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PEMBANGUNAN MANGKIN DWILOGAM Ni-Co/MgO-ZrO2 UNTUK 

PEMBENTUKAN SEMULA METANA MENGGUNAKAN KARBON 

DIOKSIDA 

 

ABSTRAK 

 

Pembentukan semula metana dengan karbon dioksida (CDRM) adalah kaedah 

yang berpotensi untuk memanfaatkan gas rumah kaca (CO2 dan CH4) untuk 

menghasilkan gas sintesis sebagai bahan suapan untuk pengeluaran bahan bakar 

cecair melalui proses Fischer-Tropsch. 

 

Mangkin nikel (6 peratusan berat), kobalt (6 peratusan berat) dan Ni-Co (3 

peratusan berat Ni dan 3 peratusan berat Co) disokong pada mesopori MgO-ZrO2 

berliang meso disediakan menggunakan kaedah impregnasi berbantukan surfaktan. 

Proses CDRM menggunakan mangkin tersebut dikaji di dalam reaktor balang kuarza 

pada 750 °C, 1 atm dengan halaju ruang gas per jam pada 125000 mL/g/jam. 

Berdasarkan penukaran bahan tindakbalas dan hasil gas sintesis dalam aliran produk, 

mangkin dwilogam Ni-Co/MgO-ZrO2 (NCMZ) didapati paling sesuai untuk process 

ini. Ia menunjukkan aktiviti yang tinggi dan stabil selama 40 jam dengan penukaran 

metana dan karbon dioksida sebanyak 80% dan 84%, masing-masing. Nisbah syngas 

yang didapati adalah hampir satu, tanpa penyahaktifan yang nyata berbanding 

dengan mangkin monologam masing-masing. Mangkin ini juga boleh dipulihkan 

semula dengan baik dan memperolehi semula aktiviti mangkin awal melalui 

pemulihan semula dalam udara selama 1 jam. Prestasi mangkin yang tinggi adalah 

disebabkan oleh penyerakan logam yang seragam, zarah logam yang kecil dan kesan 

sinergi di antara Ni dan Co. Mangkin dwilogam tersebut memiliki kemampuan untuk 
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menghalang pengoksidaan logam dan menunjukkan kewujudan spesies oksigen 

permukaan yang lebih tinggi yang bertanggungjawab kestabilannya. 

 

Kinetik untuk proses CDRM menggunakan mangkin dwilogam NCMZ 

diselidiki dalam reaktor tetap pada julat suhu 650-750 °C dan tekanan separa CO2 

dan CH4 antara 45-360 kPa. Disebabkan tindakbalas serentak pembentukan semula 

CO2 dan anjakan berbalik gas air (RWGS), tenaga pengaktifan ketara berbeza 

daripada yang dilaporkan iaitu sebanyak 52.9 dan 48.1 kJ/mol untuk penggunaan 

CH4 dan CO2, masing-masing. Model Langmuir-Hinshelwood (LHHW) dicadangkan 

berdasarkan kepada pemisahan CH4 sebagai langkah penentu kadar dan didapati 

sepadan dengan data eksperimen. 

 

Rekabentuk Eksperimen (DOE) telah digunakan untuk mengkaji hubungan 

antara nisbah karbon dioksida kepada metana (1-5), kelajuan gas per jam (8400-

200000 mL/g/h), kepekatan oksigen dalam suapan (3 -8%) dan suhu tindakbalas 

(700-800 °C). Berdasarkan ANOVA, model setiap gerakbalas yang berkaitan dengan 

pembolehubah adalah signifikan dan boleh digunakan untuk mengoptimumkan 

proses melalui kaedah sambutan permukaan. Keadaan optimum proses diperolehi 

pada GHSV 145190 mL/g/h, suhu 749 °C, nisbah karbon dioksida kepada metana 

ialah 3 dan 7% penambahan oksigen dalam suapan. Ulangan tindakbalas pada 

keadaan optimum memberikan respon yang sesuai dengan model jawapan yang 

disimulasikan dengan ralat ± 2%. 
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DEVELOPMENT OF BIMETALLIC CATALYST Ni-Co/MgO-ZrO2 FOR 

REFORMING OF METHANE USING CARBON DIOXIDE 

 
 

ABSTRACT 

 

Carbon dioxide reforming of methane (CDRM) is a potential method to 

utilize the greenhouse gases (CO2 and CH4) to produce syngas as the feedstock for 

the production of liquid fuel through Fischer-Tropsch process.  

 

Nickel (6 wt% Ni), cobalt (6 wt% Co) and Ni-Co (3 wt% Ni and 3 wt% Co) 

supported over mesoporous MgO-ZrO2 as catalysts were prepared using a surfactant 

assisted-impregnation method. CDRM process using these catalysts were studied in a 

quartz tube microreactor at 750 °C, 1 atm with gas hourly space velocity of 125,000 

mL/g/h. Based on reactant’s conversion and syngas yield in the product stream, 

bimetallic catalyst Ni-Co/MgO-ZrO2 (NCMZ) was a suitable catalyst for carbon 

dioxide reforming. The bimetallic catalyst exhibited high and stable activity during 

