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PENGHASILAN BIODIESEL DARIPADA MINYAK MASAK SISA

MENGGUNAKAN MANGKIN TIMAH OKSIDA TERSULFAT

ABSTRAK

Biodiesel adalah sejenis bahan api yang boleh diperbaharui, biodegradasi,

tidak bertoksik dan boleh dihasilkan dengan mudah menerusi tindak balas

transesterifikasi. Namun, penggunaan minyak masak sayuran tulen sebagai stok

suapan biodiesel adalah tidak praktikal dan ekonomikal kerana harganya yang tinggi

dan keutamaan sebagai sumber makanan. Minyak masak gred rendah, lazimnya

minyak masak terpakai boleh dijadikan satu alternatif yang lebih baik;

walaubagaimanapun, kandungan asid-asid lemak terbebas yang tinggi dalam minyak

masak terpakai menyebabkan penghasilan biodiesel tidak efektif sekiranya

dihasilkan melalui proses transesterifikasi homogen yang kini diaplikasikan dalam

industri biodiesel. Oleh itu, dalam kajian semasa ini, mangkin oksida timah tersulfat,

SO4
2-/SnO2 telah disediakan melalui kaedah impregnasi untuk penghasilan biodiesel

menerusi proses transesterifikasi heterogen. Kesan mangkin dwilogam juga dikaji, di

mana SnO2 diadunkan dengan SiO2 atau Al2O3, masing-masing mengikut nisbah

berat yang berbeza dengan tujuan untuk meningkatkan aktiviti mangkin SnO2. Kesan

parameter tindak balas seperti suhu dan tempoh pengkalsinan mangkin, suhu tindak

balas, muatan mangkin, nisbah metanol kepada minyak dan masa tindak balas turut

dikaji untuk mengoptimumkan keadaan tindak balas. Didapati bahawa SO4
2-/SnO2-

SiO2 (3) menunjukkan aktiviti mangkin yang tinggi dengan hasil optimum 92.3 %
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pada suhu tindak balas 150oC, muatan mangkin 3 % berat (merujuk kepada keberatan

minyak), nisbah metanol kepada minyak adalah 15 dan masa tindak balas 3 jam.

Sifat-sifat fizikal dan kima mangkin juga ditentukan menggunakan analisis XRD,

NH3-TPD, denyutan penjerapan kimia, pengimejan FT-IR dan SEM. Dalam kajian

penyahaktifan dan penjanaan semula mangkin, didapati bahawa mangkin

dinyahaktifkan disebabkan pengumpulan spesies karbon yang tinggi pada permukaan

mangkin. Tambahan pula, spesies berkarbon itu didapati tidak dapat disingkirkan

dengan sepenuhnya walaupun langkah penjanaan semula dilakukan. Selain itu,

model kinetik transesterifikasi menggunakan pengubahsuaian mangkin SO4
2-/SnO2

telah berjaya dilakukan, di mana keseluruhan tertib tindak balas ialah tiga, tertib

kedua terhadap kepekatan trigliserida dan tertib satu terhadap kepekatan metanol.

Lebih-lebih lagi, didapati bahawa tenaga pengaktifan yang diperolehi dalam kajian

ini adalah setanding dengan tenaga pengaktifan yang diperolehi daripada tindak balas

menggunakan mangkin homogen.
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PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL USING

SULFATED TIN OXIDE CATALYST

ABSTRACT

Biodiesel is a renewable, biodegradable and non-toxic fuel which can be

easily produced through transesterification reaction. However, current commercial

usage of refined vegetable oils for biodiesel production is impractical and

uneconomical due to high feedstock cost and priority as food resources. Low-grade

oil, typically waste cooking oil can be a better alternative; however, the high free

fatty acids (FFA) content in waste cooking oil does not allow efficient production of

biodiesel via current commercial homogeneous transesterification process. Therefore,

in the present study, superacid sulfated tin oxide catalyst, SO4
2-/SnO2 has been

prepared using impregnation method for biodiesel production via heterogeneous

transesterification process. The bimetallic effect of the catalyst was also studied, in

which SnO2 was mixed with SiO2 and Al2O3, respectively at different weight ratio in

order to enhance the catalytic activity of SnO2. The effect of different reaction

parameters such as calcination temperature and period of the catalyst, reaction

temperature, catalyst loading, methanol to oil ratio and reaction time were studied to

optimize the reaction conditions. It was found that SO4
2-/SnO2-SiO2 with weight ratio

of 3 exhibited an exceptional high activity with an optimum yield of 92.3% at

reaction temperature of 150oC, catalyst loading of 3 wt % (referred to weight of oil),

methanol to oil molar ratio of 15 and reaction time of 3 hours. The physical and

chemical properties of the catalysts were also characterized using XRD analysis,



xx

NH3-TPD, Pulse Chemisorptions, FT-IR and SEM imaging. On deactivation and

regeneration study, the catalysts were found to deactivate after the first reaction cycle

due to high accumulation of carbonaceous species on the catalyst surface. In addition,

the carbonaceous species were not removed completely even after the regeneration

step. Apart from that, a kinetic model has been developed and the overall order of the

transesterification reaction catalyzed by modified SO4
2-/SnO2 was found to be third

order in which second order for triglyceride and first order for methanol.

