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PENGHETEROGENAN SAKARINA, MELAMINA DAN ASID SULFONIK
KE ATAS SILIKA ABU SEKAM PADI DAN AKTIVITI PEMANGKINAN DI

DALAM TINDAK BALAS PENGESTERAN

ABSTRAK

Natrium silikat daripada abu sekam padi (RHA) telah dimodifikasikan dengan

3–(kloropropil)trietoksisilan (CPTES), 3–(merkaptopropil)trimetoksisilan (MPTMS)

dan 3–(aminopropil)trietoksisilan (APTES) untuk menghasilkan RHACCl,

RHAPrSH dan RHAPrNH2 melalui kaedah sintesis one–pot. Analisis 29Si MAS

NMR pada RHACCl menunjukkan kewujudan pusat silikon T2, T3, Q3 dan Q4

manakala pusat silikon T1, T2, T3, Q2, Q3 dan Q4 wujud pada RHAPrSH dan

RHAPrNH.  Spektrum 13C MAS NMR menunjukkan RHACCl mempunyai 3

anjakan kimia pada 10.37, 26.70 dan 47.69 ppm yang merujuk kepada 3 atom karbon

moiti CPTES. RHAPrSH mempunyai anjakan kimia pada 16.59, 32.73 dan 14.58

manakala RHAPrNH2 menunjukkan hanya dua daripada tiga jalur yang dijangkakan

pada 26.13 dan 47.87 ppm disebabkan oleh pertindihan kedua jalur antara satu sama

lain. Kombinasi analisis CHN dan EDX telah menunjukkan kewujudan unsur klorin

di dalam RHACCl, sulfur di dalam RHAPrSH, nitrogen di dalam RHAPrNH2 dan

seterusnya kewujudan karbon dan silikon yang membuktikan silylating agents

bergabung dengan silika RHA. Sakarin (Sac) dan Melamina (Mel) immobilized

dengan silika untuk membentek RHAC-Sac dan RHAPrMela.  Kedua spektrum 29Si

MAS NMR, RHAC-Sac dan RHAPrMela menunjukkan anjakan kimia yang sama

dengan RHACCl.  Spektrum 13C MAS NMR menunjukan RHAC-Sac mempunyai

siri anjakan kimia yang konsisten dengan kehadiran gelang aromatik dan laktam.

Dua anjakan kimia pada 161.52 dan 169.67 ppm dengan jalur sisi putaran dubel pada

13C MAS NMR RHAPrMela, menunjukkan tiga atom karbon di dalam gelang
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melamina tidak ekuivalen dalam RHAPrMela. Kumpulan berfungsi –CH2–SH dalam

RHAPrSH telah dioksidakan ke asid sulfonik, –CH2–SO3H dengan hidrogen

peroksida pada suhu bilik. 29Si MAS NMR menunjukkan anjakan kimia yang serupa

dengan RHAPrSH.  Tiada pertindihan anjakan kimia C3 dan C2 dalam 13C MAS

NMR diperhatikan selepas tranformasi kepada RHAPrSO3H. RHAC-

Sac, RHAPrMela, RHAPrSO3H dan RHA–Blank (kawalan) berserta dengan Sac dan

Mela homogen digunakan sebagai mangkin dalam tindak balas esterifikasi.  Aktiviti

mangkin keatas ester didapati mengikut urutan berikut:

RHAPrSO3H > RHAPrMela > Sac homogen > RHAC-Sac > Mela homogen >

RHA–Blank.

Mangkin diaktifkan semula dengan pemanasan untuk mengeluarkan air dan

boleh digunakan semula beberapa kali tanpa kehilangan sifat mangkinnya.
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THE HETEROGENATION OF SACCHARIN, MELAMINE AND SULFONIC
ACID ONTO RICE HUSK ASH SILICA AND THEIR CATALYTIC

ACTIVITY IN ESTERIFICATION REACTION

ABSTRACT

Sodium silicate from rice husk ash (RHA) was functionalized with 3–

(chloropropyl)triethoxysilane (CPTES), 3–(mercaptopropyl)trimethoxysilane and

3–(aminopropyl)triethoxysilane to give RHACCl, RHAPrSH and RHAPrNH2 via a

simple one–pot synthesis. The 29Si MAS NMR of RHACCl showed the presence of

T2, T3, Q3 and Q4 silicon centres, while the T1, T2, T3, Q2, Q3 and Q4 silicon centres