40 h reaction time with methane and carbon dioxide conversions of 80 % and 84 %, 

respectively. The syngas ratio was close to unity, without significant deactivation as 

compared to the respective monometallic catalysts. The bimetallic catalyst also 

exhibited excellent regenerability by restoring its initial catalytic activity through 1 h 

of regeneration treatment in air. The high performance of the catalyst was due to 

better metal dispersion, small metal particle size and synergetic effect between Ni 

and Co particles. The XPS results showed that bimetallic catalyst had the ability to 

hinder metal oxidation and exhibited the presence of higher surface oxygen species 

which was responsible to maintain the stability of the catalyst. 
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Kinetics of CDRM process over NCMZ bimetallic catalyst was investigated 

in a fixed bed reactor at a temperature range of 650−750 °C and the partial pressures 

of CO2 and CH4 ranged from 45 to 360 kPa. Owing to simultaneous occurrence of 

CO2 reforming reaction and reverse water−gas shift reaction (RWGS) in the system, 

the apparent activation energies were found to be different from those reported and 

they were 52.9 and 48.1 kJ/mol for CH4 and CO2 consumption, respectively. A 

Langmuir−Hinshelwood (LHHW) model was proposed based on the dissociation of 

CH4 as the rate determining step over the NCMZ catalyst. It satisfactorily fits the 

experimental data as well. 

 

Design of Experiments (DOE) were used to study the relationship between 

the process variables such as carbon dioxide to methane ratios (1-5), gas hourly 

space velocity (8400-200000 mL/g/h), oxygen concentration in feed (3-8 %) and 

reaction temperature (700-800 °C). Methane conversion, hydrogen and carbon 

monoxide yields, and syngas ratio were considered as the responses to study the 

effect of process variables using ANOVA analysis embedded in Design Expert 

software. The ANOVA results indicated that the model of each response related with 

the process variable effects was significant and could be used to optimize the 

reforming process through response surface methodology. The optimum reaction 

condition for carbon dioxide reforming was obtained as gas hourly space velocity 

(GHSV) of 145190 mL/g/h, reaction temperature of 749 °C, carbon dioxide to 

methane ratio of 3 and 7 % of oxygen addition in the feed. The repeated experiments 

conducted at the optimum condition gave the responses which were in agreement 

with the simulated model responses within an error of ±2 %. 
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CHAPTER 1 

INTRODUCTION 

This chapter gives an overview to the background and the development of 

synthesis gas (syngas) production technology through various reforming processes. 

The current trend in syngas through carbon dioxide reforming of methane is 

discussed. This chapter also concludes with the problem statement, research 

objectives, scope and the structure of the thesis. 

 

1.1 Natural Gas Utilization 

Fossil fuels have become an important part of everyday life, providing us 

with a multitude of materials, energy and fuels. In the twentieth century, oil played 

the most important role. Its relatively recent first commercial extraction in 1859 

allowed a number of important developments, starting with cheap illumination fuel 

(to replace expensive sperm whale spermaceti), then the road usage vehicles, and on 

to powered flight and commercial air travel (Jones Roger, 2006). As a result, oil has 

become the driving force for the world's economy, providing the raw materials 

for >90 % of the organic chemicals produced in 1980 and has become the dominant 

source of transportation fuels (Jones Roger, 2006, Maity et al., 2010, Murphy and 

Oliveira, 2010, Nashawi et al., 2010). However, the finite and readily accessible oil 

reserves are being quickly depleted and with the fast development of the Asian 

economies this process can be advanced (Nashawi et al., 2010, Pibasso, 2010, Snow, 

2010). In recent years, the oil price has again rocketed, reaching an all time high of 

around $ 80 per barrel (Chen et al., 2010, Hedi Arouri and Khuong Nguyen, 2010, 

Radler, 2010), again focusing the world's attention on the importance of oil. 

Therefore, alternative energy resources are required. 
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One alternative is natural gas, which is composed predominantly of methane, 

and is forecast to outlast oil by a significant margin (Bybee, 2010, Lee and Sidle, 

2010, Pibasso, 2010).  Increasing exploration has led to a shift in the location of 

known reserves in more remote regions, away from the areas of consumption and 

into less hospitable areas which results in increasing transportation costs and the 

need to convert natural gas into more economically attractive products, such as liquid 

transportation fuels of higher energy density (York et al., 2007). Therefore, there has 

been considerable investment in research programs, both academic and industrial, for 

the development of routes from methane to liquid synfuels as substitutes to 

petroleum.  

 

Hydrocarbon upgrading of natural gas has been a challenge for the industries 

as well as researchers throughout the world (Ashcroft et al., 1990, Lin and Sen, 1994, 

Periana et al., 1998, Choudhary et al., 2005, Hao et al., 2008, Cho et al., 2010). 

Methane (CH4), can be chemically converted into higher hydrocarbons as well as 

liquid fuels chemically through indirect and direct routes (Choudhary et al., 2003). 

The direct routes (oxidative coupling of methane (OCM) (Greish et al., 2009, Kundu 

et al., 2009, Fallah and Falamaki, 2010, Gholipour et al., 2010), and methane 

aromatization (Luzgin et al., 2009, Masiero et al., 2009) are single-step processes in 

which the methane is chemically reacted with oxygen (or another oxidizing species) 

to give the desired product directly. Apart from complete combustion for heating 

purposes (giving CO2 and water), all other possible processes are still at under the 

development stage.  

