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Introduction 

Nowadays, chemical production is moving 
towards full capacity operation with high 
profitability while aiming to achieve zero 
accidents and zero emissions.  Process control 
and monitoring is amongst the important 
factors that will help to accomplish these 
targets. Successful implementation of process 
control in operating plant requires relevant 
control strategies with reliable on-line 
measurement. However, difficulties in on-line 
measurement for some product qualities still 
exist due to large time delay, low sampling 
rate, high cost and unavailability of soft 
sensors. Recently, inferential control has been 
considered as a good strategy to deal with the 
limitations.  

The study of inferential control has started 
since 1970s. This concept utilised the 
measurable secondary measurements, such as 
temperature and pressure, to capture the 
behaviour of the primary measurements, such 
as product quality. Its application in 
distillation columns is common, where the 
product compositions are always inferred 
using the readily measured intermediate tray 
temperatures of the column. One of the 
examples is control of the bottom product 
quality of an industrial debutaniser (Joseph 
and Brosilow, 1978). The feed flow rate and 
the tray temperatures were chosen as the 
secondary variables and results showed that 
the performance was much improved compare 
to the steady state control. Tham et al. (1991) 
also evaluated the application of inferential 
control on a high purity distillation column.  
The predicted top product compositions using 
feed flow rate, reflux flow rate and tray 
temperatures were very close to the 
composition analyser response. Recently, 
Amirthalingam et al. (2000) proposed a two-
step procedure for building an inferential 
control model, which used both historical 
operation data and plant test data.  This model 
was implemented to a multi-component 
distillation column.  Tray temperatures were 
chosen to feed into the multirate Kalman filter 
in order to estimate the product compositions. 

Various estimation approaches for the 
construction of process estimator have been 
widely studied by researchers.  Available 
techniques can be categorised into 
fundamental and empirical approaches.  
Fundamental approach is theory based where 
the estimation model is built using first 
principle equations of the entire system 
consisting of mass and energy balances, 
thermodynamics and reaction kinetics. 
Although it is the direct approach, its 
application has not been widely explored due 
to financial and time constraints. The 
limitations of fundamental models had 
motivated researchers to utilise the historical 
input and output data for the development of 
empirical models.  Recently, application of 
partial least square regression (PLS) in 
developing composition estimator has been 
gaining popularity. The use of PLS model in 
chemical process estimation was started in the 
early 1990s (Mejdell and Skogestad, 1991). 
The proposed estimators that were based on 
steady-state data and multiple temperature 
measurements had performed well in various 
conditions such as multi-component mixtures, 
pressure variations, and non-linearity. 
Budman et al. (1992) and Kano et al. (2000) 
had also examined the application of the PLS 
model in the same field. 

In this paper, an on-line estimation model, 
which was established using Partial Least 
Squares (PLS) regression in the previous work 
(Lim and Ahmad, 2003) is applied. The model 
is designed to predict the overhead product 
composition of a fatty acid fractionation 
column. Several refinements are introduced to 
enhance the robustness and accuracy. It is 
further implemented in inferential control of 
the product composition. Its performance is 
evaluated against various process 
uncertainties. 

 
Materials and Methods 
 
Case Study 

In this section, brief description of the 
selected process is illustrated. The light-cut 
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column is one of the columns in the fatty acid 
fractionation plant. Separation of fatty acids 
ranging from C10 to C18 is carried out in this 
column. The feedstock of the column is the 
bottom product from the pre-cut column. 
Distillate product consists of around 98% C12 
fatty acid. The bottom products that are 
mainly C14 to C18 are then fed to the next 
column for further processing. Further details 
on the process description and physical 
properties of the column can be referred in the 
work of Lim and Ahmad (2003). 
 
 Overview of PLS Model  

The identification model was built using 
Partial Least Squares regression proposed by 
Geladi and Kowalski (1986). It is known to be 
a superior linear identification model in 
dealing with a large set of correlated data. The 
structure of PLS model is briefly discussed in 
this section.  

It consists of two outer relations and an 
inner relation. The outer relations are the 
matrices of independent and dependent 
variables, which can be represented by X and 
Y, respectively. The input X is projected into 
the latent space by the input-loading factor, P 
to obtain the input scores, T. Similarly, the 
output scores, U is obtained by projecting the 
output Y into latent space through the output-
loading factor, Q. These relations are in 
matrix form and are written in Equation (1) 
and (2). 
 

Outer relations:  X = TPT + Ef (1) 
Y = UQT + Ff (2) 

 
The matrices Ef and Ff are residuals of X 

and Y, respectively. X and Y are linked by a 
linear regression called inner relation to 
capture the relationships between the inputs 
and output latent scores. The notation of the 
inner relation is written in Equation (3). 
 

Inner relation:  U = TB  (3) 
 

The determinations of scores and loadings 
factors are carried out sequentially from the 
first factor to the fth factor. Scores and loading 
vectors for each factor is calculated from the 
previous residual matrices as shown in 
Equation (4) and (5), where initially E0 = X 
and F0 = Y. 
 

For X:  Ef = Ef-1 - Tf Pf
T  (4) 

For Y:  Ff = Ff-1 - Uf Qf
T  (5) 

 
Calculation of the inner and outer relations 

is performed until the last factor, f or when 
residual matrices are below certain threshold. 
 