were present in both RHAPrSH and RHAPrNH2. The 13C MAS NMR showed that

RHACCl had three chemical shifts at 10.37, 26.70 and 47.69 ppm, which was

attributed to the three carbon atoms of the CPTES moiety. RHAPrNH2 had chemical

shifts at 16.59, 32.73 and 14.58, while RHAPrSH showed only two signals at 26.13

and 47.87 ppm instead of the expected three signals. This was due to the

superimposition of two signals on each other. The combination of elemental and

EDX analysis showed the presence of chlorine in RHACCl, sulfur was found in

RHAPrSH and nitrogen was found in RHAPrNH2 as well as the presence of carbon

and silicon in the samples confirmed that the silylating agents were incorporated

onto RHA silica. Saccharine (Sac) and Melamine (Mela) were immobilized onto

RHACCl to form RHAC-Sac and RHAPrMela. Both 29Si MAS NMR spectra of

RHAC-Sac and RHAPrMela showed similar chemical shifts to the RHACCl. The

13C MAS NMR showed that RHAC-Sac had a series of chemical shifts consistent

with the presence of the aromatic and lactam ring. Two chemical shifts at 161.52 and

169.67 ppm with double spinning side bands were seen in the 13C MAS NMR of

RHAPrMela, indicating that the three carbon atoms in the melamine ring were not
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equivalent. The functionalized –CH2–SH group in RHAPrSH was oxidized to

sulfonic acid, –CH2–SO3H with hydrogen peroxide at room temperature. The 29Si

MAS NMR showed similar chemical shifts to the RHAPrSH. No overlapping of the

C3 and C2 chemical shifts in the 13C MAS NMR was observed after the

transformation to RHAPrSO3H. RHAC-Sac, RHAPrMela, RHAPrSO3H, RHA–

Blank (as control) as well as homogenous Sac and homogenous Mela were used as

catalysts in the esterification reaction. The catalytic activity of the catalysts toward

the respective esters was found to follow the sequence below.

RHAPrSO3H > RHAPrMela > homogenous Sac > RHAC-Sac > homogenous Mela

> RHA–Blank.

The catalysts were easily regenerated by heating to remove water and could

be reused several times without loss of catalytic activity.
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Chapter One

Introduction

1.0 Overview

Zhuravlev (2000) and Vansant, et al. (1995) stated that studies on silica

started in the1930s when a number of scholars such as Endell, Wilm, Carman and

Rideal studied the condensation processes of silicic acids which led to the discovery

of surface silanol groups, ≡Si–OH. After that, by using an infrared spectroscopy

method, Yaroslavsky and Terenin had proved the presence of hydroxyl groups on the

silica surface (porous glass) (Zhuravlev, 2000). Because of numerous spectral and

chemical data, it has become well known that silica has two types of functional

groups, i.e. the siloxane (≡Si–O–Si≡) in the bulk and several forms of silanol groups

(≡Si–OH) on its surface.

There are two surface silanol groups found experimentally on the silica

surface: the isolated (a single hydroxyl group attached to the silicon atom, ≡SiOH)

and the geminal (two hydroxyls group attached to the same silicon atom, =Si(OH)2)

as shown in Fig 1.1. Hydrogen bonds can be formed between the two vicinal silanol

groups (Yang, et al., 2006). On the other hand, silica shows three types of siloxane

groups (≡Si–O–Si≡). According to NMR study, these siloxane groups (≡Si–O–Si≡)

are represented as Qn, where n indicates the number of bridging bonds (–O–Si) tied

to the central Si atom, i.e.: Q4 – four siloxane bonds to the silicon atom; Q3 – three

siloxane bonds to the silicon atom; and Q2 – two siloxane bonds to the silicon atom
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as shown in Fig 1.1. Generally, the number of siloxane groups can be determined

from the following equation: Qn = Si (OSi)n(OH)4-n (Zhang, et al., 2006).

Geminal silanol

Q2 Siloxane
Q4

Isolated silanols

Q3

Vicinal silanol

O

OH

Si
O

Si

O-

SiO2

O-

SiSi

OO HH OH

O O-

O-O-

Fig. 1.1: Types of silanol groups and siloxane bridges on the surface of silica
[adopted from Zhuravlev, 2000].

1.1 Silica Modification

The modification of the silica surface has received a great deal of attention

(Brunel, 1999; Bae, et al., 2000; Airoldi & Arakaki, 2001; Al–Nahhal, et al., 2007;

Gübbük, et al., 2008). This process can empower the researchers to control and

change the chemical properties and technological characteristics of the composite

material. The modification of the silica surface is important for the preparation of

essential for the synthesis of materials with many specific properties; these could be

for the preparation of selective heterogeneous catalysts, nanostructured silica

materials and liquid crystals (Tertykh & Belyakova, 1996).

