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PEMBANGUNAN RANGKAIAN NEURO HOPFIELD UNTUK PENGECAMAN 

IMEJ BERWARNA  

 

ABSTRAK 

Rangkaian Neuro Hopfield (HNN) adalah suatu rangkaian auto-asosiatif berlelar 

yang mengandungi lapisan tunggal elemen pemproses bersambung sepenuhnya dan 

tertumpu di vektor sepadanan terdekat. Rangkaian ini mengubah pola masukan melalui 

lelaran yang berurutan sehingga  vektor terlatih dilepaskan di output. Seterusnya output 

tidak lagi berubah dengan lelaran berikutnya. HNN menghadapi masalah nyata apabila 

berurusan dengan imej yang memiliki lebih daripada dua warna, hingar penumpuan, 

muatan terhad dan latihan perlahan serta penumpuan bilangan vektor dan 

saiznya. Permasalahan ini dikaji dan diuji dengan penyelesaian yang dicadangkan bagi 

mendapatkan prestasi optimum HNN dan menetapkan permulaan kajian masa depan. Pe

nggunaan saiz vektor yang lebih kecil, iaitu kurang daripada tiga piksel dan pemogaran 

imej digital kepada satahbit penting sebagai sub-imej bebas digunakan untuk 

pemprosesan HNN. Selain itu, nilai kestabilan pemberat matriks HNN diyahtempatkan 

daripada sifar ke bukan-sifar. Ini akan membetulkan ralat yang mungkin muncul di 

vektor akhir. Namun begitu, pengubahsuaian sebelumnya masih memerlukan 

pengolahan data yang besar yang dihasilkan daripada memisahan imej berwarna 

peringkat tinggi ke satahbit. Penggunaan HNN sebagai algoritma kompresor dan 

Pengekod-Panjang-larian (RLE) akan membantu untuk mengurangkan jumlah data yang 

disimpan. HNN terubahsuai (MHNN) yang baru ini menyebakan pemprosesan kompleks 

dan perlahan; oleh itu, Gate Logik Optik menjadi asas yang kukuh untuk 

mempercepatkan proses MHNN. Untuk menguji kebolehpercayaan MHNN baru yang 

dicadangkan, tiga pelaksanaan berurutan dicadangkan iaitu imej binari, kelabu dan RGB. 

Penemuan secara ujikaji menunjukkan bahawa MHNN yang diusulan ini telah berjaya 

dilaksanakan untuk imej berwarna dengan hingar yang rendah dan penumpuan jelas 

berbanding dengan HNN tradisional. Akhirnya, teknik yang dicadangkan melalui 

MHNN ini  secara umumnya boleh digunakan untuk setiap imej berwarna dengan 

penumpuan yang optimum. 
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DEVELOPING HOPFIELD NEURAL NETWORK FOR COLOR IMAGE  

RECOGNITION 

ABSTRACT 
 
 

Hopfield Neural Network (HNN) is an iterative auto-associative network which 

consists of a single layer of fully connected processing elements and converges to the 

nearest match vector. This network alters the input patterns through successive iterations 

until a learned vector evolves at the output. Then the output will no longer change with 

successive iterations. HNN faces real problems when it deals with images of more than 

two colors, noisy convergence, limited capacity, and slow learning and converging 

according to the number of vectors and their sizes. These problems were studied and 

tested the proposed solutions to obtain the optimum performance of HNN and set a 

starting for future research. Smaller size of vectors of three pixels and dismantling the 

presented digital image into its essential bitplanes as independent sub-images is used for 

HNN’s processes. In addition, the stability value of HNN’s weight matrices can be re-

localized from zero to non-zero. This will correct the errors which may appear in the 

final vector.  However, the previous modifications still require processing of large data 

which are produced from separating high level color images into bitplanes.  Using HNN 

as a compressor algorithm and Run-Length-Encoding will help to reduce the amount of 

the saved data. The final new Modified HNN (MHNN) has a complex and a slow 

processing; therefore, the Optical Logic Gates promotes a solid base to speed up MHNN 

processes. For testing the reliability of the proposed MHNN, three new sequenced 

implementations are suggested which are binary, gray, and RGB images. The 

experimental findings show that the new proposed MHNN can successfully work with 

color images with low noises and clear converging in comparison with the traditional 

