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PERKEMBANGAN KAEDAH ANALISIS DAN KAJIAN ASAS PEMISAHAN 

DADAH MENGGUNAKAN ELEKTROFORESIS RERAMBUT 

 

ABSTRAK 

 

 

       Kaedah electrophoresis zon rerambut (CZE) bagi pemisahan serentak dadah β-

sekatan (atenolol (AT), klortalidon (CH) dan amilorid (AM)), menggunakan 

pengesan UV dan kekonduksian tanpasentuh kupel kapasitif (C
4
D) telah 

diperkembangkan dan divalidasikan. Bagi keadaan yang digunakan, analit telah 

dipisahkan kurang daripada 4 min dan 7 min masing-masing bagi kaedah CZE-UV 

dan CZE-C
4
D. Kaedah CZE-C

4
D mempunyai kepekaan yang rendah, tetapi kedua 

kaedah telah diaplikasikan dengan jayanya bagi penentuan bahan aktif di dalam 

sediaan farmaseutik. 

 

Satu kaedah kromatografi elektrokinetik misel bagi penentuan serentak dadah 

antiviral acyclovir (ACV) dan valacyclovir (VCV) dan bendasing utama (guanina) 

telah diperkembangkan. Bagi keadaan yang digunakan (BGE 20 mM  asid sitrik  

dilaraskan dengan larutan tris 1 M (pH 2.75) mengandungi 125 mM natrium dodesil 

sulfat) dan semua analit telah dipisahkan dalam masa 4 min.  

 

Satu kaedah CZE bagi pemisahan serentak enantiomer oflosaksin dan ornidazol 

menggunakan β-siklodekstrin-sulfat (S-β-CD) sebagai pemilih kiral juga dihuraikan. 

Masa analisis yang baik (kurang daripada 16 min) dengan resolusi masing-masing 

5.45 dan 6.28 bagi enantiomer oflosaksin dan ornidazol, telah dicapai menggunakan 

BGE 50 mM H3PO4 dilaraskan dengan 1 M larutan tris; pH 1.85; mengandungi 30 

mg mL
-1

 S-β-CD. Perolehan semula antara 97.1 – 104.0 % telah diperolehi. 



 xxix 

Perkiraan komputasional bagi kompleks rangkuman enantiomer telah juga 

dihuraikan. 

 

Satu kaedah CZE mudah penunjuk kestabilan bagi penentuan modafinil dalam  

formulasi farmaseutik telah diperkembangkan. Kaedah menunjukkan bukan sahaja 

kepresisan dan kejituan yang baik tetapi juga "robust" yang baik. LOQ dan LOD 

masing-masing adalah 1.2 dan 3.5 µg mL
-1

. Eksipien di dalam tablet dan hasil 

peruraian dari keadaan berbeza tertekan tidak mengganggu dalam penentuan.  

 

Satu kaedah pantas CZE telah juga diperkembangkan dan divalidasikan bagi 

penentuan enantiomer modafinil dalam kurang daripada 5 min dengan resolusi yang 

baik (Rs = 2.51) menggunakan BGE 25 mM H3PO4 dilaraskan dengan larutan 1 M 

tris; pH 8.0; mengandungi 30 mg mL
-1

 S-β-CD. Perkiraan komputasional, 

menyukatan pemalar penambatan (plot resiprokal dubel, resiprokal-X dan resiprokal-

Y) dan juga parameter termodinamik telah juga dijalankan. Semua kaedah yang 

diperkembangkan di atas telah divalidasikan, dan telah di aplikasikan dengan jayanya 

bagi penentuan analit di dalam formulasi farmaseutikal.  

 

Satu mikropengekstrakan fasa cecair serabut / gentian rongga fasa-tiga (HF-LPME) 

diikuti dengan pemisahan CZE telah diperkembangkan dengan jayanya dan 

divalidasikan bagi penentuan paras surihan dadah antidiabetik rosiglitazon (ROSI) 

dalam cecair biologi. Bagi keadaan yang dioptimumkan (pelarut pengekstrakan, 

diheksil eter; pH fasa penderma, 9.5; fasa penerima, 0.1M HCl; halaju pengacauan, 

600 rpm; masa pengekstrakan, 30 min; tanpa campuran garam), faktor mengkayaan 

280 telah dicapai. Kelinearan baik dan pemalar korelasi analit telah dicapai bagi julat 

kepekatan 5.0 - 500 ng mL
-1

 (r
2
 = 0.9967). Kaedah ini adalah ringkas, peka dan 

sesuai bagi penentuan amaun surih ROSI di dalam cecair biologi.    
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ANALYTICAL METHOD DEVELOPMENT AND FUNDAMENTAL 