 

 



3 
 

Direct methane upgrading routes are not commercially applicable. This is 

mostly due to unfavourable thermodynamic conditions that cause low conversions 

and selectivities and thus not economically viable (Choudhary et al., 2003, York et 

al., 2003). Meanwhile, the indirect routes which draw the most attention recently in 

this area of research are focused on the methane upgrading via synthesis gas (syngas), 

which is a mixture of hydrogen and carbon monoxide formed from the reaction of 

methane with oxygen, steam, carbon dioxide and combination among these 

components.  

 

Gas-to-Liquid (GTL) technology is the most widely accepted technologies 

that convert natural gas into clean diesel, naphtha, kerosene and light oils, and these 

products can be distributed through the same channels as other petroleum products. 

GTL process involves conversion of methane into syngas in the first step followed by 

conversion of syngas to higher hydrocarbon or liquid fuels in the second step by the 

Fischer-Tropsch process (Arzamendi et al., 2010, Derevich, 2010, James et al., 

2010). The utilization of natural gas through syngas is presented in Figure 1.1.  

 

 
 

Figure 1.1: Indirect routes for natural gas upgrading through syngas (Choudhary and 
Choudhary, 2008) 
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Figure 1.1 shows that a large number of useful chemicals can be obtained 

from syngas which is one of the most important chemical industries feedstocks. 

However, the generation of syngas from methane is a large capital investment. 

Perhaps, it is the major investment part in the indirect methane conversion processes 

(Bakkerud et al., 2004). As a result, wide-ranging studies are being undertaken in 

academia as well as in industry to develop energy-efficient processes for syngas 

generation.  

 

1.2 Syngas Utilization 

Felice Fontana, an Italian physicist who first synthesized “blue water gas” 

(syngas) in 1780 by passing steam over red hot coal (Platon and Wang, 2002). Since 

then various routes have been suggested for the conversion of syngas to 

transportation fuels. These routes can be divided as follows, with the emphasis on 

potential industrial applications (York et al., 2007):  

1. Fischer-Tropsch synthesis; 

2. Methanol; and 

3. Methanol to gasoline (MTG) and distillates (MOGD). 

 

1.3 Reforming Technologies for Syngas Production 

Steam reforming of methane, partial oxidation of methane reforming, and 

carbon dioxide reforming of methane (dry reforming), are the three major processes 

for the production of syngas as presented in Table 1.1. 
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Table 1.1: Reforming processes for syngas production (Choudhary and Choudhary, 
2008) 

 
Reforming 
Process 

Process Equation Syngas 
Ratio(H2/CO) 

∆H298k(kJ/mol) 

Steam 
Reforming 

CH4+H2O→CO+3H2 3 206 

CO2 Reforming CH4+CO2→2CO+2H2 1 247 
Partial Oxidation CH4+(1/2)O2→CO+2H2 2 -35.5 
 

 

1.3.1 Steam Reforming 

Steam reforming process, was first commercialized in 1930s, and is currently 

the most widely used process for methane conversion (Rostrup-Nielsen, 1993). 

Steam reforming of methane (SRM) is an endothermic reaction and is carried out 

with excess steam to produce H2 and CO in the presence of catalyst (Dicks et al., 

2000, Ma et al., 2008, Arzamendi et al., 2009, Nikolla et al., 2009). The steam 

reforming process is highly endothermic (energy intensive) and produces 3 mol of 

hydrogen per mole of methane consumed. If hydrogen production is the goal (e.g. at 

refineries and hydrocracking), the amount of hydrogen produced can be further 

increased by utilizing the water gas shift reaction, wherein carbon monoxide is 

reacted with steam to produce carbon dioxide and hydrogen (Matsumura and 

Nakamori, 2004). Because nickel (Ni) is an economical and active element (Pistonesi 

et al., 2007, Oliveira et al., 2009, Oliveira et al., 2010, Xu et al., 2010), Ni catalysts, 

supported on ceramics, are most common catalysts used industrially for this process. 

However, these catalysts are also subject to different types of deactivation, such as 

sintering, oxidation, carbon deposition and sulfur poisoning (Sehested, 2006).  

 

1.3.2 Partial Oxidation of Methane (POM) 

In terms of energy efficiency perspective, partial oxidation of natural gas is 

the most promising among the three processes for syngas production. The H2/CO 
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ratio of two produced by this method is also suitable for the synthesis of a variety of 

value-added chemicals. Partial reforming of methane can be carried out 

homogeneously or catalytically. The homogeneous methane reforming process for 

syngas generation has been commercially applied in a GTL plant at Sarawak, 

Malaysia (Hoek and Kersten, 2004). However, this homogeneous partial oxidation 

reforming has a number of shortcomings including operation at very high 

temperature (>1300 °C). Catalytic partial oxidation offers advantage where high 

methane conversions can be obtained with excellent syngas selectivity at extremely 

high space velocities (contact time on the order of milliseconds) (Shishido et al., 

2009). Despite favorable thermodynamics and fast reaction kinetics, partial oxidation 

technology has to deal with a number of challenges before it can be widely 

commercialized. High space velocities coupled with high conversions can cause high 

local temperatures (hot-spot) on the surface of the catalyst which can result in 

catalyst deactivation due to sintering or formation of catalytically inactive phases by 

solid-solid reactions and carbon deposition. Moreover, catalyst deactivation can 

decrease syngas selectivity and make the process highly exothermic, thereby raising 

safety concerns.  