The silanol groups on the silica surface play a significant role during

modification of the surface with alkyl silanes (Dash, et al., 2008). As the temperature

increases, the silanol groups on the silica surface are dehydrated. The continuous
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increase in temperature leads to the dehydration of silanol groups (Peng, et al., 2009)

resulting in the formation of siloxane bond.

The modification of silica is mostly carried out by using organic molecules in

order to functionalize its surface. Silylating agents are chemically reactive towards

the free silanol groups on the silica surface (Cestari, et al., 2001). The silylating

agents are usually alkoxysilanes with general formula (RO)3Si–R*, where R is

methyl or ethyl groups and R* is an n–propylic carbon chain containing an end

functional groups, e.g.: amine, halogen or sulfur group, or a combination of them

(Cestari & Airoldi, 1997).

Silica modified with silylating agent is one of the best choices to introduce

basic groups through an anchored pendant chain (Prado & Airoldi, 2001a). One of

the important advantages of the immobilization of functional groups on silica via this

route is to make the organic functional group resistant to removal from the surface

by different organic solvent or water (Arakaki & Airoldi, 2000). It also offers good

thermal and hydrolytic stability with accessibility to the reactive centres (Prado &

Airold, 2001b; Filha, et al., 2006).

There are two strategies for the immobilization of the silylating agents. The

first strategy is to react the silylating agents with the ligand complex, and then to

immobilize the resulting ligand with the pre–formed silica in a heterogeneous

reaction as in Scheme 1a. The second strategy is to treat the post–polysiloxane with

the complex group as in Scheme 1b.
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SiO2

O

SiO

O

R

SiO2

(a)

(b)

 (CH3CH2O)3SiCH2CH2CH2X + R-H + HX (CH3CH2O)3SiCH2CH2CH2R

3CH3CH2OH+

SiO2

O

SiO

O

X 3CH3CH2OH+SiO2 +  (CH3CH2O)3SiCH2CH2CH2X

R-H

SiO2

O

SiO

O

R + HXR= Organic functional group

X = Cl, I

Scheme 1.1: (a) The reaction of silylating agent with the ligand complex followed
by immobilizes the resulting ligand onto silica. (b) The immobilized
of silylating agent onto silica followed by immobilized the ligand
complex.

Both strategies have been studied widely by many researchers (Vrancken, et

al., 1995; Brunel, 1999; Bae, et al., 2000; Hoegaerts, et al., 2000; Airoldi & Arakaki,

2001; Al–Nahhal, et al., 2007; El–Ashgar, et al., 2007; Gübbük, et al., 2008; Shi &

Wei, 2008). It was observed that these two reported preparation methods involved

long preparation times and they utilized hazardous chemicals leading to inefficient

preparation techniques as discused in the sub–section below.

1.1.1 Immobilized halide systems

Silica modified with 3–(chloropropyl)triethoxysilane (CPTES) is usually

carried out in a solid–liquid mixed phase reaction (heterogeneous reaction). Bae, et

al. (2000), Hoegaerts, et al. (2000), Shi and Wei (2008) had reported that the reaction

needs to be refluxed in toluene for 12–24 h. This is followed by soxhlet extraction
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with different organic solvents such as toluene and dichloromethane. Brunel (1999)

had reported the functionalization of silica (which was pre–dried at 150 °C at 10-1

Torr for 12 h) by refluxing it with CPTES in toluene at 120 °C with total time of

approximately 14 h. Alcântara, et al. (2007) showed that 3–(chloropropyl)trime–

thoxysilane (CPTMS) can also be used to functionalize silica to produce the same

product. However, the reaction needs to be refluxed for 72 h at 150 °C. The same

reaction was carried out by Soundiressane, et al. (2007) by refluxing CPTMS with

silica for 24 h, followed by soxhlet extraction with dichloromethane (DCM) for 12 h.

Kovalchuk, et al. (2006) had reported that amorphous silica needs to be refluxed in

aqueous HNO3 (2 M) for 6–10 h, followed by washing with distilled water and dried

at 150 °C for 4 h. Finally, the post–synthetic treatment was performed to graft the

silica with CPTES, by heating at 130–150 °C in air or at 200 °C under vacuum.