STUDIES ON THE SEPARATION OF DRUGS USING CAPILLARY 

ELECTROPHORESIS 

 

ABSTRACT 

 

 

       Capillary zone electrophoresis (CZE) methods for the simultaneous separation of 

the β-blocker drugs (atenolol (AT), chlorthalidone (CH) and amiloride (AM)), using 

UV and capacitively coupled contactless conductivity detectors (C
4
D) were 

developed and validated. Under the adopted conditions, the analytes were separated 

in less than 4 min and 7 min for the CZE-UV and the CZE-C
4
D methods, 

respectively. The CZE-C
4
D method has slightly inferior sensitivity, but nevertheless, 

both methods were successfully applied to the determination of the active ingredients 

in pharmaceutical preparations. 

 

A micellar electrokinetic chromatography (MEKC) method for the simultaneous 

determination of the antiviral drugs acyclovir (ACV) and valacyclovir (VCV) and 

their major impurity (guanine) was developed. Under the adopted conditions (BGE 

of 20 mM citric acid adjusted with 1 M tris solution (pH 2.75) containing 125 mM 

sodium dodecyl sulphate), and analytes were all separated in about 4 min.  

 

A CZE method for the simultaneous separation of the enantiomers of both ofloxacin 

and ornidazole using sulfated-β-cyclodextrin (S-β-CD) as chiral selector is also 

described. Good analysis time (less than 16 min) with resolution of 5.45 and 6.28 for 

ofloxacin and ornidazole enantiomers, respectively, were achieved using a BGE of 

50 mM H3PO4 adjusted with 1 M tris solution; pH 1.85; containing 30 mg mL
−1

 S-β-

CD. Recoveries between 97.1 – 104.0 % were obtained. The computational 

calculations for the enantiomeric inclusion complexes are also described. 



 xxxi 

A simple CZE assay stability-indicating method for the determination of modafinil in 

pharmaceutical formulations has been developed. The method showed not only good 

precision and accuracy but also good robustness. The LOD and LOQ were 1.2 and 

3.5 µg mL
−1

, respectively. Excipients present in the tablets and degraded products 

from the different stress conditions did not interfere in the assay. 

 

A rapid CZE method was also developed and validated for the determination of the 

enantiomers of modafinil in less than 5 min with good resolution (Rs = 2.51) using a 

BGE of 25 mM H3PO4 adjusted with 1 M tris solution; pH 8.0; containing 30 mg 

mL
−1

 of S-β-CD. Computational calculations, binding constant measurements 

(double reciprocal, X-reciprocal and Y-reciprocal plots) as well as thermodynamic 

parameters were also conducted. All the above developed methods were validated, 

and were successfully applied to the assay of the analyte in pharmaceutical 

formulations. 

 

A three-phase hollow fiber liquid-phase microextraction (HF-LPME) followed by 

CZE separation was successfully developed and validated for the determination of 

trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. Under 

the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; 

acceptor phase, 0.1M HCl; stirring speed, 600 rpm; extraction time, 30 min; without 

addition of salt), enrichment factor of 280 was obtained. Good linearity and 

correlation coefficients of the analyte was obtained over the concentration range of 

5.0 - 500 ng mL
-1

 (r
2
 = 0.9967).  The method is simple, sensitive and is suitable for 

the determination of trace amounts of ROSI in biological fluids. 
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CHAPTER ONE 
 

 

1.1 Capillary Electrophoresis 

 

Capillary electrophoresis (CE) is a separation technique that is carried out in 

capillaries under the influence of an external electric field. The separation is based 

on the differences in the electrophoretic mobilities of the charged species due to their 

charge, size, shape, nature of the background electrolyte (BGE), etc. BGE may 

contain additives, which can interact with the analytes and alter their electrophoretic 

mobilities. The separation is highly dependent on the pH of the BGE which controls 

the dissociation of the acidic groups on the analyte or the protonation of basic 

functions on the analyte (Figure 1.1) (Riekkola et al., 2004). 

 

 
Figure 1.1 Schematic diagram of a CE instrumental set-up. 