HNN. Finally, the proposed technique of the MHNN can be generalized to be applied 

for any color images with optimum converging. 
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CHAPTER 1 
INTRODUCTION 

 

1.0 Overview  

The last few decades witnessed rapid developments in different disciplines of 

information technology whereby various techniques have been used to optimize their 

performance, especially in the field of Artificial Intelligence (AI). Neural Networks as a 

discipline falls under AI and have attracted researchers because they have wide error 

tolerance as they deal with a wide range of data. Many Neural Networks basically 

revolves around pattern recognition such as Optical Character Recognition (OCR), 

fingerprints, and satellite images (Fausett, 1994; Zurada, 1996; Arbib, 2003; 

Samarasinghe, 2007).  

Information processing technology has always been under investigation 

throughout the history of science. Recently pictorial information processing has 

increasingly become important. A large number of pictures that are related to science, 

government, and industry have been collected for the purpose of pictorial analysis. This 

has promoted the need for an automatic system to analyze pictures. The availability of 

digital computers and massive amounts of pictorial data in many fields has recently 

made picture recognition one of the major topics (Lippmann, 1987; Zurada, 1992; Arbib, 

2003).

Hopfield Neural Network (HNN) has been investigated to be adapted according 

to the problem of the study. However, HNN is still facing real problems when it deals 

with images of more than two colors, noisy convergence, limited capacity, and slow 
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learning and converging according to the number of vectors and their sizes (Lippmann, 

1987; Zurada, 1992).

In the current work, the researcher would like to study these problems and test 

the proposed solutions to obtain the optimum performance of HNN and set a starting for 

future research. There is a problem with HNN efficiency when it deals with more than 

two color images; therefore, the researcher suggests dismantling the present digital 

image into its essential binary planes (bitplanes) (Umbaugh, 1998; Gonzalez & Woods, 

2002; Sonka et al., 2008). Then the researcher will consider each layer of these bitplanes 

as an independent sub-image to be ready for HNN’s processes. In this approach, the 

researcher may form and implement a general algorithm of HNN to work with color 

levels with almost the same efficiency as for two color images.  

  

Nevertheless, noisy reconstructions presented through HNN converging 

operation are still undesired. Therefore, one may re-localize the stability value of HNN’s 

weight matrices from zero to non-zero. This means that the neurons will have self-

connection and the system will correct the errors which will appear in the final pattern 

(vector). In addition, the image may be considered as a set of small vectors with three 

pixels, which will lead to get high capacity memory, faster learning and converging, and 

better stability of reconstruction.  Even through HNN has these advantages; it still 

requires processing of large data produced from separating high level color images into 

bitplanes by compression. Therefore, the researcher adopts two techniques to compress 

the data. The first one is by using HNN itself as a compressor algorithm, and the second 

is by hybridizing Run-Length-Encoding (RLE) approach for extra lossless compression. 

After accomplishing the final proof of the algorithms of this research, Optical Logic 

Gates (OLG) promotes a solid base to speed up both learning and converging processes 



3 
 

of HNN. This chapter will briefly discuss relevant issues such as artificial neural 

networks, HNN, and optical neural networks. 

 

1.1 Artificial Neural Networks 

An Artificial Neural Network (ANN) can be configured for a specific application, 

such as pattern recognition, data classification, optimization, coding, and control, 

through a learning process. They possess the ability to solve cumbersome or intractable 

problems by learning directly from the data. An ANN is an information processing 

model that is inspired by the biological neurons. A biological neuron consists of 

dendrite, a cell body, and axon, (see Figure 1.1). The connections between the dendrite 

and the axon of other neurons are called synapses. Electrical pulses which come from 

other neurons are translated into chemical information at each synapse. The cell body 

will input these pieces of information and fires an electric pulse if the sum of the inputs 

exceeds a certain threshold. The network which consists of these neurons is a neural 

network which represents the most essential part of our brain activity. In fact, there is a 

close analogy between the structure of a biological neuron (i.e., a brain or nerve cell) 

and the processing neuron.  Learning in biological systems involves adjustments to the 

synaptic connections that exist between the neurons which can be applied to ANNs as 

well (or artificial neuron) (Rao and Rao, 1993; Fausett, 1994; Zurada, 1996; Ruan, 1997; 

Arbib, 2003; Samarasinghe, 2007).  
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Figure 1.2: An artificial neuron model [Ruan, 1997] 
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An artificial neuron model simulates multiple inputs and one output, the switching 

(activation) function of input-output relation, and the adaptive synaptic weights, (see 

Figure 1.2). It is composed of a large number of highly interconnected processing 

neurons working in unison to solve specific problems. 