Non-linear PLS 

In the ordinary PLS, the transformed input 
and output variables are related using a simple 
linear regression. This representation is found 
to be insufficient for the fatty acids 
fractionation column in this study due to the 
highly non-linear behaviour between primary 
and secondary variables. Regarding to this 
limitation, various non-linear functions are 
possible to replace the linear regression in 
order to enhance its ability in capturing non-
linear system (Wold et al., 1989).  

In this study, a neural network is chosen as 
the substitution. The non-linear PLS model is 
constructed based on the NNPLS model 
proposed by Qin and McAvoy (1992). The 
inner model is made up of a SISO 
feedforward network. The notation of the 
inner model is represented by Equation (6):  
 

Inner relation:  Uf = N (tf) + rf (6) 
 

where N (•) stands for the non-linear relation 
represented by a feedforward network and rf 
is the residual of the network. Here, the input 
and output scores served as the training data 
to obtain corresponding network weights. The 
procedure of determining the scores and 
loading factors is carried out sequentially 
from the first factor to the fth factor. 
 
Smoothing Filter 

Process disturbances and measurement 
noise are common uncertainties in real 
industry. In order to produce a more reliable 
estimation model in dynamic process, a 
smoothing filter is added. The filter helps to 
refine the predicted output and to eliminate 
outliers. It utilises the previous predicted 
results at time, tf to serve as bias values to 
correct the estimated data based on a weight 
value.  The weight of the bias values, β was 
ranging from 0 to 1. Both bias and estimated 
values can be added based on Equation 7. 

c
ftt

c
t yyy ˆ)1(ˆˆ ββ −+=    (7) 

 

The 4th Annual Seminar of National Science Fellowship 2004

323



Here, c
tŷ  is the filtered output, tŷ is the 

predicted value at current time, and c
ftŷ is the 

previous corrected predicted value at time tf. 
Various weight values are tested and a final 
value of 0.7 is used.  
  
Results and Discussion 
 
On-line Estimation 

All variables are scaled around mean and 
unit variances before on-line estimation of 
product composition. The enhanced model 
was tested against three sets of data with 
different process uncertainties. The output 
data of data set A, B and C show moderate, 
mild and severe fluctuation, respectively. The 
mean-squared error (MSE) of prediction using 
the enhanced and ordinary PLS models are 

summarised in Table1. The enhanced PLS 
model performs better than the conventional 
model where lower MSE are noted in all 
cases. The model is able to capture the 
movement of the output value ranging from 
0.7 to 1.0 as illustrated in Figure 1 where solid 
line indicates the actual output and dotted line 
indicates the estimated output. 

 
TABLE 1 The performance of models in on-line 
estimation 
 

Data 
(MSE × 10-4) 

Ordinary 
PLS 

Enhanced 
PLS 

Data A 1.5573 0.4894 
Data B 0.1333 0.0748 
Data C 30.802 15.406 

 
FIGURE 1   On-line estimation using enhanced PLS model 
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Inferential Control of Product Composition   
The inferential estimation model 

constructed in the previous section is now 
tested for composition control of the 
fractionation column. A PID controller is 

selected to control the overhead product 
composition by manipulating the reflux flow 
rate.  The general structure of inferential 
control scheme is depicted in Figure 2. 

 
 
 

 
FIGURE 2     Configuration of inferential control 

 
  

 
Disturbances are introduced to the feed 

stream of the light-cut column in order to 
evaluate the performance of inferential 
control. Two cases are investigated, which are 
fluctuation in feed flow rate and feed 
composition.  Step changes are initiated at 
time 50, 350 and 650 minutes for both cases 
as shown in Figure 3.  The total simulation 
time is 1000 minutes.  ±5% changes of the 
composition of C12 fatty acid in the feed 
stream are introduced while the feed flow rate 
remained constant.  On the other hand, 
maximum perturbation for feed flow rate is 
±150 kg/hr with consistent feed composition. 

 

The close-loop responses of the overhead 
product composition are plotted in Figure 3. 
Here, the solid line indicates the close-loop 
response of inferential control and the dotted 
line is the close-loop response of stage 
temperature control. Based on the results, the 
product composition is deviated from the 
desired value using stage temperature control. 
Conversely, the implementation of inferential 
control has successfully returned the overhead 
composition to the desired set point when 
disturbances are imposed to the feed stream. 
The performance is much better comparing 
with the responses using stage temperature 
control.
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a) Close-loop response of product composition with fluctuation in feed flow rate 
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b) Close-loop response of product composition with fluctuation in feed composition 

 
 

FIGURE 3    Close-loop response of product composition 
 
 
 

Conclusion 
In this paper, a PLS-based estimation 

model is constructed to estimate the product 
composition of a fatty acid fractionation 
column. The model is able to produce 
considerable results after some refinements. 
Inferential control of the product composition 
using the PLS-based estimator is implemented.  
The control scheme works adequately in 
rejecting process uncertainties and it is also 
more efficient comparing to the common 
indirect strategy using temperature control. As 
the conclusion, the proposed technique is a 
viable method for composition control in 
process industry. 
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