1.1.2 Immobilized amine ligand systems

The condition for functionalization of 3–(aminopropyl)triethoxysilane

(APTES) is almost similar to CPTES. Hoegaerts, et al. (2000) took 31 h, using

toluene, diethyl ether and dichloromethane as solvents during various stages of the

transformation. While Macquarrie and Jackson (1997) and Macquarrie (1996) took

21 h to functionalize APTMS onto silica, employing different techniques such as

reflux and extraction. Brunel (1999) also needed 27 h to fabricate APTES onto silica.

However, the temperature used was quite high, i.e. 120 ºC and 150 ºC for the

fabrication reaction. Brunel used toluene, diethyl ether and DCM as solvents during

the reaction and the extraction procedures. Wu, et al. (2008) had reported the

functionalization of silica by refluxing it with APTES in toluene, followed by

soxhlet extraction with total time of approximately 48 h. The method used by
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Vejayakumaran, et al. (2008) needed 36 h to fabricate APTES onto silica. Multiple

technique, higher temperature and different organic solvents were used during these

fabrication process.

1.1.3   Immobilized thiol ligand systems

Silica gel modified with 3–(trimethoxysilyl)propane–1–thiol (MPTMS) has

been studied by Eunice, et al. (1997) and Simoni, et al. (2000). Functionalized

polysiloxane containing thiol ligand was prepared by hydrolytic polycondensation of

silica with (MeO)3Si(CH2)3SH. The anchored thiol groups can be oxidized to provide

sulfonic acid functionality for the applications in solid acid catalysts (Yang, et al.,

2005). The potential use of these derivatives as well as other organo functional

derivatives critically depends on the loading of accessible functional groups into the

framework (Prado & Arakaki, 2001c).

To graft MPTMS onto silica, Yang, et al. (2005) took 5 days to immobilize it

onto silica using different hazardous organic solvents. Shylesh, et al. (2004)

modified the silica with MPTMS in 61 h, and used toluene and methanol during the

process under a nitrogen atmosphere. The method used by Bossaert, et al. (1999)

needed 54 h to fabricate MPTMS onto silica. They used multiple techniques and

different organic solvents during the fabrication process. Karimi and Khalkhali

(2005) and Gupta, et al. (2007) had tried to activate the silica by refluxing in

concentrated hydrochloric acid for 24 h; and then they proceeded with another reflux

with MPTMS in dry toluene for 18 h. They also used soxhlet extraction for 36 h. The

total time required for the whole process was 78 h.
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The brief review above shows that the present methods to functionalize silica

with CPTES, APTES and MPTMS resulted in low yield, employing harsh reaction

conditions, multiple steps, long reaction time, using non–environmental friendly

organic solvents, use of high energy, and costly chemicals. Therefore, there is a need

to design a new method which is easy, cost–effective, environment–friendly, time

saving, minimal energy loss, high yield and can be used especially in the

heterogenation of homogeneous catalysts. Such a method could have a wide impact.

1.2 Sol–gel process

Sol–gel method is one of the well known wet chemical methods. It is a

transitional process between a liquid phase “sol” to the solid phase “gel” (Ahmed,

2008); or it can be seen as a hydrolysis and condensation of silicon (or any other

metal alkoxides) and organoalkoxysilanes (Hofacker, et al., 2002).

The recent great interest in organic–inorganic hybrid materials prepared by

sol–gel chemistry along with the growing interest in functionalization of inorganic

matrices may be due to the ease in which it can be used to design unique materials

with controllable pore size, structural rigidity, thermal stability, and enhanced

recognition properties (Airoldi and Arakaki, 2001; Arrachart, et al., 2009).

According to Prokopowicz, et al. (1998), more than 89 % of the literature

describing the application of materials to chemically modify surfaces deals with sol–

gel. The sol–gel process comprises several steps in general. When the silicate

precursor mixes with silylating agent in the presence of the solvent (water or

alcohol) and a catalyst (acid or base), which was stirred for several hours, leads to
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partial hydrolysis of the Si–O–R (R = methyl or ethyl group) bonds in the silylating

agent. When alcohol is used as a solvent, the hydrogel structure will be formed.

There are some parameters that control the hydrogel structure. These parameters

include temperature, pH of the medium, nature of the solvent, nature of the added

electrolyte and the type of the starting salt or alkoxide. The xerogel is formed by

aging and drying the gel. If the gel has a very large pore volume (up to 98 % of the

total volume), it is named as aerogel (Vansant, et al., 1995). Scheme 1.2 shows the

details of these (Teoli, et al., 2006).

Scheme 1.2: The usual steps of a sol–gel process [adapted from Teoli, et al., (2006)].