 

1.3.3 Carbon Dioxide Reforming of Methane (CDRM) 

The major interest in carbon dioxide reforming originates from the demand of 

the production of liquid hydrocarbons and oxygenates, e.g. acetic acid, formaldehyde, 

and oxo-alcohols since this reaction gives synthesis gas with a H2/CO ratio of about 

one (Bradford and Vannice, 1999). However, this reaction has a disadvantage of 

serious coking on the reforming catalyst. For this reason, a number of studies have 

been focused on the development of a coke-resistant catalyst for CDRM (Frontera et 

al., 2009, García et al., 2009, Liu et al., 2009, Ha et al., 2010). The catalysts based 
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on noble metals have been found to be less sensitive to carbon deposition (Wu and 

Chou, 2009). However, considering the high cost and limited availability of noble 

metals, it is more practical in industrial standpoint to develop group VIII based (non-

noble) catalysts with high performance and high resistance to carbon deposition.  

 

Moreover, CDRM process is  considered to store solar energy or nuclear 

energy through a chemical energy transmission system (CETS) (Richardson and 

Paripatyadar, 1990, Wang et al., 1996). The concept of CETS is shown in Figure 

1.2. The endothermic reforming is carried out when energy such as solar energy is 

available. Then  the  products  can  be  stored  or  transported  to  another  location  

where  energy  is required. Finally, exothermic reaction is carried out to release 

energy. 

 

 

Figure 1.2: The chemical energy transmission system (CETS)(Wang et al., 1996). 

 

From the above brief discussion, it is worth to note that carbon dioxide 

reforming of methane can be used to mitigate greenhouse gases emission, providing 

feedstock for liquid hydrocarbon production, or transferring energy via CETS. 

Carbon dioxide reforming possesses great economic and environmental advantages. 

 

 

Solar Energy

Exothermic reaction 

2CO+2H2→CH4+CO2 
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1.4 Greenhouse Effect and Carbon Dioxide Reforming Process 

During the past decade, there has been increasing global concern over the rise 

of carbon dioxide (CO2) emissions from different sources into the atmosphere that 

generally accepted as the main contributor for global warming. From the analysis 

reported by Le Quéré et al. (2009), total global emissions of carbon dioxide (CO2) 

from the combustion of fossil fuel and changes in land usage (mainly deforestation) 

in the year 2008 were 27 % higher than in the year 1990. Peters and Hertwich (2008) 

mentioned in their report that fast growth rates in developing countries (particularly 

China) in part due to the increased international trade of goods accelerated the 

growth in fossil fuel CO2 emissions since year 2000. The future CO2 levels are 

expected to rise further due to ongoing burning of fossil fuels. The magnitude of the 

rise depends on economic, sociological, technological, and natural developments, but 

may be ultimately limited by the availability of fossil fuels. The carbon dioxide 

formed in combustion processes is, almost without exception, emitted to the 

atmosphere where it gradually accumulates (Ross, 2005). Atmospheric CO2 

concentration is more than 105 ppm above its natural preindustrial level when the 

concentration of CO2 in the atmosphere reached 385 parts per million (ppm) in 2008 

(Figure 1.3a) as reported by  Pieter (2009). Through the analysis from Joos and 

Spahni (2008), CO2 levels increased at a rate of 1.9 ppm/year between year 2000 and 

year 2008, compared to 1.5 ppm/yr in the 1990s.  
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(a) 

 
 
 
 
 

(b) 

 
 

Figure 1.3: Concentration of (a) CO2 and (b) CH4 in the atmosphere (Pieter, 2009) 
 

Although the precise CO2 emission could not be predicted, there are several 

different indicators which raise the possibility that the greenhouse gases emission 

will be the main cause of global warming. On the other hand, methane (CH4) also 

contributes to the formation of greenhouse gases.  The concentration of methane 

(CH4) in the atmosphere increased since year 2007 to 1800 parts per billion (ppb) 

after almost a decade as mentioned in the report by Pieter (2009) (Figure 1.3b).  
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The causes of the recent increase in CH4 have not yet been determined but 

generally CH4 is emitted by many industrial activities (agriculture activity, biomass 

burning, mining, and gas and oil industry) and by natural reservoirs (swampland, and 

peatlands). If the CH4 concentration further increases for upcoming centuries, it 

could enhance the greenhouse gas burden of the atmosphere. Consequently, there are 

many approaches to reduce the concentration of CO2 and CH4 in the atmosphere 

through their utilization. Carbon dioxide reforming/dry reforming of methane 

(CDRM) is seen as the most potential process to produce value-added liquid fuel 

through syngas as versatile intermediate.  

 

1.5 Problem Statement 

The main concern in catalyst development for CDRM process is always 

focused on the inhibition of coke deposition on the surface of catalyst. Although 

many efforts have been reported, the soot formation that causes the deactivation still 

remains as the most severe drawback. Consequently, catalyst deactivation from coke 

deposition preventing CDRM process needs to be explored. The present work is to 

develop a stable Ni-based bimetallic catalyst that, for which it exhibits superior 

performance for CDRM process compared to Ni-monometallic catalyst.  