Furthermore, the activation energy obtained in the present work was comparable to

reaction catalyzed by homogeneous base catalyst. This study therefore demonstrates

that waste cooking oil can be a potential source of biodiesel via heterogeneous

catalyst using modified SO4
2-/SnO2.
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CHAPTER ONE:

INTRODUCTION

The world is currently facing the worst energy crisis in its entire history.

Many countries in the world are still heavily dependent on crude petroleum as the

source of electricity and transportation fuels and its price has been hitting record

height every other day. Thus, the only possible solution to this crisis is to find a

sustainable (renewable) and economically feasible source of alternative energies.

There are many alternative energies that may fulfill the first criteria (sustainable)

such as wind, solar, geothermal and biomass. However, not many of them can fulfill

the second criteria (economically feasible). The best option that would fulfill both

criteria is biofuel, particularly from readily available biomass feedstock such as

sugarcane, corn, seed oil from soybean, rapeseed and palm. It has been proven

scientifically that sugarcane and corn can be converted to bioethanol while the

various oilseeds to biodiesel, efficiently. Apart from that, utilization of biofuels

contributes to net zero carbon emission which subsequently would mitigate the effect

of global warming and overcome the dwindling reserves of fossil fuel.

1.1 Current status of crude oil reserves and the potential of biodiesel

To date, fossil fuels account over 82 % of the primary energy consumed in

the world, and 60 % of that amount is used in transportation sector (International

Energy Agency, 2008). On the other hand, global consumption of diesel fuel is

estimated to be 934 million tonnes per year (Kulkarni and Dalai, 2006). Thus, there

is no doubt that fossil oil will be exhausted in less than 10 decades as predicted by

The World Energy Forum if no new oil well is found (Sharma and Singh, 2009). The

main reason that caused the fast diminishing of energy resources is due to rapid
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population and industrialization growth globally. Due to this phenomenon, the era of

cheap crude oil is no longer exists leading to high rocketing price of petroleum,

bellicose conflicts and increasing number of undernourished people especially from

undeveloped countries. Figure 1.1 presents the projection of world energy demand in

the near future indicating that there is an urgent need to find more new renewable

energies towards assuring energy security worldwide (Exxon Mobil, 2004).

Figure 1.1: Projection of energy demand for the near future
(Exxon Mobil, 2004).

Renewable energy has been highlighted in the last ten years due to its

potential to replace fossil fuel especially for transportation. Renewable energy

sources such as solar energy, wind energy, hydro energy, and energy from biomass

and waste have been successfully developed and used by different nations to limit the

use of fossil fuels. Nevertheless, based on recent study from International Energy

Agency (IEA) (International Energy Agency, 2008), only energy produced from

renewable sources and waste has the highest potential among other renewable

0

20

40

60

80

100

120

140

160

180

1980 1985 1990 1995 2000 2005 2010 2015

M
ill

io
n 

of
 B

ar
re

ls
 p

er
 d

ay
 o

f O
il 

Eq
ui

va
le

nt World demand

Required
new

production

Base
investment

required

Existing
production



3

resources as shown in Figure 1.2. Combustible renewable and waste accounted for

10.1 %, compared to hydro energy 2.2 % and other 0.6 % (included geothermal, solar

wind and heat) (International Energy Agency, 2008). Hence, it is predicted that

renewable energy from combustible energies such as biodiesel will enter the energy

market intensively in the near future to diversify the basket of global energy sources.

Figure 1.2: World total energy supply by fuel (Mtoe) in year 2006
(International Energy Agency, 2008).

1.2 Biodiesel

Biodiesel is an alternative diesel fuel derived from vegetable oils or animal

fats (Vasudevan and Briggs, 2008). The main components of vegetable oils and

animal fats are triglycerides or also known as esters of fatty acids attached to a

glycerol. Normally, triglycerides of vegetable oils and animals fats consist of several

different fatty acids. Different fatty acids have different physical and chemical
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properties; the composition of fatty acids will be the most important parameters

influencing the corresponding properties of  a vegetable oils and animal fats

(Gerhard Knothe, 2004).