Scheme 1.3 shows some equations of reaction proposed by Chen and Lin

(2003). This is to explain the hydrolysis and polymerization which may take place in

the sol–gel processes. As shown in the reaction equations below, hydrolysis of the

Liquid alkoxysilane and sodium silicate

SOL

Wet gel

Xerogel Aerogel

Solvent removal

(drying)

H2O + additives to
be embedded

Supercritical
conditions

Ambient prossure

Condensation (gel
formation)

Partial hydrolysis
H2O + catalyst
(acid or base)
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precursor produces a sol of soluble hydroxylated monomer (equation 1.1), followed

by polymerization and phase separation to form a hydrated oxide hydrogel (equation

1.2). Controlled removal of water from the wet gel by extraction or drying produces

the dry, porous xerogel (equation 1.3).

≡Si–OR   +  H2O ≡Si–OH + ROH                                         (1.1)

≡Si–OH  +  RO–Si≡              ≡Si–O–Si≡   +  ROH                                (1.2)

≡Si–OH  +  HO–Si≡ ≡Si–O–Si≡  +  H2O (1.3)

Scheme 1.3: The probable reaction during the hydrolysis of alcohol and water
condensation in the sol–gel processes.

1.3 Proposed mechanism of silica gel modified with silylating agent

The reaction mechanism between silylating agent and silica gel could be a type

of condensation reaction. The general sequence for the condensation of APTES is

given in Scheme 1.4.  In this type of mechanism, small molecules will be liberated as

a result of the condensation. According to Vansant, et al. (1995), and Vrancken, et al.

(1995) the initial step of silica modification includes physical adsorption. This

physisorption depends on the availability of silanol groups on the silica surface and

the hydrogen bond between silanol groups and the silylating agent. The hydrolysis of

ethoxy silane group leads to form silanol group. The formed silanol group will be

condensed to form siloxane bonds at the surface.
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Scheme 1.4: The reaction mechanism for the condensation of silylating agent onto
silica.

1.4 Rice Husk

Rice husk (RH) is a cellulose–based fibre which is suitable for recycling

(Ndazi, et al., 2007).  Rice is grown in over 75 countries (Huang, et al., 2001). The

annual world rice production amounts to 400 – 545 million metric tons, of which

more than 10 % is husk (Conradt, et al., 1992; Mansaray and Ghaly, 1998; Feng, et

al., 2004). Due to the high silica content in the husk (Yalçin, et al., 2000), it makes

economic sense to utilize this free raw material. RH contains about 20 % silica

which can be extracted and used in many areas where commercial silica is being

used (Della, et al., 2002).

Rice husk is composed of 20 % ash, 38 % cellulose, 22 % lignin, 18 %

pentose, and 2 % other organic components and water (Adam & Chua, 2004).

Burning the rice husk causes environmental pollution. Therefore, efforts have been
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made to burn the husks under moderate temperature and pressure (Feng, et al.,

2004). When burning the rice husk, a white ash which is porous silica with high

specific surface area can be obtained (Watari, et al., 2006). This ash (RHA) contains

more than 95 % silica. Table 1.1 below shows a typical analysis of RHA obtained at

700 °C (Della, et al., 2002). It can be seen that ca. 95 % of the ash in the composed

of silica, SiO2.

Table 1.1: Chemical composition of RHA after burning out at 700 °C for 6 h
[adapted from Della, et al., (2002)].

Oxides Component expressed as RHA %

SiO2 94.95

Al2O3 0.39

Fe2O3 0.26

CaO 0.54

Na2O 0.25

K2O 0.94

MnO 0.16

TiO2 0.02

MgO 0.90

P2O5 0.74

Loss on ignition at 700 °C 0.85
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1.5 The applications of silica from rice husk ash  (RHA)

The existence of silica in RHA was known since in 1938. The acid leaching,

pyrolysis, and carbon–removing processes from rice husk can give amorphous silica

(Radhika & Sugunan, 2006). The purity of silica in RHA can reach as high as

99.9 % (Chang, et al., 2003). The silica extracted from rice husk has many

advantageous properties, such as high chemical and thermal stability, high specific

surface area, high porosity, good accessibility (Gupta, et al., 2007), and

functionalization of organic groups can be robustly anchored to the surface.

Chang, et al. (2003) was the first to describe the use of RHA as a support for

heterogeneous catalyst. He used RHA as a support for nickel catalyst which

exhibited a very high activity in the hydrogenation of CO2.  Adam, et al. (1990,

2004, 2006, 2007, and 2008) have described the use of RHA silica as a support for

different metals, such as, Al, Gl, In, Fe, and Ru and used them as heterogeneous

catalysts for different purposes.