 

 

 

 

 

 

According to Fausett (1994) and Zurada (1996), ANNs, which have been developed 

as generalization derived from mathematical models of biological neuron, are based on 

the following considerations: 

Figure 1.1: Biological Neuron. Vn is an input signal, Wn is a weight, and Y 
is an activation function 
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1. Information processing occurs at many neurons. 

2. Signals are passed between neurons over connection links. 

3. Each connection link has an associated weight which multiplies the signal 

transmitted in a typical neural net. 

4. Each neuron applies an activation function to its net input (sum of the weighted 

input signals) to determine its output signal.  

The future of neural networks lies in the development of hardware. Efficient neural 

networks depend on hardware specified for its eventual use. Due to the limitations of 

processors, neural networks take longer time to learn.  Therefore, many studies were 

interested in developing optical neural networks since the 80 th’s. 

 

1.1.1 Architecture 

ANNs can be classified into single-layer and multi-layer. A single-layer net has 

one layer of connection weights. Often, the units can be distinguished as input units, 

which receive signals from the outside world and output units from which the response 

of the net can be read. In the typical single-layer net shown in Figure 1.3, the input units 

are fully connected to other units. HNN architecture is an example of a single-layer net 

in which all units function as both input and output units (Samarasinghe, 2007).  

A multi-layer net is a net with one or more layers of hidden units between the 

input units and the output units. Typically, there is a layer of weights between the two 

adjacent levels of units (input, hidden, or output). Multi-layer nets can solve more 

complicated problems than single-layer nets can, yet learning in this case will be more 

difficult as shown in Figure 1.4 (2007). 
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Figure 1.3: A singl-layer neural net 
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According to Zurada (1996), Arbib (2003), and Samarasinghe (2007), generally, a 

neural network is characterized by: 

1. Pattern of connections among the neurons (called architecture)  

Figure 1.4: A multi-layer neural net 
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2. Method of determining the weights on the connections (called training, or 

learning algorithm) 

3. Activation function (threshold function) and recalling (converging) 

An associative memory is a simple single-layer neural network that can learn a 

set of pattern pairs (or associations). An efficient associative memory can store a large 

set of patterns as memories. During recall, the memory is excited with a key pattern 

which contains a portion of information about a particular member of a stored pattern 

set. This particular stored prototype can be recalled through association of the key 

pattern and the memorized information. In other words, associative memories provide 

one way to the computer-engineering problem of storing and retrieving data based on 

content rather than on storage address. The information is stored in a neural net and is 

distributed throughout the system (in the net’s weights).  Before training an associative 

memory of a neural net, the original patterns must be converted to an appropriate 

representation for computation. For example, the original pattern might consist of on and 

off signals, and the conversion can be on +1, off 0 (binary representation) or on 

+1, off -1 (bipolar representation) (Arbib, 2003; Samarasinghe, 2007). 

Thus, the purpose of an auto associative memory is to store and retrieve an 

individual pattern where the pattern which is applied to retrieve may be incomplete or 

distorted by noise. In this case the input and output vectors are identical and called as 

auto-associative memory, while they are called hetero-associative memory when they 

are different (Rao and Rao, 1993; Kinnebrock, 1995; Arbib, 2003; Samarasinghe, 2007). 
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1.1.2 Learning 

Like people, ANNs learn through given examples. The method of setting the 

values of the weights (learning) is an important distinguished characteristic of different 

neural nets. Generally, there are two types of learning. The first type is the supervised 

training, in which the training is accomplished by presenting a sequence of training 

vectors or patterns each with an associated target output vector. The weights are then 

adjusted according to a learning algorithm. The second type is the unsupervised training 

which is self-organizing neural nets. It performs grouping to similar input vectors 

together without the use of training data to specify what a typical member of each group 

looks like. An ANN usually consists of a large number of simple processing units, called 

neurons, via mutual interconnections. It learns to solve problems by adequately adjusting 

the strength of the interconnections according to the input data. Moreover, the neural 

network is adapted easily to new environments by learning; and it can deal with 

information that is noisy, inconsistent, vague, or probable. These features have 

motivated extensive research and developments in ANNs. 