Direct use of vegetable oils and animal fats as combustible fuel is not suitable

due to their high kinematic viscosity and low volatility. Further more, its long term

use posed serious problems such as deposition, ring sticking and injector chocking in

engine (Muniyappa et al., 1996). Therefore, vegetable oils and animal fats must be

subjected to chemical reaction such as transesterification to reduce the viscosity of

oils. In a transesterification reaction, triglycerides are converted into fatty acid

methyl ester (FAME), in the presence of short chain alcohol, such as methanol or

ethanol, and a catalyst, such as alkali or acid, with glycerol as a by-product

(Vasudevan and Briggs, 2008). Equation 1.1 depicts the transesterification reaction

(Ma and Hanna, 1999). Another alternative way to produce biodiesel is through

thermal process or pyrolysis. However, this process is rather complicated to operate

and produce side products such as carbon monoxide (CO) and carbon dioxide (CO2)

that have no commercial value (Sharma and Singh, 2009).

CH2-O-C-R1

CH2-O-C-R3

O

O

O

Triglyceride

+ 3CH3OH

CH3O-C-R1

O

CH3O-C-R2

O

O

CH3O-C-R3 CH2-OH

CH2-OH

CH-OH+

Methanol Methyl Ester Glycerol

CH-O-C-R2
(1.1)
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1.2.1 Composition of vegetable oils and fats

Vegetable oils and animal fats usually have hydrophobic properties, which

mean they are insoluble in water. As mention earlier, triglycerides are made up of

one mole glycerol and three moles fatty acids. Fatty acids vary in terms of carbon

chain length and number of unsaturated bonds (double bonds). Typical fatty acids

compositions found in several vegetable oils are summarized in Table 1.1 (Ma and

Hanna, 1999). Fatty acids that have no double bonds are termed "saturated" such as

Stearic acid. These chains contain maximum number of possible hydrogen atoms per

atom carbon. Fatty acids that have double bonds are termed "unsaturated" such as

Linoleic acid. These chains do not contain maximum number of hydrogen atoms due

to the presence of double bond(s) on some carbon atoms. Normally, natural

vegetable oils and animal fats are obtained in the crude form through solvent

extraction or mechanical pressing, containing a lot of impurities such as free fatty

acids, sterols and water (Di Serio et al., 2006). In fact, these free fatty acids and

water content will have significant effect on the transesterification reaction,

especially if an alkaline catalyst is used (Lotero et al., 2005). They could also

interfere with the separation of FAME and glycerol during water washing

(purification step) because of soap formation (Kulkarni and Dalai, 2006).

1.2.2 Composition of biodiesel

Biodiesel is a mixture of fatty acid alkyl esters. In the case when methanol is

used as reactant, it will be a mixture of fatty acid methyl esters (FAME) whereas if

ethanol is used as reactant, the mixture will be fatty acid ethyl esters (FAEE).

However, methanol is commonly and widely used in biodiesel production due to

their low cost and availability. Based on different feedstock, biodiesel will have
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different composition of FAME. Table 1.2 shows the common composition of

FAME in biodiesel (Ma and Hanna, 1999).

Table 1.1: Typical fatty acid composition for different common oil source

(Ma and Hanna, 1999).

Fatty acid Soybean Cottonseed Palm Lard Tallow Coconut

Lauric (C12:0) 0.1 0.1 0.1 0.1 0.1 46.5

Myristic (C14:0) 0.1 0.7 1.0 1.4 0.8 19.2

Palmitic (C16:0) 0.2 20.1 42.8 23.6 23.3 9.8

Stearic (C18:0) 3.7 2.6 4.5 14.2 19.4 3.0

Oleic (C18:1) 22.8 19.2 40.5 44.2 42.4 6.9

Linoleic (C18:2) 53.7 55.2 10.1 10.7 10.7 2.2

Linolenic (C18:3) 8.6 0.6 0.2 0.4 0.4 0.0

Table 1.2: Chemical structures of common FAME (Ma and Hanna, 1999).

