariant to image transformations. 

 

Fuzzy logic has also been used to determine corner points.  Lee and Bien 

(1996) applied fuzzy techniques to gray level images.  

 

Sarfraz and Masood (2007d)  introduced a corner detector for planar curves 

by sliding a set of three rectangles along the curve and counting the number of 

contour points lying in each rectangle. Criteria for corner detection are proposed. 

The method does not involve any calculation of angular measure or curvature.  

 

3.2 Corner detection technique 

 

Arabic fonts consist of sloping, curvy and circular arcs of various radii and 

curvature and as our representation of these fonts involves fitting curves to segments 

generated by corners, spurious corners will not only make the fonts look fragmented 

but will cost a lot of unnecessary calculations.  It is to be noted that a visually good 

representation of Arabic fonts, depends much on detecting the right set of corner 

points.  
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Here curves are made up of a set of data points separated by approximately 

equal distance from each other. Due to the digitization process i.e. from image to 

data points, the data points are not a perfect construction of the curves. The 

collection of data points present irregularities although the curves that they represent 

are smooth. Thus any corner detection method that depends on angular measure 

(angles between points) will not be able to pinpoint accurately the right corner points 

and give spurious corners. 

 

Tsai et al (1999) and Guru and Dinesh (2004) contend that using eigenvalues 

of covariance matrix results in less spurious corners and is most suitable for 

searching for corners of circular, smooth curves of various radii.  However, while 

they use small eigenvalues of the covariance matrix, we use a different but related 

measure, which is better for our purpose and technique.  

 

3.2.1 The covariance matrix  

 

Let pi ),( ii yx be a data point with coordinates  and a symmetric range of 

support of s points.  Let )( ipS be the set containing ip  and all the data points in its 

range of support. Thus )( ipS consists of all data points between and including sip −  

and sip + , that is 

 )( ipS = { pj 









=

2221

1211

cc
cc

C

 \   j = i-s, i-s +1,i-s +2, . . ., i, i +1, i+2, . . . , i+s-1, i+s} 

Let  be the covariance matrix of )( ipS . C is a 2 by 2 matrix of the 

covariances between the elements of )( ipS , i.e. 
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 xc and yc are the geometrical centre of the curve segment )( ipS . C is symmetric 

and positive semi-definite and thus all its eigenvalues are real and non-negative. Let 

sλ  and lλ  be the small and the large eigenvalue of C respectively. When )( ipS  is a 

straight line, sλ  is zero regardless of the length and orientation of the line segment.  

If )( ipS  is a circle, sλ  and lλ  are equal. Curve segment with sharp angles have 

larger sλ  than smoother ones. The smaller the radius of a circular arc, the larger sλ  

will be. This is consistent with the measure of curvature of 
r
1  where r is the radius 

of the curve’s osculating circle.  

 

Figure 3.1 shows four half circles A, B, C and D, of differing radii. Their 

radii are measured in pixels with the smallest, having 17 and the largest, 84. The 

corner point of each half circle is accepted to be the middle data point.  Figure 3.2a. 

and 3.2b. show these corner points with a support of three and six respectively. 

Table 3.1 and Table 3.2 show the values of the small eigenvalue sλ  , large 

eigenvalue lλ  and rλ  where 
ls

s
r λ+λ

λ
=λ ,  for circular shapes A, B, C and D 

with support of three and six, respectively.  
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Figure 3.1   Half circles A, B, C and D with support 3, 6, 12 and 18 respectively 
 
 
 

                 

                                                                    

                      a.                                                                      b. 

 

                                                       

                                   c. 

 
Figure 3.2      a. Circular A, B, C and D with support = 3,   b. Circular B, C 
                     and D with   support = 6,      c.   Circular A, B, C and D with 

                       support approximately halved of  Figure 3.1. i.e. 2, 3, 6 and 9 
                                     respectively 

 

Figure 3.3 shows three half ellipses A, B and C with lengths of minor axes of 

71, 89 and 107, respectively. The corner point of each ellipse is the middle data 
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