 

1.1.3 Threshold Functions 

The threshold function is used to determine the output of a neuron in the output 

layer. The value obtained from the threshold function characterizes the neuron to fire or 

not. Common activation functions are shown in Figure 1.5 (Rao & Rao, 1993; Fausett, 

1994; Samarasinghe, 2007). 
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1.1.4 Characteristics of Neural Networks  

Neural networks, with their remarkable ability to derive meaning from complicated 

or imprecise data, can be used to extract patterns and detect trends that are too complex 

to be noticed by either humans or other computer techniques. Neural networks take a 

different approach to problem solving than that of conventional computers. 

Figure 1.5: A common activation functions 
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Conventional computers use an algorithmic approach, i.e., the computer follows a set of 

instructions in order to solve a problem. This restricts problem solving capability of the 

conventional computers to the problems that already understand and know how to solve.  

Because neural networks learn via examples, they cannot be programmed to 

perform a specific task. The examples must be selected carefully; otherwise there will be 

a lot of wasted time and also the network may function incorrectly. The disadvantage is 

that the network operation can be unpredictable. Neural networks and conventional 

algorithmic computers are not in competition, but they complement each other. There 

are tasks that are more suitable to an algorithmic approach like arithmetic operations and 

tasks that are more suitable to neural networks. Furthermore, a large number of tasks 

requires systems that combine two approaches in order to perform at maximum 

efficiency. Other advantages include:  

1. Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience. 

2. Self-Organisation: An ANN can create its own organisation or representation of 

the information which is received during learning time. 

3. Real Time Operation: ANN computations may be carried out in parallel and 

special hardware devices are designed and manufactured which take advantage 

of this capability.  

4. Fault tolerance via redundant information coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, some 

network capabilities may be retained even with major network damage.  
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1.2 Hopfield Neural Network 

A large number of neural network paradigms have been developed and used in 

the last four decades. One of these widely used paradigms is the HNN. This type of 

network was described by J.J. Hopfield (1982). He is a physicist and was working on the 

magnetic behavior of solids (spin glasses). This is essentially determined by the Ising-

spin, a property of magnetic atoms, and is described by two states (+1 and –1). The 

interesting part is the magnetic mutual exchange between the atoms which can be 

described by a mathematical formula; and this has led to create HNN (Arbib, 2003; 

Samarasinghe, 2007). HNN is considered as a network which converges to the nearest 

match pattern. This network alters the input patterns through successive iterations until a 

learned pattern evolves at the output and the output will not change with successive 

iterations. However, HNN can be used for constrained optimization problems, such nets 

are called fixed-weight nets (Fausett, 1994; Jain & Jain, 1997; Leondes, 1998).   

 

 HNNs are iterative auto-associative networks which consist of a single layer of 

fully connected processing elements, which can be categorized as an associative 

memory. An expanded form of a common representation of HNN is shown in Figure 

1.6. All the processing neurons are connected through a feedback architecture along with 

connection weights. HNNs are fully interconnected; that is to say, each unit (neuron) is 

connected to other units, and has feedback connections among the units (Fausett, 1994; 

Zurada, 1996; Arbib, 2003). 
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1.3 Shortcomings of Hopfield Neural Network 

 HNN basically revolves around the notion of pattern recognition; that is the 

ability to recognize correctly unclear (noisy) pictures (Kinnebrock, 1995). However, 

because HNN is an associative memory network, the net can save all the trained patterns 

in its memory and make convergence if the input pattern is correlated with one of these 

patterns. On the other hand, there are many limitations associated with HNN that can be 

listed down as follows (Fausett, 1994; Zurada, 1996; Lippmann, 1987; Rao & Rao, 

1993; Arbib, 2003): 

1. The number of patterns that can be stored and accurately recalled is almost 

limited. If too many patterns are stored, the net may converge to a novel spurious 

pattern different from all the stored patterns. 