Methyl Ester Formula Common
acronym

Molecular
weight

Methy Palmitic C17H34O2 C16:0 270.46

Methy Stearate C19H38O2 C18:0 298.51

Methy Oleate C19H36O2 C18:1 296.50

Methy Linoleate C19H34O2 C18:2 294.48

Methy Linolenate C19H24O2 C18:3 292.46

1.3 Current status of biodiesel production

With uncertainty in the crude fossil fuel price and near all-time high,

biodiesel has emerged as the fastest growing industries worldwide. Several countries
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especially United State and members of European Union are actively supporting the

production of biodiesel from the agriculture sector. In year 2006, nearly 6.5 billion

liters of biodiesel was produced as shown in Figure 1.3 (TBW, 2008). Based on this

figure, European countries contributed the most which covered 75 % of the total

biodiesel production. This is due to substantial support from government such as

consumption incentives (fuel tax reduction) and production incentive (tax incentives

and loan guarantees) that has and will further catalyzed the global market of

biodiesel to grow explosively in the next ten years. For example, United States spent

around US$ 5.5 billion to 7.3 billion a year (TBW, 2008) to accelerate biofuels

production. As a result, around 450 million gallons of biodiesel was produced in

United States in the year 2007 compared to only 25 million gallons in year 2004

(Multi-Client, 2008). Thus, the 1700 % increment was indeed a shocking increase in

the entire history of biodiesel production.

Total production: 6.5 billion liters

Figure 1.3: Biodiesel production in year 2006 (TBW, 2008).

European
Union, 75%

United States,
13%

Other, 12%
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However, by the year 2020, it is predicted that biodiesel production from

Brazil, China, India and some Asian countries such as Malaysia and Indonesia could

contribute as much as 20 % (Multi-Client, 2008). In Malaysian alone, total biodiesel

production capacity was accounted to 10.5 million tonnes annually in the year 2008

(Lam et al., 2009). The driving forces for development of biodiesel in these countries

are economic, energy and environmental security, improving trade balances and

expansion of agriculture sector (Zhou and Thomson, 2009). In addition, Brazil,

China and India each have targets to replace 5 % to 20 % of total diesel with

biodiesel (Multi-Client, 2008). If governments from these countries continue to

aggressively promote biodiesel generation and continue to invest in research and

development for non-edible feedstocks such as jatropha, castor, algae and grease, the

prospects to achieve biodiesel targets will be realized faster than anticipated. Figure

1.4 depicts a more recent world biodiesel production and capacity in the recent years

(Multi-Client, 2008). However, total biodiesel production was lower than its actual

plant capacity. It is strongly believe that high cost of vegetable oils in the global

market is the main cause to this scenario.

Figure 1.4: World biodiesel production and capacity (Multi-Client, 2008).
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1.4 Biodiesel and the environment

Generally, biodiesel is classified as an environment friendly combustible fuel.

It is biodegradable and non toxic since it is produced from renewable sources such as

vegetable oils and animal fats. In addition, it does not cause significant amount of

sulfur-containing emissions upon combustion (Gerhard Knothe, 2004). Apart from

that, emission of CO2 during combustion is sequestrated from the atmosphere during

cultivation of the plants, resulting in a closed carbon cycle (Escobar et al., 2009).

Recently, a useful tool to clearly describe the environmental impact of

biodiesel utilization has been reported using Life Cycle Assessment (LCA). LCA is

an internationally accepted method to determine the environment consequences over

the entire period of a particular product, eg. biodiesel production. This systematic

approach will eventually reveal the true potential of the product by evaluating and

identifying the environmental hot spots in the product chains so that precaution steps

can be suggested to reduce the negative environmental impact. Based on a LCA

study for several oil crops as biodiesel feedstock reported by Quirin et al., a few

important findings were made (Quirin et al., 2004). A summary of the LCA result is

shown in Figure 1.5 and Figure 1.6. It was reported that all types of biodiesel posed

positive energy balance and significantly reduced green house gases emission if

compared to fossil derived diesel. The positive effect was most significant for

sunflower and rapeseed, followed by canola and coconut, whereas soybean was at

the lower end. Nevertheless, the study only included mostly oil crops planted in

temperate countries. For other countries with climate condition permitting the

plantation of several other oil crops, they must also be considered as they could give

better positive results (Gerhard Knothe, 2004).



10

Figure 1.5: Energy saved for biodiesel from different vegetable oil
compared with conventional diesel fuel. The negative value indicates the

advantages for biodiesel (Quirin et al., 2004).