 

Fundamental knowledge concerning the coking process is required to 

improve the coking resistance of a nickel-based catalyst for CO2 reforming of CH4 to 

a degree acceptable for industrial application. These include studies on carbon 

deposition and its influence on the stability of the catalyst, effect of metal−support 

interactions on the kind of deposited carbon and its reactivity, individual role of CH4 

and CO2 reaction pathways in the accumulation of adsorbed carbon under reforming 
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reaction conditions, chemical and morphological properties of the carbon species 

formed as well as the kinetics of the reforming reaction.  

CDRM using CO2 needs suitable non-noble catalyst for this process to be 

utilized in the production of syngas. Thus, the present research concentrate on the 

development of suitable catalyst for this process with major focus on the role of this 

catalyst in the reaction, its deactivation and activity at different process conditions. 

The kinetic parameters will also be determined by proposing suitable model 

following the reaction mechanism on the developed catalyst.  

 

1.6 Objectives 

i. To develop different combinations of Ni-based bimetallic catalysts and screen 

the catalysts based on their catalytic activity.  

ii. To characterize the fresh and used catalysts using different analytical 

techniques (TPR, TPH, TGA, XRD, TEM, XPS, HRTEM, N2 Adsorption-

Desorption, H2-chemisorption) to elucidate the physico-chemical properties. 

iii. To study the kinetics of the reforming reaction and estimate the kinetic 

parameters of the proposed kinetic model based on reaction mechanism. 

iv. To measure the catalytic activity of the bimetallic catalyst at different 

operating conditions for the carbon dioxide reforming (CDRM) and optimize 

the operating parameters of the process for the syngas production using 

Design of Experiments (DOE). 

 

1.7 Scope of Work 

The first part of the present study concentrates on catalyst screening which is 

divided into two series of screening process: first and foremost, active sites screening 

among different combinations of Ni based bimetallic catalysts. The most potential 
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catalyst is further investigated in the form of single element (monometallic) and 

bimetallic. Meanwhile, different characterization techniques are used to study the 

physico-chemical properties of the catalyst.  

 

The second stage of this study consists of kinetic study, stability study as well 

as regeneration ability of the used catalyst. Kinetic studies are carried out under 

differential partial pressure of reactants (45-360 kPa) in a packed bed reactor.  

 

The last part of this research work is process study of the most potential 

catalyst in a packed bed reactor. Operating parameters investigated include reaction 

temperature, gas hourly space velocity (GHSV), reactant ratio (CO2:CH4) and 

oxygen concentration in feed. The responses of the process were measured in the 

basic of the conversion of the limiting reactant (CH4), products ratio (syngas ratio), 

and yield of products. Reaction temperature (700-800 °C), GHSV (8.4×103-200×103 

mL/g/h), CO2:CH4 (1-5) and oxygen concentration in feed (3-12 %) on the 

conversion of methane, syngas ratio, and yield of products are studied using Design 

of Experiments (DOE) coupled with Response Surface Methodology (RSM). The 

ranges of these parameters were decided based on literature information and 

experimental viability of the reaction rig. As carbon deposition can affect the long 

term performance of the catalyst, the stability and coke combustion behaviour of 

used catalyst are investigated to gain insights into the relationship between the 

carbon formation and catalyst deactivation. Regenerability of used catalyst is carried 

by different combinations of regenerating agents such as air, nitrogen as well as 

hydrogen. 

 

 



13 
 

 

1.8 Organization of Thesis 

The thesis comprises five chapters. Chapter 1 presents the natural gas 

upgrading technologies either through direct or indirect routes. Besides, a brief 

review of reforming technologies (steam, carbon dioxide and partial oxidation) for 

the production of syngas is also given. However, the emphasis is given to the 

utilization of greenhouse gases in carbon dioxide reforming through catalytic process. 

The objective of this research work also covered in this chapter as well.  

 

Chapter 2 summarizes the related information published in the literature 

including the process chemistry, reaction mechanism, catalyst development, catalytic 

technologies as well as kinetic in carbon dioxide reforming. The latest trend in the 

scientific investigation in carbon dioxide reforming also covered, starting from the 

broad study of catalyst materials to the development of latest catalytic technology. 

 

Chapter 3 addresses the preparation methods for the bimetallic catalysts, 

chemicals involved, as well as the setup of the catalytic packed bed reactor. Besides, 

this chapter also discusses characterization techniques that are used to analyze fresh, 

reduced and used catalysts. 

 

Chapter 4 presents the performance of screened catalyst for CDRM reaction 

in a catalytic packed bed reactor. Extensive studies for the most potential catalyst in 

terms of characterization as well as long term stability are reported in this chapter. A 

kinetic model for the reforming process is also given. The process is studied under 

different operating conditions and statistically analyzed using the Design of 

Experiment (DOE) and the optimum conditions are predicted using Response 
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Surface Methodology (RSM) coupled with Central Composite Design (CCD) and 

presented at the end of the chapter. 

 

The overall outcome obtained in the present study are summarized and 

concluded in Chapter 5. Suggestion on further improvement of the research work that 

should be done in the future is highlighted so that further improvement in the 

research work on the syngas production and the development of more feasible 

CDRM technology in USM can be achieved. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides the literature review for this specific research project. 