2. It is desirable during the converging process to reach a global minimum rather 

than settling down at a local minimum. Figure (1.7) clarifies the distribution 

Figure 1.6: Hopfield Neural Network Architecture, [Fausett, 1994] 
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Figure 1.7: Local and global minima 
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between a local minimum and a global minimum. In this figure, one can see the 

graph of an energy function and two points, A and C. These points show that the 

energy levels are smaller than the energy levels at any point in the vicinity, 

which means, they represent the points of minimum energy. The overall or 

global minimum is at point C where the energy level is smaller than that even at 

point A. This means that A only corresponds to a local minimum. It is supposed 

to get B and not to stop at A. Yet, when point C is reached, further movement 

will be toward B and not toward A. Similarly, if a point near A is reached, the 

subsequent movement should avoid reaching or settling at A and proceed to B. 

 

 

 

 

 

 

3. The stored pattern will be unstable if it shares many bits with other stored 

patterns. Here is a pattern which is considered unstable if it is applied at time 

zero and the net converges to some other patterns. Hence, all the saved patterns 

must be orthogonal with each other. 

4. HNN cannot retrieve the stored pattern when it enters the network with shifting, 

scaling, or rotating. 
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5. The weight size is an important factor that determines the number of iterations 

that needed to finish successive repetitions. The large size of weight is also affect 

the net efficiency to create true patterns and have consuming time.  

6. It is known that HNN deals with only two states of bipolar (or binary) which 

make the net useless when color images are presented. 

7. One more limitation of HNN is the large number of patterns which force the net 

to be slow with consuming time. 

 

1.4 Optical Neural Networks 

Electronic implementations of neural networks are limited by the number of 

weighted connections between neurons that can be practically achieved. Once the 

problem under investigation gets more complex, the number of neurons and the 

geometric fashion will also increase. Optical networks offer an inherent parallelism 

which allows a high capacity connection between neurons in different layers of network 

(McAulay, 1991; Alvaro; 1998; Fernandes, 1995; Von, 2004). 

 

The most basic and very important approach to design an ANN is via simulations 

using software programs which can be run on conventional digital computers. This 

powerful tool provides valuable information when developing new and innovative 

neural computer designs. Electronic implementation of neural networks includes 

systems that are assembled using conventional computer chips and standard passive and 

active electrical components. A clear disadvantage of software implementation is the 

slowdown of operation speed. This is due to the fact that the microprocessor of a 
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computer, on which the neural network program runs calculates the neuron states one by 

one. Considerable acceleration can be achieved by implementing neural networks in 

dedicated and parallel hardware (Fernandes, 1995; Von, 2004).  

When implementing a neural network on a chip the number of connections 

between the neurons will be physically limited. This limitation is essentially due to the 

fact that connections cannot cross each other within the same layer on a chip, and 

consequently they need to be separated in one dimension. Because the number of layers 

on a chip is limited, the number of crossing connections is also limited (Fernandes, 

1999; Von, 2004). 

 

Optics can help to solve this connectivity problem in two ways. Because photons 

only interact with matter and not with each other, the light beams which are emitted 

from the connections in an optical neural network can cross each other without 

problems. Furthermore, the rays of light do not need to be guided in free space. As a 

consequence no predefined paths or wires are necessary in an optical neural network. 

This means that the three dimensions in space can be used without soldering. For these 

reasons, there have been many studies on optical neural networks since the mid-1980’s. 

Nevertheless, since the recognized pattern is often received optically, it is perhaps most 

natural and straightforward to recognize an optical pattern by using optics (Yu & 

Jutamulia, 1998; Mos, 1999; Fernandes, 1995; Von, 2004; Borundiya, 2008).  
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1.4.1 Advantages of Optical Computing 

The potential advantage of optics is the capability of high-speed parallel 

transmission and processing of structured data. It appears that investigation directed 

toward the development of digital optical computers is one of the most promising and 

ambitious areas in optical computing (Athale, 1990; McAulay, 1991; Boffi et al., 2003). 

Optics is rapidly developing as it has several advantageous features that listed 

below which can overcome the limitations in the current electronic computers (Athale, 

1990; Senior, 1992; Boone, 1998; Boffi et al., 2003; Von, 2004). 