 

 

The International Union of Pure and Applied Chemistry (IUPAC) does not 

encourage the term “capillary electrophoresis” as an umbrella for all capillary 

electromigration techniques because these techniques may involve other separation 

mechanisms that are different from electrophoresis. CE encompasses other 

electromigration techniques including capillary gel electrophoresis, affinity capillary 
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electrophoresis, capillary isotachophoresis, capillary isoelectric focusing, micellar 

electrokinetic chromatography (MEKC), microemulsion electrokinetic 

chromatography and capillary electrochromatography (CEC) (Kašička, 2001; 

Riekkola et al., 2004).  

 

CEC combines the separation efficiency of CE with sample capacity and selectivity 

of liquid chromatography (LC). This hybrid technique was originally proposed by 

Pretorius et al., in 1974. CEC did not attract much attention until it was 

demonstrated by Jorgenson and Lukacs using packed capillary in 1981 and later 

when Knox and Grant developed the theory in the late 1980s and the beginning of 

1990s. The transportation of mobile phase through the chromatographic stationary 

phase in CEC is electro-driven instead of pressure-driven and therefore it offers a 

number of advantages such as increased efficiency and improved resolution (Liu, 

2001). 

 

CE has also been successfully coupled with many kinds of detectors such as laser 

induced fluorescence (LIF), (Goldsmith et al., 2007); mass spectrometry (MS), 

(Gennaro et al., 2006); chemiluminescence, (Zhao et al., 2008), and more recently 

with capacitively coupled contacless conductivity detection (C
4
D) (Nussbaumer et 

al., 2009). The importance of coupling these detectors to CE is mainly to enhance 

the sensitivity of the conventional ultraviolet (UV) detector due to the short sample 

path length. 
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1.2 Theory of Electrophoretic Separation  

 

The velocity (v) of the charged analyte in CE depends mainly on the electrophoretic 

mobility (µ) and the applied electric field E. 

 

v = µE  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  (1.1) 

 

The velocity is controlled by two competing forces, namely, the applied electric field 

and the frictional force from the medium. Thus, for spherical solutes, these forces are 

equal but opposite once they reach the steady state. The electrophoretic mobility, (µ) 

can be written as follows:  

 

r 

q
 µ

6
   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  (1.2) 

 

where q is the charge of the molecule, η is the viscosity of the BGE and r is the 

analyte radius (Subramanian, 2007). 

 

The electroosmotic flow (EOF), which contributes significantly to solute migration, 

is a product of mobility, (µEOF) and E:  

 

vEOF = µEOFE .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .(1.3) 

 

where the mobility depends on the dielectric constant (ε) of the BGE and the zeta 

potential, (ζ): 



 4 

µEOF = 




4
  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  (1.4) 

 

pH of the BGE play an important role in controlling the silanol groups of fused-silica 

capillaries where it becomes deprotonated, resulting in a negative surface charge. 

Therefore, a double layer of rigidly adsorbed ions and diffuse layer develops and the 

potential of this diffuse layer is called the zeta potential (Figure 1.2). Cations in the 

diffuse layer will migrate towards the cathode when the electric voltage is applied, 

thus dragging the water layer which results in a flow towards the cathode. The EOF 

value can be modified by controlling the buffer pH, adding buffer additives or by 

coating the capillary surface. In order to achieve the separation, analytes must have 

different mobilities under the experimental conditions (Subramanian, 2007): 

 

Δµ = µ1 – µ2 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  (1.5) 

 

It is well known that CE has higher efficiency than high performance liquid 

chromatography (HPLC) and this is mainly attributed to two main factors. First, 

there is no stationary phase and thus, the mass transfer resistances between the 

stationary and mobile phases and the other dispersion mechanisms (e.g., eddy 

diffusion) have been avoided. Secondly, when dealing with pressure-driven flow 

systems such as HPLC, a laminar flow resulted due to the frictional forces at the 

liquid-solid boundaries and thus, a radial velocity gradient through the tube can be 

found. The fluid flow velocity is highest in the middle of the tube and almost zero 

near the tube wall. Therefore, the peak will be broad. In electrically driven systems 

such as in CE, the EOF is produced homogenously along the capillary, and thus there 

is no gradient. The flow rate will approach zero only near the capillary wall region 
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(double layer region). Therefore, the peak shape obtained will much better than the 

hydrodynamic driven flow systems of the HPLC (Heiger, 1992). 

 

Since a significant amount of work in this thesis deals with the separation of chiral 

drugs, a discussion on this topic is next presented. 