Figure 1.6: CO2 equivalent saved for biodiesel from different vegetable oil
compared with conventional diesel fuel. The negative value indicates the

advantages for biodiesel (Quirin et al., 2004).
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1.5 Cost and potential of waste cooking oil as feedstock

Currently, the major concern of biodiesel production is the economic

feasibility issue. In a reality scenario, biodiesel production will not be favored

without tax exemption and subsidy from government; as the production cost is higher

than fossil derived diesel. The overall biodiesel cost consists of raw material

(production and processing), catalyst, biodiesel processing (energy, consumables and

labour), transportation (raw materials and final products) and local and national taxes

(Haas et al., 2006). To date, most biodiesel plants are using refined vegetable oils as

their main feedstock to avoid any undesirable product (soap) produced and to meet

the international standard of biodiesel (ASTM D 6751 or EN 14214). In fact, the cost

of refined vegetable oils contribute nearly 80 % of the overall biodiesel production

cost (Lam et al., 2009). Thus, it is undeniable that feedstock will be the most crucial

variable affecting the price of biodiesel in the global market.

A generic process model to estimate biodiesel capital and operating cost had

been developed by Haas et al. and is shown in Figure 1.7 (Haas et al., 2006). The

model was designed on the basis of continuous transesterification process using

crude, degummed soybean oil as the main feedstock and is dependent on the price of

feedstock. In addition, the model was based on a processing plant with an annual

production capacity 378,541,181 liter (10 x106 gallon). However, some economic

factors were excluded, such as internal rate of return, economic life span, corporate

tax rate, salvage value, debt fracture, construction interest rate and long term interest

rate, working capital, environment control equipment, marketing and distribution

expenses, the cost of capital, and the existence of governmental credits or subsidies.

Based on Figure 1.7, when the feedstock cost is at US$ 0.52/kg (US$ 0.236/Ib)



12

(ideal cost of feedstock), the model estimated a final biodiesel production cost of

US$ 0.53/L ($ 2.00/gal). From the study, the cost of feedstock contributed the most,

which accounted 88 % of the total production cost. In addition, the model also

estimated the economic potential from the recovery of co-product, glycerol as

illustrated in Figure 1.8. Assuming that glycerol is sold as low commercial grade

glycerol with purity 80 % w/w aqueous solution, the price is $0.33/kg. It can be

noted that returns from selling glycerol was not significant, only accounted to 6 %

reduction in the overall biodiesel production cost.

Figure 1.7: Impact of feedstock prices on the predicted unit cost of
biodiesel production from crude degummed soybean oil with crude

glycerol coproduct assigned a value of $0.33/kg ($0.15/Ib)
(Haas et al., 2006).
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Figure 1.8: Impact of crude glycerol market value on the unit cost of
biodiesel production with soy oil feedstock assigned a value of $0.520/kg

$0.236/Ib (Haas et al., 2006).
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biodiesel production. Waste cooking oil is far less expensive than refined vegetable

oils and therefore has become a promising alternative feedstock to produce biodiesel.

In fact, generation of waste cooking oil in any country in the world is huge, and may

result to environmental contamination if no proper disposal method is implemented.
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countries including Malaysia (Gui et al., 2008). Based on the table, the total amount

of waste cooking generated is more than 15 million tonnes. However, it should be
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Table 1.3: Quantity of waste cooking oil produced in selected countries
(Gui et al., 2008).

Country Quantity
(million tonnes/ year)

United States 10.0
China 4.5
Japan 0.45-0.57
Malaysia 0.5
Canada 0.12
Taiwan 0.07

Apart from that, a recent study on the production cost of biodiesel using

waste cooking oil as feedstock shows that the overall production costs of biodiesel

can be reduced by more than half compared to virgin vegetable oil (Escobar et al.,

2009). This was then resulted in production cost were even lower than fossil derived

diesel as illustrated in Figure 1.9. Hence, the high cost of feedstock can be overcome

if waste cooking oil is used for biodiesel production.

Figure 1.9: Range of production cost for biodiesel and diesel in year 2006
(Escobar et al., 2009).
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1.6 Objectives

1. To synthesize and modify SnO2 as solid acid catalyst.

2. To characterize the synthesized and modified SnO2 catalyst.

3. To use the modified SnO2 catalyst in transesterification of waste cooking oil

and to optimize the process.

4. To study the catalyst deactivation and regeneration.

4. To develop a kinetic model for the heterogeneous catalyzed

transesterification reaction catalyzed by modified SnO2.

1.7 Organization of Thesis

This thesis consists of five chapters. Chapter one gives an outline of the

overall research project covering introduction on biodiesel, current status of biodiesel

production and potential of waste cooking oil as an alternative feedstock. Problem

statement was then written after reviewing the scenario for the biodiesel market. The

problem statement therefore reveals current problem faced by the biodiesel industry

and the need of this research project. The objectives of this research project were

then carefully devised with the aim to solve the problems faced by the biodiesel

industry. Finally, the organization of thesis highlights the content of each chapter.