Firstly, an overview of carbon dioxide reforming of methane process is discussed in 

this chapter. Subsequently, literature reports about process chemistry, 

characterization techniques and reforming mechanism for this reforming process are 

thoroughly reviewed. Recent development with respect to the catalysts for carbon 

dioxide reforming including type of active and support materials being use and 

different preparation method for catalyst are also discussed. Discussion on the 

kinetics of the reaction is given in the chapter as well. Process study for CDRM 

reaction is also reviewed for optimization study in the present work and placed at the 

end of the chapter.  

 

2.1 Overview 

The reforming of natural gas with carbon dioxide (i.e. CDRM process) is an 

attractive reaction for the purpose of both academic study and industrial utilization. 

There are several advantages for this reaction: (1) mitigation of greenhouse gases 

(carbon dioxide and methane), (2) transformation of natural gas and carbon dioxide 

into a valuable syngas, and (3) effective utilization of low grade natural gas resources 

consisting high concentration of carbon dioxide. Hydrogen in the product could be 

applied as a fuel in fuel cells (Eriksson et al., 2005, Specchia et al., 2007). The 

syngas can be converted efficiently to ultra clean fuels with no sulphur and less 

aromatics such as gasoline, gasoil, methanol, and dimethyl ether (DME) via Fischer-

Tropsch synthesis (Choudhary and Choudhary, 2008). 
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2.2 Process Chemistry 

The reaction equilibrium for the production of syngas from CH4 and CO2, 

Equation (2.1) is influenced by the simultaneous reaction of the reverse water-gas 

shift (RWGS) reaction (Equation (2.6)) which results in H2/CO ratio of lower than 

unity. 

                                         T84.78545G                                                 

                 (2.6)                                                               41kJ/molΔH   ,OHCOHCO

  (2.5)                                                           131kJ/molΔH    ,OHCHCO

                                     T87.4039810G                                                  

        (2.4)                                                           171kJ/molΔH    ,CCO2CO

                                           26.45T-21960G                                                  

          (2.3)                                                               75kJ/molΔH    ,2HCCH

(2.2)                                                            206kJ/molΔH    ,3HCOOHCH

                                           67.32T-61770ΔG                                                   

 (2.1)                                                        .  247kJ/mol,ΔH    ,2H2COCOCH

0
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
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The standard free energy can be used to calculate the minimum operating 

temperature for CDRM reaction (Equation (2.1)), methane cracking (Equation (2.3)), 

Boudouard reaction (Equation (2.4)) and RWGS reaction (Equation (2.6))  and the 

results are shown in Table 2.1 (Wang et al., 1996). 
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Table 2.1: Limiting temperature for different reactions of CDRM (Wang et al., 1996) 
 

 

 

From Table 2.1, it can be concluded that: 

1) CDRM reaction can proceed above 640 °C accompanied by methane 

decomposition. 

2) RWGS reaction as well as Boudouard reaction will not take place when the 

reaction temperature exceeds 820 °C. 

3) Formation of carbon is most likely to take place within temperature range from 

557 °C -700 °C for both Boudouard reaction and methane decomposition. 

 

Bradford and Vannice (1999) reported that it was thermodynamically feasible 

for the CDRM reaction when the reaction temperature was higher than 727 °C.  

Zhang et al. (2007) also reported that the CH4 decomposition (Equation (2.3)) and 

CO disproportionation (Equation (2.4)) were directly responsible for the carbon 

deposition on the catalyst.  If the reaction temperature was increased from 527 to 

627 °C, it showed more preference to carbon deposition than CDRM process. 

Therefore, the choice of catalyst is very important so that it can kinetically inhibit 

carbon formation and simultaneously improves the CDRM reaction rate. 

 

Zhang et al. (2007) reported variation in the equilibrium constants of the 

reactions involved as a function of temperature. For a strong endothermic reaction, 

the equilibrium constant of Equation (2.1) increases dramatically with increasing 

reaction temperature. Thus, high conversion was favoured at high temperatures. The 

Temperature (°C) Reaction 
Lower Limit 640 (2.1) 

557 (2.3) 
Upper Limit 700 (2.4) 

820 (2.6) 
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equilibrium constants of the moderate endothermic reactions, methane 

decomposition Equation (2.3) and the reverse water-gas shift reaction (Equation 

(2.6)), also increased with temperature. Boudouard reaction Equation (2.6) and 

reverse carbon gasification reaction Equation (2.6), are exothermic and 

thermodynamically unfavorable at high temperature. Therefore, high reaction 

temperature (i.e., 750 °C and above) is more favourable to increase the equilibrium 

conversion of the target reaction (Equation (2.1)) than that of the side reactions 

(Equation (2.3) to Equation (2.5). Besides, this process must run with O/C ratios of 

greater than one to prevent coking of the catalyst.  

 

The propensity of these processes (Equation (2.3) and Equation (2.4)) to form 

carbon at low O/C ratios is even more pronounced at high pressures. In industry, it 

would be better to minimize the reactor size and energy use (Shamsi and Johnson, 

2003). Tomishige et al. (2000) investigated the effect of pressure on CDRM process. 