 
 

Figure 1.2 A model of a double electric layer on the interface of a silica capillary 

with aqueous buffer (A) and zeta potential (ζ) of the system as a function of the 

distance away from the wall (B) (Salomon et al., 1991). 
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1.3 Chirality  

 

The existence of optical isomers has been known since its discovery in 1815 by the 

French chemist Jean-Baptste Biot (Challener, 2001). In the early twentieth century, 

Cushny highlighted the importance of chirality to the pharmaceutical industry by 

stressing that one of the enantiomers of hyoscyamine (anticholinergic/antispasmodic) 

has a much higher pharmacological activity than the other (Challener, 2001; Jenkins 

and Hedgepeth, 2005). 

 

“Chirality” (from the Greek word “cheir” for hand) means handedness which reflects 

the left and right-handedness of molecules (Tucker, 2000). Chiral molecules are 

molecules where their mirror images are not superimposable on one another, 

whereas, achiral compounds have superimposable mirror images. Enantiomers are 

two stereoisomers that have the same chemical composition and can be drawn in the 

same way in two dimensions. However, in chiral environments such as receptors and 

enzymes in the body, they act differently (McConathy and Owens, 2003). Figure 1.3 

shows two forms of limonene where the (R)- form smells of oranges while the (S)- 

form smells of lemons (Ahlberg, 2001). Usually, the chiral center is a carbon atom 

where it is attached to four different groups, but there can be other sources of 

chirality as well (McConathy and Owens, 2003). 
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* *

 

(R)-limonene      mirror plane      (S)-limonene 

Figure 1.3 Chemical structure of the chiral limonene, (R)-Limonene smells of 

oranges and (S)-limonene smells of lemons (Ahlberg, 2001). 

 

 

Chirality is becoming an increasingly important issue not only for pharmaceuticals 

but also in food, agrochemicals and the biomedical industry. Many regulatory 

agencies all over the world emphasize on safety and efficacy of stereoisomers in 

drug research and development. New guidelines from regulatory agencies also 

focused on single enantiomer (Challener, 2001). Sometimes during synthesis, 

enantiomers are produced in the same quantities, resulting in a racemate (equimolar 

mixture of the two enantiomers). Enantiomeric discrimination is often difficult and 

costly. In the past, such drugs have been marketed as racemates, despite the fact that 

use of single enantiomer may have numerous advantages.The other enantiomer 

might be inactive or without toxicological significance (Baker et al., 2002, Tao and 

Zeng, 2002). 

 

The development of methods for enantiomeric discrimination and for 

pharmacodynamic studies is attracting increasing attention. The terms “eutomer” for 

the more active enantiomer and “distomer” for the less active one have been 

suggested (Baker et al., 2002). 



 8 

Some examples of pharmaceuticals where one enantiomer has the desired effect 

while the other has adverse properties are ibuprofen (Johannsen, 2001), where the S-

enantiomer shows pharmacological activity but the R-enantiomer causes unwanted 

side effects; ofloxacin (Awadallah et al., 2003), where the antibacterial activity of S-

enantiomer is 8 - 128 times higher than that of the R-enantiomer; and carvedilol 

(Behn et al., 2001), the β-receptor blocking activity of the S-enantiomer is about 

200-fold higher than that of  R-carvedilol, whereas both enantiomers are equipotent 

α-blockers (Figure 1.4). 

 

The current tendency of pharmaceutical industry is to switch from racemates to pure 

enantiomer (“chiral switching”). The advantages of taking only one form of the 

enantiomer are summarized below (Davies et al., 2003):  

 

(i) expose the patient to less load, thus reducing hepatic/metabolic/renal drug 

load, 

(ii)  ease of assessment of the physiology, diseases, and the administration 

effects, 

(iii) decrease drug interactions, 

(iv) avoid bioinversion, and, 

(v)  the ease of efficacy and toxicity assessment of the stereochemically pure 

active enantiomer through pharmacodynamic /pharmacokinetic 

monitoring studies. 
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Figure 1.4 Chemical structures of a few chiral drugs having different effects 

(Johannsen, 2001; Awadallah et al., 2003; Behn et al., 2001). 
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Examples of some drugs that are produced as pure single enantiomer are shown in 

Figure 1.5. However, pure active enantiomer may reveal some pharmaceutical issues 

such as different solubility and dissolution from the analogous racemates; the 

possibile interaction of one enantiomer with the inert chiral excipents (e.g. cellulose 

derivatives) which may pose different physicochemical properties (Davies et al., 

2003). 