1. One advantage of optics over electronics is the higher bandwidth that enables 

more information to be carried. This is because electronic communication via 

wires requires charging capacitors that depends on length. In contrast, optical 

signals in optical fibers, optical integrated circuits and free space do not have to 

charge a capacitor and are, therefore, faster. Faster transmission with optics is 

important because transmission time between units is often the limiting factor for 

the performance of high speed machines. Faster transmission allows faster 

computational elements to be processed. 

2. Very high speed machines use additional power to provide speed and have 

elements located close to one another to limit transmission time. In this case, the 

technology of transferring heat out of the system is a limiting factor. Faster 

optical links allow the computer elements to be spread farther which, in turn, 

relieve the difficulty and cost heat transfer.  

3. Photons are uncharged and do not interfere with one another as readily as 

electrons. Consequently, light beams may pass through one another without 

distorting the information carried. This suggests that optical memory is capable 
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of avoiding the difficulties of memory contention. Moreover, loops of 

connections are difficult to avoid in massively parallel systems. In the case of 

electronics, loops generate noise voltage spikes whenever the electromagnetic 

fields through the loop change. Further, high frequency or fast switching pulses 

can cause interference in neighboring wires. Signals in adjacent fibers or in 

optical integrated channels do not interfere with each other nor do they pick up 

noise due to loops.  

4. Images or arrays of pixels may be handled in parallel. Thus, it is conceivable to 

process a million elements or more in parallel by formulating a problem as a 

sequence of steps on a 2-D array. 

 

1.4.2 Optical Logic Gates 

The fundamental building block of modern electronic computers is the transistor. 

To replace electronic components with optical ones, an equivalent optical transistor or 

optical logic gate is required. This is achieved by using materials with a linear and/or 

non-linear refractive index. The optical transistor can be used to create logic gates, 

which in turn are assembled into the higher level components of the computer's CPU. 

The optical logic gate controls one light beam with another. It is (on) when the device 

transmits light, and (off) when it blocks the light. Optical bistable devices and logic 

gates such as these are the equivalent of electronic transistors are operate as very high 

speed on-off switches and are also useful as optical cells for information storage. Optical 

logic is the use of photons light in logic gates (NOT, AND, OR, NAND, NOR, XOR, 

and XNOR). However, switching is obtained by using nonlinear optical effects when 
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two or more signals are combined. In addition, using interferometers to perform optical 

logic gates is widely used by researchers especially for Mach-Zehnder interferometer 

(Athale, 1990; Boone, 1998; Lee et al., 2002; Von, 2004). 

It is possibly true that most attempts at optical logic devices have fundamentally 

been defective in their real potential usefulness in digital systems. The main reason of 

using digital systems is that they are essentially infinitely extensible; they must be 

cascadable (the output of device can drive the input of the next). They must be capable 

of at least simple complete logic functionality; and they must have fan-out (the output of 

one device must be able to drive the inputs of at least two subsequent gates). To make 

large systems, any critical biasing requirements for individual gates should be avoided. 

That is, it is not allowed to adjust each gate individually. They must also have good 

input/output isolation. Moreover, the devices must run sufficiently fast and with 

sufficiently low energy (McAulay, 1991; Boone, 1998; Lee et al., 2002; Von, 2004). 

 

1.5 Statement of the Problem 

The shortcomings of HNN, which were mentioned previously, could be real 

obstacles that may lead to the failure of meeting certain standard requirements of this 

model. The problem of using HNN with color images for pattern recognition is the main 

scope of this research. Thus, HNN cannot function with images that have more than 1-

bit level (two colors). This will restrict the implementation of the net with a wide range 

of applications. Therefore, most images’ information will be lost while preparing and 

adapting such images for HNN. Normally the preparing is a preprocessing stage for 

image binarization.   
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Moreover, the crosstalk effect depends on the relationship among the learned 

patterns. The high rate of crosstalk is caused from a less orthogonality among patterns 

and vice versa. This will conduct the net to produce noises on the output patterns. 

Further, HNN have problems of limited capacity, and slow learning and converging 

according to the number of vectors and their sizes.  