Under atmospheric pressure, the catalyst used in the CDRM process was extremely 

resistant to carbon deposition. Nakamura and Uchijima (1993) concluded that carbon 

deposition was only possible at 1 atm (atmospheric pressure) when the reaction 

temperature was increased up to 870 °C. This observation indicated that under 

atmospheric pressure, the CDRM reaction must be carried out with excessive CO2 in 

the feed to avoid carbon formation. Both methane and CO2 conversions decreased, 

the H2/CO ratio decreased while the rate of carbon deposition increased with 

increasing pressure.  
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2.3 Characterization Analysis of Common Catalysts 

Table 2.2 presents the common characterization techniques that are 

commonly used to study the catalyst from the perspective of morphology, carbon 

deposition, type of carbon, changes in phases, active site and support behaviours 

as well as chemistry of the catalyst itself. It is very important to study the 

following characterizations of the catalyst used for the CDRM reaction. Table 2.3 

presents different types of common characterization technique used for specific 

type of catalysts. 

 Active phases of the catalyst before and after reaction (XRD, TPR, XPS, H2-

Chemisorption and N2-adsorption). 

 Metal dispersion, metal particle size, state of the metal on the supported 

catalyst (TEM, SEM, XRD, CO-Chemisorption and H2-Chemisorption). 

 Carbon formation and its behaviors (TG, TPO, DTA and TPH).  

  
 
Table 2.2: Characterization analysis of the catalysts. 
 
Characterization Analysis 
Abbreviation 

Full Name of the Characterization Analysis 

XRD X-ray Diffraction 
TPR Temperature Programmed Reduction 
XPS X-ray Photoelectron Spectroscopy 
EPR Electron Paramagnetic Resonance 
TPO Temperature Programmed Oxidation 
TPH Temperature Programmed Hydrogenation 
TEM Transmission Electron Microscope 
TG Thermogravimetric 
DTA Differential Thermal Analysis 
MS Mass Spectrometry 
TPSR Temperature Programmed Surface 

Reaction  
AAS Atomic Absorption Spectroscopy 
SEM Scanning Electron Microscope 
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Table 2.3: Characterization analysis for CDRM reaction catalysts 
 

Type Catalyst Characterization 
Techniques 

Remarks Ref. 

Monometallic 
Supported 
Catalysts 

Ni/CeO2 
Pt/Al2O3 
Ni/Al2O3 
Ni/SiO2 
Ru/SiO2 
Ir/Al2O3 

XRD Improvement of metal dispersion under plasma treatment. (Nagaoka 
et al., 
2003, 
Ballarini et 
al., 2005) 

TPR Effect of calcination on the reducibility of catalyst. 
XPS Surface composition of the fresh, used as well as calcined catalysts. 
EPR Characterize the structure of support before and after reaction. 
TPO/TPH To investigate carbonaceous deposit on used catalyst. 

Bimetallic 
Supported 
Catalysts 

Ni-Co 
Ni-Ce 
Ni-Rh 
Ni-Ru 

TEM Shape of the support and the appearance of the bimetal particles dispersed on 
the support. 

(Kim et 
al., 2007, 
Zhang et 
al., 2008a) 

XRD Crystalline phases of catalyst. 
XPS Influence of one metal towards another in terms of reducibility. 
XRF Chemical composition of the catalyst 
TG-DTA-MS 
TPSR 
TPO 

Characterization of the deposited coke of used catalyst. 

N2-adsorption Quantitatively measures the surface area and pore size distribution. 
CO- 
Chemisorption 

Metal dispersion and metal surface chemistry. 

TPR Reducibility of catalyst before and after reaction. 
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Table 2.3: Continue 
 

Type Catalyst Characterization 
Techniques 

Remarks Ref. 

Metal Oxide 
Supported 
Catalysts 

CoO-MgO 
CeO2 

N2-adsorption To study the decrease of surface area by thermal sintering effect for catalysts 
calcined at different temperatures. 

(Mondal et 
al., 2007) 

TPO Resistance of catalyst towards carbon deposition. (The amount of carbon 
formed could be calculated from CO and CO2 yield TPO profile)  

XPS Surface chemical properties of catalyst. 
XRD Formation of different crystalline phases under different conditions.  

Promoted 
Supported 
Catalysts 

Ni-K 
Ni-Sn 
Ni-Ca 
Ni-Mn 

TG Effect of promoters on the gasification of deposited carbon. (Juan-Juan 
et al., 
2006, 
Castro 
Luna and 
Iriarte, 
2008) 

TPH Reactivity of deposited carbon. 
AAS Active site and promoters contents before and after reaction. 
TPR Reduction behavior of catalyst.  
XRD Effect of additional promoters on the crystalline structure of the catalyst. 
TEM Surface morphology of reduced and used catalyst 

Pore size distribution. 
TPO Amount of carbon deposited 

Perovskites 
Catalysts 

LaNiOx 
LaNiMgOx 
LaNiCoOx 
LaSrNiOx 
LaCeNiOx 

N2-adsorption Effect of calcination temperature on the surface area. (González 
et al., 
2005, 
Lima et 
al., 2006, 
de Lima et 
al., 2010) 

XRD Information regarding the crystalline structure of the synthesized solid catalyst. 
TPR 
TPR-TPO 

Temperature programmed reduction condition, changes of phases before and 
after the reaction could be obtained. 
Coupling TPR and TPO analysis to study the reversibility of perovskites 
catalyst (so called redox processes in the reforming reaction). 