 

1.4 Analytical Methods for the Analysis of Chiral Compounds 

 

The Food and Drug Administration (FDA) published a guideline policy in 1992, 

strongly recommending companies to assess racemates and its enantiomers for newly 

developed drugs before being brought to the market. Therefore, developing suitable 

analytical methods for the resolution and determination of therapeutically active drug 

form is greatly needed. 

 

Several methods for the analysis of chiral compounds are available. This include 

enzymatic (Baker et al., 1995), thin layer chromatography (Huynh and Leipzig-

Pagani, 1996; Bhushan et al., 2000), nuclear magnetic resonance (Hanna and Evans, 

2000; Klika et al., 2010), HPLC (Akapo et al., 2009), gas chromatography 

(Bordajandi et al., 2005; Cooper et al., 2009), supercritical fluid chromatography 

(Salvador et al., 2001) and CE (Wei et al., 2005; Zhao et al., 2006). The earlier 

method has been predominantly gas chromatography (GC), but HPLC methods are 

being widely used now. The disadvantages of the HPLC methods will be discussed 

in the coming chapters (Chapters Four and Five). 
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Figure 1.5 Chemical structures of several stereochemically pure drugs as single 

enantiomers patented in the last few years (Maier et al., 2001). 
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CE, the “youngest” separation technique for enantioseparation is simply achieved by 

adding the appropriate chiral selector (e.g. cyclodextrins (CDs) and their derivatives, 

macrocyclic antibiotics, chiral crown ethers, chiral ligand exchange, chiral ion pair 

reagents, chiral surfactants and miscellaneous chiral selectors) to the BGE (Fanali, 

1996). The first paper on chiral CE was published by Gassman et al., in 1985. A 

search using Scopus database search engine over the years 1985 - 2009 revealed the 

dramatic growth of the papers published on CE from 1996 onwards (Figure 1.6). 

From 1998 onwards, almost 20 % of all publications in CE deal with chiral 

separation. 
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Figure 1.6 Number of CE publications since 1985. Search engine, Scopus, search 

keywords, “capillary electrophoresis and chiral” and “capillary electrophoresis”. 

 

 

The widespread acceptance of CE, is mainly due to its “green” features such as high 

separation efficiency, low consumption of sample and reagents (e.g., picoliter (pL) to 

nanoliter (nL), often the BGE consumed is less than 1 µL for each analysis), short 
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analysis time, ease of operation, and can be applied to a wide range of analytes 

(Fanali 1996; Varenne and Descroix, 2008; Ha et al., 2006; Gübitz and Schmid, 

1997). One of the greatest advantages of CE compared with other analytical 

techniques such as HPLC is its high efficiency (theoretical plates of hundreds of 

thousands). 

 

The fact that thousands of CE instruments have been installed in laboratories 

worldwide is clear indicators of the acceptance of the technique. It has also been 

implemented as an analytical technique in the United States Pharmacopeia (USP), 

and European Pharmacopeia (EP) (Subramanian, 2007). Regulatory authorities such 

as the FDA and the European Agency have accepted CE methods for the Evaluation 

of Medicinal Products (Subramanian, 2007).  

 

1.5 Chiral Separation Modes 

 

 

Chiral separations require the presence of a chiral selector to form transient 

diastereomeric complexes with the analyte. One of the inherent advantages of CE 

over chromatographic techniques is the fact that the chiral selector can possess an 

electrophoretic mobility (not possible in chromatography) and thus different schemes 

of migration can be applied. 

 

In the case of neutral chiral selector, only charged analytes can be separated unless a 

different migration mode such as micellar electrokinetic chromatography (MEKC) is 

used. When separating basic analytes, an acidic (low pH) BGE is used (Figure 1.7 

(A)). The basic analytes will be protonated and migrate to the detector at the 
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cathodic side of the capillary whereas the chiral selector does not possess any 

electrophoretic mobility but it is transported by the largely suppressed EOF. 

Therefore, the enantiomer which is complexed more strongly by the chiral selector 

migrates slower as it is complexed for a longer time than the more weakly bound 

enantiomer. Since the hydrodynamic radius of the enantiomer-CD complex is larger 

than the radius of the free analyte, the complex migrates slower. 