 

1.6 Objectives 

This research will investigate the optimum improvements that make it possible to 

use HNN with color images. These improvements are:  

1. To study the ability of simplifying any image of any color into a 

fundamental structure that enable HNN to achieve all processes 

efficiently.  

2. It is reliable to perform segmentation on input images to get an array of 

small patterns rather than the whole image.  

3. Further, it is convenience to test and analyze the likelihood of changing 

the diagonal of weights’ matrices to be non-zero diagonal to reduce the 

noises at the output patterns.  

4. The compressing of weights that produced by HNN will be tested by 

using HNN indexing and Run-Length-Encoding.  

5. A design of an array of optical logic gates can be useful to suggest optical 

processors that execute HNN operations in a very fast performance. The 

aim in this case, is to design an optical implementation of the proposed 
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HNN technique based on array of XNOR gates working with cascaded 

Mach-Zehnder Interferometer as an optical gate. 

6. Throughout the research, the researcher may prove the efficiency of each 

proposal by providing some examples such as Arabic OCR, Fingerprint 

recognition, and Satellite image of water pollution detection. In addition, 

the researcher will compare the results obtained with the previous work in 

terms of capacity, and clear converging.  

 

1.7 Thesis Organization 

 An overview of ANN, HNN, limitations of HNN, and optical neural network has 

been discussed in this chapter. Chapter Two reviews the literature related to the use of 

HNN with color images and covers the modifications made on this network in terms of 

vector size, network capacity, and self-connection architecture. In addition, Run Length 

Encoding algorithm of compression and Optical Logic Gates are also discussed from the 

previous studies’ point of view to overcome the weaknesses that may arise in HNN for 

better optimization.  

The essential bases and background of theoretical aspects will be discussed in 

Chapter Three. The chapter is divided into three main parts. The first part is a 

concentrated material on digital images acquiring and representation which are 

considered the main samples of testing the reliability of the proposed system in this 

work. The second part is a detailed explanation about HNN. Optical HNN, optical logic 

gates, and a mathematical representation of Mach-Zehnder Interferometer will be 

demonstrated in the third part. In Chapter Four, the design of developing HNN to 

process color images will be examined. The researcher will present the problem of HNN 
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with color images because the information is highly reduced when the images are 

converted into black and white. Furthermore, a solution for using HNN with high color 

images will be presented by dealing with the depth of the pixel in these images.  

The experimental results are devoted to prove that the modified HNN is able to 

work at any level of color of images, and this will be discussed in Chapter Five, Chapter 

Six, and Chapter Seven.  

Chapter Five is for implementing the modified HNN for binary images of printed 

Arabic OCR, while Chapter Six is for fingerprint gray image identification. Chapter 

Seven, on the other hand, is about applying the proposed technique for monitoring the 

polluted water in Penang strait in Malaysia. The sequence of these chapters are arranged 

gradually where each sample of images indicates a level of image color starting from 1-

bit images of Arabic letters, 8-bit gray images of fingerprints, and RGB color images of 

satellite.  Conclusions, future work, and recommendations to improve the final results 

are illustrated in Chapter Eight. 
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CHAPTER 2 
LITERATURE REVIEW 

 

2.0 Introduction 

 This chapter reviews the literature related to the use of Hopfield Neural Network 

(HNN) with color images. Besides, the literature review will cover the modifications 

made on this network in terms of vector size, network capacity, and self-connection 

architecture. As mentioned in Chapter One, the current study aims to develop HNN for 

color images by making some modifications in the architecture. Even though, these 

modifications may lead to optimal performance, two main weaknesses may arise. The 

first one is producing a large amount of weights for each learning process, and the 

second one is the consuming time of the processing. Hence, Run Length Encoding 

(RLE) technique of compression and Optical Logic Gates (OLGs) are studied to 

overcome these weaknesses for better optimization.  

These topics provide the background to the current study to highlight the 

development of HNN. The proposed technique will be tested to the following 

applications: 1) Arabic character pattern recognition, 2) Fingerprint identification, and 3) 

Water pollution detection in Chapter Five, Chapter Six, and Chapter Seven respectively. 