1.6 Saccharine

Saccharine (Sac) or o–sulfobenzimide was discovered accidentally by

Fahlberg in 1878 during his PhD research, and published it a year later (Remsen &

Fahlberg, 1879). A short time after this discovery, Sac was produced on an industrial

scale as the first sweetening agent which does not contain carbohydrate, with a

sweetening power of about 550 times that of sucrose (Ellis, 1995; Baran, et al.,

2006).
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Sac can be synthesized by the oxidation of o–toluenesulfonamide using

KMnO4 in a base medium to produce sodium o–sulfonamidobenzoate which can

give Sac by acidifying the latter, using HCl (Vogel, 1973).

Sac has different hetero atoms within its molecule, one N, one O (carbonylic)

and two S=O (sulfonic) atoms. Using these donor atoms, the anion can generate

either N– or O–monodentate or bidentate (N, O) coordination, and also more

complex polymeric species with the participation of all possible donor atoms. These

atoms have lone pair electrons which combine with the strained ring of the Sac

molecule. This could in essence act as catalytic sites imparting a certain degree of

selectivity. These hetero atoms can also be used to form coordination bonds with

transition metals that can be utilized further for catalysis. In this regard, Adam, et al.

(2007) had reported the synthesis of a Sac–Cu coordination complex, Cu(Sac)2 –

2H2O which has a square planar configuration at the copper centre. It is believed that

these complexes could be more useful if they were immobilized onto solids.

Several Sac derivatives were synthesized by Yablonsky, et al. (2001); they

have found applications for the monomers of polycondensation, bioactive

substances, and additives improving the nickel plating process and others. Their

study also proved that Sac molecules can associate with carbonyl groups due to H–

bonds and it can also form eight member ring dimmers (see Fig. 1.2).
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Fig. 1.2: The dimerization of two molecules of Sac via H–bonds giving rise to the
eight member ring structure.

1.7 Melamine

Melamine (Mela) (1,3,5–triazine–2,4,6–triamine) with a chemical formula of

C3H6N6 is an organic compound that consists of 66 % nitrogen (Wu, et al., 2009). It

has several industrial uses such as in the manufacture of amino resins and plastics

(Cook, et al., 2005; Buu, et al., 2008).

Mela was first synthesized by Justus von Liebig in 1834 by heating

dicyandiamide above its melting temperature (Bozzi, et al., 2004). Mela is

commercially available and it has been used in a wide range of products. For

example, it is combined with formaldehyde to produce melamine resin as durable

thermosetting plastic, and melamine foam as a polymeric cleaning product (Rima, et

al., 2008). However, it must be acknowledged that the recent misuse of Mela in

tainted infant milk powder raised awareness worldwide. It also raised our curiosity

and interest due to the presence of a large number of heteroatoms in the Mela

molecule.

Mela can directly react with reducing sugars (specifically with lactose and

Strecker aldehydes) to consequently interfere with Maillard reactions in chemical
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model systems. It was found that Mela influences the levels of different kinds of

volatile products and colour development in Maillard1 models. The presence of

melamine in foods can therefore have a significant impact on various organoleptic

properties (Ma, et al., 2010).

1.8 Esterification

The condensation of organic acids and alcohols produce esters, (see Scheme

1.5). The esters with small molecular weight are industrially important intermediate

class of substances in the synthesis of fine chemicals, polyesters, drugs, plasticisers,

food preservatives, pharmaceuticals, solvents (for cellulose, oils, gums, and resins),

perfumes, cosmetics, pesticides and chiral auxiliaries (Haslam, 1980; Lilja, et al.,

2002; Bhagiyalakshmi, et al., 2004; Palani & Pandurangan, 2005).

RCH2OH RCOOH RCOOCH2R
Catalyst

+ H2O+

R = alkyl or aryl group

Scheme 1.5: The reaction of alcohol with organic acid to produce ester.

1Maillard reactions: the reaction of active carbonyl group of the reducing sugars

(such as glucose, fructose and lactose) with the nucleophilic amino groups of amino

acids, peptides or proteins, and subsequently produces a large number of poorly

characterised compounds, contributing to the colour and flavour of foods.
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Esterification reaction is a liquid–phase process and can take place without

adding catalysts due to the weak acidity of carboxylic acids. However, the reaction

requires several days to attain equilibrium in the absence of catalysts (Liu, et al.,

2006a). Therefore, adding a catalyst for the liquid–phase process is necessary

(Ajaikumar & Pandurangan, 2007). There are two types of catalysts for the

esterification reactions, either homogenous, by strong mineral acids or

heterogeneous. The mineral acid used for the esterification reaction involves the use

of H2SO4, HCl, HF, H3PO4 and ClSO2OH. These acids suffer from drawbacks such

as high toxicity and corrosion. The excess acid has to be neutralized after the

reaction and left behind considerable amounts of salts to be disposed off into the

environment. Since all these substances are miscible with the reaction medium it is

very difficult to separate them, and reusability of the catalyst is usually not possible

(Lu, 1995; Liu & Tan, 2001; Harmer & Sun, 2001; Lilja, et al., 2002).