 

Figure 1.7 Scheme of migration modes in CE for chiral molecules     (Subramaian, 

2007). 
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In the case of separating acidic analytes and using neutral chiral selector, basic 

medium (high pH) is needed. The negatively charged analytes migrate to the anode 

but are transported to the cathodic side by the strong EOF of the basic medium. 

Therefore, the strongly complexed enantiomer migrates first as its mobility in the 

opposite direction to the detector is slowed (Figure 1.7 (B)). 

 

Using charged chiral selectors offer additional advantages as they possess 

electrophoretic mobility, and thus neutral compounds can be separated. Analyzing 

the basic analytes using negatively charged selectors can be achieved using acidic 

BGE where the negatively charged chiral selector migrates to the anodic side while 

the positively charged basic analytes migrates towards the cathodic side (Figure 1.7 

(C)).  

 

A major advantage of using chiral selectors with opposite charge to the analytes is 

their counter mobility which allows the use of low concentrations of the respective 

chiral selector. When the chiral selector concentrations are high or the binding of the 

analyte enantiomers to the selector is strong, the complex may not reach the detector 

at the cathodic side due to the fact that the solute is transported by the negatively 

charged chiral selector to the anode. Therefore, voltage polarity is reversed and the 

detection can take place at the anodic end of the capillary (Figure 1.7 (D)) (a feature 

used in Chapter Four). The stronger complex that forms between the enantiomer and 

the chiral selector is thus detected first as it is accelerated towards the anodic side by 

the negatively charged selector. Compared with the situation described in (Figure 1.7 

(C)), a reversal of the enantiomer migration order is observed. This situation can also 

be applied for the enantioseparation of neutral analytes, where the enantiomers are 
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transported towards the detector at the anodic side by the effect of the charged 

selector, with the more strongly complexed enantiomer migrating first. 

 

Under basic conditions, charged chiral selectors may also be applied to the 

enantioseparation of basic and neutral analytes using the normal polarity mode 

(Figure 1.7 (E)) (a feature used in Chapter Five). Under basic conditions, the basic 

analytes are uncharged and thus transported to the detector at the cathodic side as 

neutral analytes. The anionic selector migrating towards the anodic side decelerates 

the more strongly complexed enantiomer compared with the weakly complexed 

enantiomer. Therefore, the weakly bound enantiomer is detected first. Anionic 

analytes usually exhibit only weak interactions with the negatively charged selectors 

due to electric repulsion and therefore are not included in the above mentioned 

consideration, whereas positively charged chiral selectors are useful for the 

enantioseparation of acidic and neutral analytes (Subramanian, 2007).  

 

Under the normal set-up, both the capillary and the buffer reservoirs are filled with 

the BGE containing the chiral selector. When the chiral selector used has high UV 

absorbance, it will interfere with the UV detection and consequently other conditions 

need to be considered. The same situation is applied when the CE is coupled to a 

mass spectrometer where the selector entering the ion source and will accumulate 

inside and reduce the ionization efficiency. In view of these obstacles, the partial 

filling technique can be applied (Subramanian, 2007). In this technique, only part of 

the capillary (shorter than the effective length) is filled with the BGE containing the 

chiral selector, the reminder of the capillary containing chiral selector free BGE. 

After the injection of analyte takes place, the ends of the capillary are immersed in 
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selector-free BGE and the voltage is applied which results in the migration of the 

charged analytes through the selector-containing BGE zone where they are 

separated. At the end, the enantiomers enter the selector-free BGE zone and migrate 

to the detector (Amini et al., 1999). The conditions need to be adjusted to assure that 

the selector zone does not migrate towards the detector to a significant extent due to 

the high EOF. Generally, the selector zone is immobile but in any case the analyte 

must migrate faster than the selector zone in order to reach detector before the 

selector zone (Subramanian, 2007).  

 

The counter current technique is appropriate when using chiral selectors with 

opposite charge to the analytes for cationic analytes and negatively charged chiral 

selectors. In this technique, the whole capillary may be filled with the chiral selector-

containing BGE. Once the analyte is injected, the separation is achieved using 

selector-free BGE in the cathodic BGE reservoir and whether the selector-free or 

selector-containing BGE in the anodic reservoir. Due to its negative charge, the 

chiral selector migrates to the anodic side clearing the detection zone and thus the 

analytes which are separated while migrating through the selector zone to the 

cathodic side are detected in the absence of the chiral selector. Interestingly, the 

combination of the two techniques is possible, where partial filling of the capillary 

with a selector migrating in the opposite direction of the analytes (Subramaian, 

2007).  