Chapter two gives an overall review of various research works reported in the

literature in this area of research. The various research works include report on the

properties of waste cooking oil and reactions occurring during frying process,

homogeneous and heterogeneous catalysis in transesterification, reviews on some

potential solid acid catalysts in biodiesel production and lastly reaction kinetic

modeling. From the review, sulfated tin oxide (SO4
2-/SnO2) was determined as an
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potential alternative solid acid catalyst especially in transesterification of high free

fatty acid (FFA) oil, due to the presence of strong acid strength on the surface of the

catalyst. However, only a handful study reported on the technical information of this

catalyst and its application in transesterification is still limited.

In Chapter three, experimental materials and methodology were discussed.

This chapter described detail information on the overall flow of this research work

and also several experimental methods in conducting this research project. Besides,

detail of the materials and chemicals used in this study were also reported. This

chapter also consists of information that is required for the calculation of yield and

data analysis. Apart from that, kinetic modelling of transesterification catalyzed by

heterogeneous catalyst is proposed at the last part of this chapter.

Chapter four is the most important chapter in the thesis. It encompasses detail

discussion on the results obtained in the present research work. This chapter consists

of five sections which have been divided according to the stages of this research

work. The first section of this chapter presents the characterization of raw materials

that was carried out before any further experimental work. This was then followed by

process optimization on the transesterification of waste cooking oil. The parameters

studied were calcination temperature, calcination period and bi-metallic effect of the

catalyst, reaction temperature, methanol to oil molar ratio, catalyst loading and

reaction time. Section three reports the characterization of catalyst, such as X-ray

Diffraction (XRD), Fourier Transform Infrared (FT-IR), Scanning Electron

Microscopy (SEM), Nitrogen Adsorption-Desorption (NH3-TPD) and Brunauer-

Emmett-Teller (BET) surface area and pulse chemisorption. On the other hand,
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deactivation and regeneration of the catalysts were studied in section four to

determine the catalyst lifespan. At the end of this chapter, reaction studies and kinetic

model developed for the transestrification of waste cooking oil were presented.

Chapter five, the last chapter in this thesis, gives a summary on the results

obtained in this research work. This chapter concludes the overall research project

and gives recommendations for future studies related to this research project.
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CHAPTER 2:

LITERATURE REVIEW

This chapter reports the literature review related to this research project.

Initially, suitability of waste cooking oil as an alternative feedstock for the

production of biodiesel was reported in this chapter. Subsequently, homogeneous and

heterogeneous catalysis in transesterification are discussed in detail, including their

advantages and limitations. Then, several types of solid acid catalysts are reviewed in

this chapter to address their possibility as heterogeneous catalyst in biodiesel

production. Review on kinetic study is reported at the end of this chapter.

2.1 Waste cooking oil

Currently, world oil and fats production stand at about 154 million tons

(MPOC, 2008). This figure refer to the production of 17 major oils and fats,

comprising from vegetable oils (i.e. soybean, cottonseed, groundnut, sunflower,

rapeseed, sesame, corn, olive, palm, palm kernel, coconut, linseed, and castor) and

animal fats/oils (i.e. butter, lard, tallow, grease and fish oil). Most of this oil is used

for deep-frying processes, after which could cause disposal problem. Serious

contamination of environmental water may occur if no proper disposal method is

implemented. Such scenario does not only contribute to pollution problems but is

also harmful to human beings. In fact, European Union (EU) has enforced a ban on

the utilization of all waste oils as domestic animal feed because during frying process

many harmful compounds are formed. Eventually, these harmful compounds will

enter the human food chain during meat consumption (Kulkarni and Dalai, 2006).
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Since frying improves the taste of food, it has become a popular way in food

preparation. During frying, oil is heated under atmospheric condition at temperature

of 160-190oC (Gazmuri and Bouchon, 2009) for relative long period of time. In

addition, the same oil or fat is repeatedly used for several times, mainly because of

economical reasons. However, continuously using the same oil or fat for frying will

causes various physical and chemical changes in the oil, depending on the type of oil

and oil composition. Some physical changes observed in vegetable oil after frying

are (i) an increase in viscosity, (ii) an increase in specific heat, (iii) a change in

surface tension, and (iv) a change in color (Cvengros and Cvengrosova, 2004). Apart

from that, oils are also subjected to three types of reactions during frying, mainly

thermolytic, oxidative and hydrolytic (Mittelbach and Enzelsberger, 1999; Nawar,

1984). (Mittelbach and Enzelsberger, 1999; Nawar, 1984).

2.1.1 Thermolytic reaction

A thermolytic reaction occurs in the absence of oxygen at high temperatures.