Therefore, the literature review will also cover the use of HNN wth these applications. 
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2.1 The Traditional Hopfield Neural Network 

As mentioned in Chapter One, HNN is considered as an associative memory, a 

single layer network, and an interconnected network which have a symmetric synaptic 

weight. This net has been introduced for the first time by J.J. Hopfield in 1982. He 

showed that the energy, defined by both the state of a neuron and the synaptic weight, 

recurrently decreases at every state change and reaches at a minimum point. The 

network converges almost the entire pattern from a part of it when the state of the 

network is at a minimum energy which represents the desired pattern. Since then, HNN 

has attracted some researchers to modify and use it in three general scopes by 

developing the architecture to optimize the performance. They used it for pattern 

recognition, hardware realization and implementation (Hopfield, 1984; Hopfield & 

Tank, 1985; Sudo, Sato, & Hasegawa, 2009; Wena, Lan, & Shih, 2009). 

Hopfield neural network has many interesting features and applications in two 

ways, digital and analog. HNN can also be used either as an associative memory or to 

solve optimization problems through the use of energy function minimization. Although, 

HNN has extensively been studied, there is still scope for research. In some applications, 

it may be used in conjunction with other neural network models (Sulehria & Zhang, 

2007). 

However, the current work differs from the traditional HNN in several ways as it 

will be discussed in the next sections. The proposed modifications will focus 

concentrated on vector size, HNN capacity, self-connection architecture, and HNN for 

color images. 
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2.1.1 Vector Size and HNN Capacity  

 The capacity of HNN memory refers to the ability of storing an amount of 

information and converging the required information with a minimum cross-talking. 

Basically, the information capacity depends on the pattern size (Abu-Mostafa et al., 

1985; Lowe, 1999). Within this sense, many trends have been suggested to improve 

HNN capacity of memory (Hopfield & Tank, 1985; Abu-Mostafa et al., 1985; McEliece 

et al., 1987; Kuh & Dickinson, 1989). It was shown that the total information stored in 

HNN model is a constant times the number of connections in the network, independent 

of a particular model, the order of the model, or whether clipped weights are used or not 

(Keeler, 1987). 

According to Kuo and Zhang (1994), the capacity drops to zero when the stored 

vectors and probe vectors have non-uniform distributions. Therefore, it is necessary to 

explore the effect of these distributions on the capacity and to improve the capacity of 

the associative memory. As an alternative of Hopfield associative memory, they 

introduced a multi order polynomial approximation of the Projection Rule and proved 

that its storage capacity is higher than that of Hopfield associative memory with the 

same implementation complexity. Thus far, the researcher has noticed that these two 

scholars worked on another neural network that is different from HNN. On the other 

hand, some other researchers have updated all or part of HNN architecture. For instance, 

Liwanag (1997) proposed an approach to improve the capacity of simple Hebbian 

pattern associators by adding hidden units. The proposed algorithm was structured to 

choose potential targets for the hidden layer. The latter helped to protect the network 

from cross talking effects when the memory was overloaded. While, Lowe (1999) 
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suggested a form of HNN with N neurons that can store (N log N) biased patterns. The 

quantity increases when the bias of the patterns increases; but, it decreases when the bias 

gets larges. 

Moreover, Sulehria and Zhang (2008) made some improvements in the capacity 

of HNN and in the methods to achieve higher capacity. Their improvements were based 

on the best possible percentage of patterns per number of neurons needed.  

Recently, Sudo, Sato, and Hasegawa (2009) proposed an associative memory 

that satisfies the requirements of the memory size that adaptively increases with learning 

patterns. Their proposal is neither redundant nor insufficient with regard to memory size 

even in an environment which has available maximum number of associative pairs to 

that is unknown before learning.  

In conclusion, the current study uses a different approach from these scholar’s 

works. The approach depends on utilizing minimum size of vectors (patterns) of three 

elements with the feature of converging the right vectors. Hence, a vector size is 

considered as a small block with only eight states that can be found in any binary image.   

 

2.1.2 Self-Connection in HNN 

Originally, the discrete-valued neural network architecture proposed by Hopfield 

(1982) requires zero-diagonal elements in the weight matrix (non-self connection) in 

which all the neurons connect with each other but not with themselves so that the net 

changes to a local minimum of energy function. In the case of non-zero-diagonal 

elements of the weight matrix, it was found in the literature that the self-connection can 

change the stability of the minimum energy into a point depending on the new values of 
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