 

1.6 Chiral Selectors 

 

A large number of chiral selectors are currently available, and continue to increase. 

Therefore, choosing the best chiral selector for a specific purpose can be a difficult 
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issue. Usually, the suitable chiral selector is selected by trial and error and this can 

be expensive and time consuming. Some of the common chiral selectors are next 

discussed. 

 

1.6.1 Proteins 

 

The rational of using proteins as chiral selectors came from the fact that drugs binds 

stereoselectively to proteins and therefore led to investigations of using these 

proteins as chiral selectors (Gübitz and Schmid, 2000). The simplest way of using 

proteins as chiral selectors is to dissolve it in the BGE. Examples of these proteins 

are human and porcine serum albumin, bovine serum albumin (BSA) which is added 

to the BGE using the partial-filling technique. Proteins can also be covalently 

bounded to silica materials in CE, or to the inner surface of the coated capillary. 

Alternatively, the simple dynamic coating approach of the capillary wall can also be 

used (Ha et al., 2006).  

 

Problems associated with the use of proteins as chiral selectors are the adsorption of 

the chiral selector to the capillary wall and the UV absorption interferences. These 

two problems can limit the use of these proteins as chiral selectors. A few 

approaches can be used to overcome these problems. For instance, to eliminate the 

adsorption to the capillary wall, the capillary can be modified and this can be 

achieved either by dynamic modification, adsorption of polymers to the capillary 

wall or covalent bonding of functional group to silanol sites (Amini, 2001). For UV 

absorption problem, the partial-filling technique can be used (Gübitz and Schmid, 

2000). In order to protect the natural conformations of proteins for the purpose of 

chiral separation, mild methods for immobilization onto matrices are needed (e.g., 
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sol-gel encapsulation, physical adsorption and covalently binding) (Zhang et al., 

2010). 

 

 

1.6.2 Polysaccharides  

 

 

Linear, neutral and charged polysaccharides, e.g., chondroitin sulfates, dextrans, 

dextrins, aminoglycosides and heparin (Figure 1.8) have also been used as chiral 

selectors in HPLC and CE (Blanco and Valverde, 2003; Amini, 2001). It has been 

reported that the complexation between the analyte and polysaccharides is weaker 

than in CDs, and this may be attributed to the weaker hydrophobic interactions 

(Amini, 2001). The mechanism of enantioseparations is based on the conformation 

changes from a flexible coil to a helix in the presence of an analyte and buffer salts. 

The helical structure forms a hydrophobic cavity, mimicking a CD cavity, in which 

the analyte can be included; the formed cavity is more flexible than that of CDs 

(Amini, 2001). Two different groups of carbohydrates can be distinguished: neutral 

and charged oligo-and polysaccharides. Neutral carbohydrates such as dextrins 

(Soini et al., 1994; Nishi and Kuwahara, 2001) and dextrans (Nishi and Kuwahara, 

2001) whereas negatively charged polysaccharides such as heparin, dextran sulphate, 

chondroitin sulphate C and A have been shown to be suitable as chiral selectors for 

basic drugs (Nishi, 1997; Nishi and Kuwahara, 2001). 
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Figure 1.8 Chemical structures of some polysaccharides used as chiral selectors 
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Figure 1.8. Continued 
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1.6.3 Macrocyclic Antibiotics  

 

 

Several macrocyclic antibiotics e.g., ansa compounds (ansamycins) and 

glycopeptides antibiotics (e.g., vancomycin, teicoplanin, ristocetin A, avoparcin and 

balhimycin) have been used as chiral selectors in CE. (Desiderio and Fanali, 1998; 

Blanco and Valverde, 2003). Ansa compounds consisting of a chromophore bonded 

to a hydrocarbon chain bearing different substituents. While glycopeptides consist of 

three or four fused macrocyclic rings composed of linked amino acids and 

substituted phenols. Some fused rings bear various sugar or saccharide moieties. 

Both the ansa and glycopeptides share similar structural features such as the presence 

of several stereogenic centers and many functional groups, permitting multiple 

interactions with the analytes. Other interactions such as ionic, hydrogen bonding, 

dipole-dipole, π-π, hydrophobic and steric repulsion are assumed to take place to 

enantioresolve analytes with widely different structures (Blanco and Valverde, 2003; 

Gübitz and Schmid, 2000; Zhang et al., 2010).  