TEM Degree of dispersion of active component 
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2.4 Mechanism for Reforming of Methane by Carbon Dioxide 

It is very important that the mechanism for the CDRM process to be 

understood and it depends on the choice of catalysts as well as reactants involved in 

the reaction. The predominant reactive steps between CH4 and catalyst surface are 

the dissociation and adsorption, which are claimed to be both direct and precursor 

mediated (Luntz and Harris, 1991, Seets et al., 1997). However, CH4 dissociation is 

gradually shifted from precursor mediated mechanism at low temperature to a direct 

dissociative at high temperature. Ceyer et al.(1988) studied the interaction of CH4 

with nickel (Ni) surface and suggested that in order to dissociate, CH4 must be 

separated from its tetrahedral shape to form a trigonal pyramidal structure, after 

which tunneling of H atom though the activation barrier occurred. However, van 

Santen and Neurock (1995) claimed that the activation barrier for CH4 dissociation 

on Ni did not involve molecular distortion and depended only on the tunneling of H 

atom via the activation barrier for H abstraction. Nevertheless, neither a quantitative 

model nor general consensus exists concerning the mechanism for CH4 adsorption 

and dissociation on transition metal surface.  

 

On the other hand, it is generally accepted that CO2 chemisorption and 

dissociation on transition metal surface is dominated by electron transfer and requires 

the formation of an anionic 
2CO  precursor (Solymosi, 1991). Segner et al. (1984)  

performed scattering experiment related to CO2 adsorption on Pt and found that CO2 

experienced the equal probability, trapping and desorption i.e. there was no 

detectable dissociation of CO2. As a result, there are many attempts to unravel the 

real CDRM process mechanism that involves both individual activation mechanism 

for CO2 and CH4 reforming. Researchers proposed different mechanisms with respect 

to their experimental data and observations based on different types of catalyst used 
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for the reaction. Most of the catalysts reported for CDRM process are made of two 

components i.e. metallic ones like Ni, Ru, Rh, Pd, Ire, Pt and Co, and oxide 

supported ones like those of SiO2, Al2O3, MgO, TiO2, CaO, CeO2, ZrO2 and La2O3 

(Rostrup-Nielsen, 1993). These two components of the catalyst play important roles 

during the CDRM process.   

 

Generally, methane is only adsorbed on the metal in a dissociated form to 

produce hydrogen and species CHx where the value of x is in the range between 0 and 

4 and depending on the metal substrate and the reaction temperature. Often, the value 

of x is around zero to indicate that actually carbon is formed on the metal surface. 

These species of carbon and hydrogen are attached to the metal active sites. The large 

majority of the adsorbed hydrogen species are then recombined, producing hydrogen 

molecules that subsequently desorb in the gaseous phase. It is reported that reversible 

adsorption of methane on the surface of catalyst leads to cracking of methane and the 

cracking is a rate limiting step (RDS) while methane adsorption is at equilibrium 

(Tsipouriari and Verykios, 2001, Topalidis et al., 2007). 

(2.8)                                                                                        2HM-CM-CH

(2.7)                                                                                            M-CHMCH
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44




 

where M is the active sites on metals. 

 

Two main categories of support i.e. acidic and basic type supports which 

account for their distinct behaviour in reaction of each and involve their resistance to 

carbon deposition based on the observation and data from literature (Ferreira-

Aparicio et al., 2000). On the silica supported ruthenium, for example, the dry 

reforming reaction takes place through a Langmuir–Hinshelwood mechanism. In this 

case, the dissociative adsorption of CO2 becomes adsorption limited as the reaction 
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proceeds due to the accumulation of highly dehydrogenated carbon deposits, which 

eventually undergo ageing and graphitization on the metal surface. The high 

concentration of these carbonaceous residues over the metal finally blocks the sites 

for CO2 activation, leading to a continuous loss of activity by coke deposition.  

 

On the other hand, a different pathway is proposed for the CDRM reaction 

over basic type supports such as alumina. CO2 is activated on the support in the 

vicinity of the metal particle to form a carbonate species. The carbonate might be 

reduced by CHx species to form carbon monoxide (CO). This kind mechanism, in 

which the support participates in the activation of carbon dioxide, has been proposed 

by Nakamura et al. (1994) for rhodium supported on oxides such as TiO2, Al2O3 or 

MgO. However, Bitter et al. (1997) showed that supports such as ZrO2 which is 

neither acidic nor basic exhibited behaviours like basic type support i.e. the CO2 

activation step took place on the support rather than on metal active site. Table 2.4 

presents the proposed scheme and reaction steps for CDRM reaction over the metal 

and support reported in literature. Based on the above discussion and summaries in 

Table 2.4, a general surface reaction mechanism is proposed to define necessary 

properties of catalyst for the present research study on CDRM process. As shown in 

Figure 2.1, the dissociation of methane molecule occurs on the metallic centres as 

the metallic state of catalyst is believed to be responsible for the CH4 activation 

(Wang et al., 1999, Bychkov et al., 2003, Souza et al., 2004, Song et al., 2008).  
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