Hence, the catalyst for this process should be replaced by a heterogeneous

process; therefore, there is a need to design a heterogeneous catalyst (Sheldon,

1997). The design of new heterogeneous catalysts requires some conditions. One of

these conditions is the availability and simplicity of the preparation procedures. It

must be also cost–effective, and reduce the waste to minimize environmental

pollution which is a crucial factor for developing environmentally friendly catalysts.

The recoverable and reusability is also one of the important conditions and

advantages of heterogeneous catalysts (Liu & Tan, 2001; Harmer & Sun, 2001; Dash

& Parida, 2007).
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In this regard, several types of heterogeneous catalysts have been reported in

the literature for esterification. These include iodine (Ramalinga, et al., 2002),

copper (Inui, et al., 2002), lipase (Novak, et al., 2003),  MCM–41 (Díaz, et al., 2001;

Koster, et al., 2001), zeolites beta (da Silva–Machado, et al., 2000), ion exchange

resin (Gimenez, et al., 1987), supported acids (Yang, et al., 2005), and acidic ionic

liquids (Gui, et al., 2004). There are two types of heterogeneous catalysts for the

esterification reaction, i.e. acid catalysts and base catalysts. Both catalysts are

discussed in detail below.

1.8.1 Esterification by using base catalyst

Esterification by base catalysts has not received much attention because it is

usual to use acids to catalyse this reaction. A reaction between a carbon–halogen

functional group and an organic base or ligand such as amine groups is a

nucleophilic substitution reaction (Cauvel, et al., 1997; Lasperas, et al., 1997). These

organic amines and ammonium salts have been used as base heterogeneous catalysts

for esterification reactions (Barcelo, et al., 1990; Gui, et al., 2004).

In this regard, Brunel (1999) had functionalized some organic amines onto

silica such as piperidine, 1,5,7–triazabicyclo[4.4.0]dec–5–ene and (1R,2S)–

ephedrine. These compounds proved to be efficient base catalysts for

transesterification reaction and Knoevenagel1 condensation. These catalysts are

shown in Fig. 1.3.

1A Knoevenagel condensation is a nucleophilic addition of an active hydrogen

compound to a carbonyl group followed by a dehydration reaction in which a

molecule of water is eliminated. The product is often an alpha, beta conjugated

enone.
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Fig. 1.3: Some examples of base functionalized silica. (a) piperidine, (b) 1,5,7–
triazabicyclo[4.4.0]dec–5–ene, (c) (1R,2S)–ephedrine.

Several pentaalkylguanidines have been prepared and found to be superior

catalysts for the preparation of aryl and aryl alkyl ethers from carbonates and for the

methylation of phenols with dimethylcarbonate. They also act as effective catalysts

for esterification of acids with alkyl chloroformates (Barcelo, et al., 1990).

Kobayashi and Okamoto (2006) investigated the catalytic potential of some

organic compounds for acylation of 1–phenylethylalcohol with acetic anhydride

(Ac2O) at room temperature. The investigation showed the catalytic activity of the

catalysts followed the sequence as shown in Fig. 1.4. In these studies, these organic

molecules were used as homogeneous catalysts.
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N

Me2N

N

N

N

N

NS

N
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Fig. 1.4: The relative catalytic activity of various organic molecules in the acylation
reaction. [adopted from Kobayashi & Okamoto, 2006].
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Schuchardt, et al. (1995) explained the use of eight homogenous substituted

cyclic and acyclic guanidines on transesterification of rapeseed oil with methanol.

The conversion was 90 % yield of methyl esters with in 1 h of reaction. They stated

that alkylguanidines can easily be heterogenized on chloromethylated polystyrenes

(Schuchardt, et al., 1996). The catalysts that they used showed a good activity

towards transesterification.