 

As these macrocyclic antibiotics have aromatic moieties, thus they have strong UV 

absorption up to 250 nm, so partial filling or counter current techniques is deemed 

necessary for obtaining sensitive assays (Gübitz and Schmid, 2000). Other 

limitations for these compounds are their lack of stability in aqueous solutions 

compared to anhydrous form (e.g., the aqueous solution of vancomycin at pH 5 - 7 

deteriorates within 2 - 4 days at room temperature and 6 - 7 days at 4 ºC) (Armstrong 

and Nair, 1997). 
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1.6.4 Ligand Exchangers 
 

 

Chiral ligand exchange enantioseparation is mainly attributed to the thermodynamic 

stability difference of the ternary metal complexes that are formed between the chiral 

selector and analyte. Chiral ligand exchangers are effective for the enantioseparation, 

especially for the amino acids with high selectivity (Zhang et al., 2010). 

Enantioseparation using ligand-exchange complexation is based on the formation of 

diastereomeric transient mixed metal complexes (usually Cu (II), also Ni (II) or Zn 

(II)) between at least two chiral bifunctional ligands (usually L-amino acids) and the 

analyte enantiomers (Figure 1.9) (Blanco and Valverde, 2003). 

 

The concentration of the metal and the ligand must be suitable, i.e., the concentration 

of the ligand is twice that of the metal ion. Enantioseparation is based on the 

different stability constants of the diastereomeric complexes. The analyte and ligand 

form a ternary complex as follows (Amini, 2001): 

 

 

[L]n-[M] + [E] ↔ [L]n-1- [M] – [E] + [L]  .  .  .  (1.6) 

 

 

where L is the chiral ligand, M is the metal ion and E is the enantiomer. 

 

 

Chiral ligand exchange has been successfully applied for the enantioseparation of the 

free and N-derivatized amino acids, dipeptides, α-hydroxy acids and amino alcohols 

such as sympathomimetics and β-blockers (Subramanian, 2007). Mizrahi et al., 

(2008), reported the enantioseparation of five pairs of dansylated amino acids in a 

trans-(1S,2S)-1,2-bis-(dodecylamido) cyclohexane organogel using a complex of D-

valine and copper as the selector by the ligand exchange CEC (Zhang et al., 2010). 
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Disadvantages of the ligand-exchange as chiral selectors are mainly due to their 

limited stability and the detection difficulties resulting from their UV absorption 

(Vespalec and Boček, 2000). 
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Figure 1.9 Possible structures for the ternary complexes formed between the 

enantiomers of 3-phenyl-lactic acid and L-hydroxyproline (Blanco and Valverde, 

2003). 

 

 

 

 



 25 

1.6.5 Cyclodextrins  

 

Cyclodextrins (CDs) and their derivatives are the most popular and useful chiral 

selectors due to their commercial availability, low price and the UV transparency. 

Other characteristics of CDs are the stability to temperature (important in GC) and 

stability over a wide pH range (2 - 12). Naturally occurring α-, β-, γ-CDs are cyclic 

oligosaccharides which consist of six, seven and eight glucopyranose units that are 

produced by enzymatic digestion of starch by the enzyme cyclodextrins glycosyl 

transferase (Subramanian, 2007; Blanco and Valverde, 2003; Gübitz and Schmid, 

2000; Fanali, 1996). CDs are bonded through α-1,4-glycosidic bonds. CDs have a 

shape of a torus with a hydrophobic open cavity, which is able to accomodate 

analytes, and hydrophilic outside due to the presence of hydroxyl groups (positions 

2, 3 and 6 of glycopyranose) outside of the CD (Figure 1.10 b) (Fanali, 1996; Gübitz 

and Schmid, 2000). These hydroxyl groups could also be modified by using other 

functional groups that could afford dipole-dipole interactions, π-π effects and 

hydrogen bonding (Zhang et al., 2010). Figure 1.10 shows the shape of CD whereas 

Table 1.1 shows the main physical properties of the native CDs.  

 

 

          Table 1.1 The main properties of native cyclodextrins (Fanali, 2000). 

 

 CD type 

  α                         β                         γ 

Number of glucose units 

Molecular mass 

Inner diameter (nm) 

Depth (nm) 

Solubility (g/ 100 mL water) 

pKa 

  6   7                         8 

972                    1135                   1297 

0.57                   0.78                    0.95 

0.78                   0.78                    0.78 

14.5                   1.85                    23.2 

12.33                 12.20                 12.08 
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