A series of alkanes, alkenes, lower fatty acids, symmetric ketones, oxopropyl esters,

carbon oxide (CO), carbon dioxide (CO2) are produced from the saturated fatty acids

in the oil. For unsaturated fatty acids, basically diametric compounds including

dehydrodimers, saturated dimers and polycyclic compounds are formed. In addition,

dimmers and trimers may be formed when unsaturated fatty acids react with other

unsaturated fatty acids through Diels-Alder reaction (Kulkarni and Dalai, 2006).

2.1.2 Oxidative reaction

Oxidative reaction occurs when oxygen in air dissolved in the oil or fat and

reacts mainly with unsaturated acyglycerols (AG) resulting in the formation of
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various oxidation products. The main reactions involved in the oxidation reactions

are summarized in Figure 2.1 (Velasco and Dobarganes, 2002). RH represents

triacylglycerol undergoing oxidation in one of its unsaturated fatty acyl groups.

Initially, radicals- alkyl radicals (R˙) are formed. By the addition of oxygen,

alkylperoxyl radicals (ROO˙) are produced eventually. Finally, alkoxyl radicals (RO˙)

are formed due to the decomposition of hydroperoxides (ROOH) which produce

various saturated and unsaturated aldehydes, ketones, hydrocarbons, lactones,

alcohols, acids and esters. Most of these compounds will remain within the oil or fat,

e.g. dimeric and polymeric acid, dimeric AG and polyglycerols as products of the

radical reactions and increase the viscosity of the frying oil. Other compounds might

be further decomposed through alkoxyradicals to volatile polar compounds, e.g.

hydroxyl- and epoxyacids that could evaporate from the oil (Cvengros and

Cvengrosova, 2004).

2.1.3 Hydrolytic reaction

Triglycerides will be hydrolyzed when it reacts with steam produced during

the preparation of food. Part of the water quickly evaporates, but a certain part will

dissolved in the oil or fat and induces its cleavage to give higher fatty acids, glycerol,

monoglycerides and diglycerides concentration (Kulkarni and Dalai, 2006).
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Figure 2.1: Simplified mechanism for oil oxidation reaction during frying

(Velasco and Dobarganes, 2002).

Since oils are normally used repeatedly for frying, and therefore these three

reactions will continuously cause the formation of many undesired and harmful

compounds. The toxicological effects of these compounds upon human consumption

are still not completely known. However, if waste frying oil is to be made feedstock

for biodiesel production, the amount of polar compound in the waste frying oil,

especially free fatty acid (FFA) must be taken into consideration as it will greatly

affect the transesterification reaction. Refined oil usually contains less than 0.5 wt %

FFA whereas for waste cooking oil, FFA contents range between 0.5-15 wt %

(Gerhard Knothe, 2004).
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2.2 Catalysis in transesterification

The following section describes various catalysis methods for

transesterification reaction of high FFA oil, especially waste cooking oil and the

potential of heterogeneous acid catalysts towards sustainable energy production in

the biodiesel industry.

2.2.1 Homogeneous alkaline-catalyzed transesterification

Currently, biodiesel is produced using homogeneous base catalyst, such as

sodium hydroxide (NaOH) or potassium hydroxide (KOH) (Felizardo et al., 2006;

Kulkarni and Dalai, 2006). These catalysts are commonly used in the industries due

to several reasons: (i) able to catalyze reaction at low reaction temperature and

atmosphere pressure; (ii) high conversion can be achieved in a minimal time, (iii)

widely available and low cost (Lotero et al., 2005). In fact, it was reported that the

rate for alkaline-catalyzed reaction would be 4000 times faster compared to acidic

catalyst (Fukuda et al., 2001; Kulkarni and Dalai, 2006). However, the use of this

catalyst is limited only for refined vegetable oil with less than 0.5 wt % FFA (Wang

et al., 2006) or acid value less than 2 mg KOH/g (Felizardo et al., 2006). Some

researchers reported that alkaline catalyst can tolerate higher content of FFA as

shown in Table 2.1. Nevertheless, it is clear that the FFA content in oil feedstock

should be as low as possible (ranging from less than 0.5 wt % to less than 2 wt %)

for alkaline-catalyzed transesterification reaction. Thus, if waste frying oil with an

average FFA content more than 2 wt %, alkaline catalyst is definitely not suitable to

be used (Lotero et al., 2005).
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Table 2.1: Level of FFA recommended for homogeneous alkaline transesterification.

Author/Reference Recommended FFA (wt %)

Freedman et al. (1984)

Ma and Hanna, (1999)

<1

< 1

Zhang et al. (2003a)

Ramadhas et al. (2005)

<0.5

≤ 2

Kumar Tiwari et al. (2007) < 1

Sahoo et al. (2007) ≤ 2

FFA consists of long carbon chain that is disconnected from glycerol

backbone. They are sometimes called carboxylic acids. If an oil or fat containing

high FFA such as oleic acid is used to produce biodiesel, alkali catalyst will typically

react with FFA to form soap, which is highly undesirable (Nag, 2008; Yan et al.,

2009; Kulkarni and Dalai, 2006). Equation 2.1 shows a typical reaction between

FFA (oleic acid) and alkaline catalyst (potassium hydroxide). This reaction is highly

undesirable because it will reduce the amount of catalyst available to accelerate the

transesterification reaction. Furthermore, excessive soap in the products can

drastically reduce the fatty acid methyl ester (FAME) yield and inhibit subsequent

purification process of biodiesel, including glycerol separation and water washing

(Nag, 2008; Kulkarni and Dalai, 2006).

HO-C-(CH2)7CH=CH(CH2)7CH3

O

KOH K+O--C-(CH2)7CH=CH(CH2)7CH3

O

+ H2O

Oleic acid Potassium
hydroxide

Potassium
oleate (soap)

Water

(2.1)
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Apart from that, high water content in waste cooking oil also affects the

methyl ester yield. When water is present, particularly at high temperature, it can

hydrolyze triglycerides to diglycerides and form free fatty acid. Equation 2.2 shows

the hydrolysis reaction. With the presence of alkaline catalyst, the FFA will

continuously react to form soap as shown in Equation 2.1. Thus, when water is

present in the reactant, it generally manifests itself through excessive soap

production. Apart from that, the soaps of saturated fatty acids tend to solidify at

ambient temperatures and thus a reaction mixture with excessive soap may gel-up

and form a semi-solid mass which is very difficult to recover (Felizardo et al., 2006).

CH2-O-C-R1

CH2-O-C-R3

O

O

O

+ H2O

CH2-O-C-R3

O

O

CH3-OH

+ HO-C-R1

O

Triglyceride Water Diglyceride Fatty acid

CH-O-C-R2 CH-O-C-R2

2.2.2 Homogeneous acid-catalyzed transesterification

Since liquid alkaline-catalyzed transesterification process faces a lot of

problems especially for oil or fat with high FFAs concentration, liquid acid catalysts

are proposed in order to overcome this limitation. To date, the most investigated

catalysts for acid-catalyzed system are sulfuric acid (H2SO4) and hydrochloric acid

(HCl). Acid-catalyzed transesterification holds an important advantage with respect

to alkali-catalyzed process: acid catalyst is insensitive to the presence of FFAs in the

feedstock (Kulkarni and Dalai, 2006) and can catalyze esterification and

(2.2)
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transesterification simultaneously (Jacobson et al., 2008). Esterification is a chemical

reaction in which two reactants, typically an alcohol (e.g. methanol) and an acid (e.g.

FFA) react to form an ester as the reaction product. It was reported that acid catalyst

is more efficient when the amount of FFA in the oil exceeds 1 wt % (Zhang et al.,

2003a; Canakci and Van Gerpen, 1999; Freedman et al., 1984). In addition,

economic analysis has proven that acid-catalyzed procedure, being a one-step

process, is more economical than the alkaline-catalyzed process which requires an

extra step to convert FFA to methyl esters (Zhang et al., 2003a; Zhang et al., 2003b).

(Zhang et al., 2003a; Zhang et al., 2003b).

However, acid-catalyzed system is not a popular choice for commercial

applications due to slower reaction rate, requirement of high reaction temperature,

high molar ratio of alcohol to oil, difficulty in separation of the catalyst, serious

environmental and corrosion related problem (Jacobson et al., 2008; Wang et al.,

2006). In a study of acid-catalysed transesterification of waste frying oil using H2SO4,

Wang et al., 2006 reported that the yield of FAME increased with longer reaction

time, higher methanol to oil ratio and higher catalyst loading. The conversion of

waste cooking oil was more than 90 % at a reaction time of 10 hours with molar ratio

of methanol to oil at 20:1 and 4 wt % H2SO4 (with reference to weight of oil) (Wang

et al., 2006).In another study, Freedman et al., 1984 reported 99 % oil conversion by

using 1 mol % of H2SO4 and methanol to oil molar ratio of 30:1 for 50 hours reaction

time. These data indicates that acid-catalyzed transesterification process requires

more severe reaction conditions such as long reaction time than alkaline-catalyzed

reaction.
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