Kovalchuk et al, (2009) had described the immobilization of heteropolyacids

on functionalized silica with (3–propyl–N–pyridinium, 3–propyl–N–methyl and 3–

propyl–N–butyl–imidazolium) salts. These catalysts had been used to catalyse the

reaction of acetic acid with ethanol. The conversion of acetic acid was measured

after 20 h and found to be in the range of 15.5 to 68 %. However, they used multiple

techniques for the catalysts preparation and the time used for esterification was quite

long with poor yield.

Mercs et al., (2007) had tested ammonium triflates as direct catalysts for

esterification reaction using toluene as a solvent in 7 h reaction time at 80 °C. The

catalyst had shown good catalytic activity and was easily recovered by simple phase

separation.

Rad et al, (2008) had used N-(p-toluenesulfonyl)imidazole (TsIm) as a

catalyst for esterification reaction. In their experiments, the alcohols were refluxed

with a mixture of RCO2Na (R: alkyl and aryl), TsIm, and triethylamine in the

presence of catalytic amounts of tetra-n-butylammonium iodide (TBAI) in DMF to

afford the corresponding esters. Different solvent had been tested and the conversion
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of ester was in the range of 0 to 94 % at different reaction times. The maximum

conversion of ester was 94 % when DMF was used as the solvent. However,

different organic solvents were used during the fabrication process with poor yield of

ester.

1.8.2 Esterification by using acid catalyst

Heterocids are widely used in a variety of acid–catalyzed reactions as in

esterification. It has been observed that solid acids such as modified forms of zeolites

and oxides are very efficient for esterification (Nagaraju & Mehboob,1996). The

esterification of glycerol with lauric acid to produce monolaurin using zeolites,

sulfonic resins, and sulfonic mesoporous materials as catalysts has been investigated

by Bossaert, et al. (1999).

Jackson, et al. (2006) functionalized organosulfonic acid on to mesoporous

silica and tested them to see their catalytic performance in the esterification of oleic

acid with methanol under supercritical carbon dioxide flow. The study found the

activation energy was about 42 kJ mol-1 and the activity of the catalyst was shown to

be independent of pore size. The catalyst showed higher activity than that of

Novozym1 435.

1Novozym 435 is a lipase (lipase B) from Candida antarctica produced by

submerged fermentation of a genetically modified Aspergillus microorganism and

adsorbed on a macroporous resin [adapted from Novozym® 435, 2010].
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Miao and Shanks (2009) functionalized mesoporous silica with different

loadings of propylsulfonic acid groups by using a one–step co–condensation

procedure. The resulting materials were effective in the esterification of acetic acid

with methanol. They used this as a model reaction for stabilization of bio–oil. The

catalyst showed multiple cycle stability without significant loss of activity.

Yang, et al. (2005) described the synthesis of sulfonic acid–functionalized

hydrophobic mesoporous benzene–silica with lamellar pore wall structure. They

found that the mesoporous benzene–silica was attached to propylsulfonic groups to

the crystal–like periodic pore walls. The catalyst showed higher conversion

compared to the commercial Nafion–H (sulfonated tetrafloroethylene,

C7HF13O5S.C2F4).

1.9 Esterification of long–alkyl chain fatty acid

Esterification of long–alkyl chain fatty acids with alcohols represents a well–

known category of liquid–phase reactions of considerable industrial interest due to

the enormous practical importance of organic ester products (Altıokka & Çıtak,

2003). Recently, the esterification of long–alkyl chain fatty acids has spurred a great

deal of interest due to their important and multiple applications. For example, long–

alkyl chain fatty acid esters can be used as a biofuel. The esters produced from long–

alkyl chain fatty acids (12–20 carbon atoms) and short–alkyl chain alcohols (three to

eight carbon atoms) have been used increasingly in the food, detergent, cosmetic and

pharmaceutical industries (Bauer, et al., 1990). Esters prepared from the reaction of

long–alkyl chain acids with long–chain alcohols (12–20 carbon atoms) also have

important applications as plasticisers and lubricants (Gandhi, et al., 1995). It is



22

economically important to develop catalysts for the production of such esters from

cheaper and more broadly available raw materials.

1.10 Objectives of the study

As mentioned earlier, scientists discovered silanol groups on silica surface in

1930. These silanol groups have been used to heterogenize silylating agents through

heterogeneous methods. Due to the unfavourable conditions of the current method,

this study aims to improve on these conditions. It must be clarify that Sac and Mela

have never been used as a homogenous or heterogeneous catalyst in any form based

on the literature reviewed. The main objectives of this work are:

1. To modify the silica extracted from RHA with different silylating

agents such as CPTES, MPTMS and APTES via a simple one–pot

synthesis.

2. To use this new method to synthesize RHAC-Sac, RHAPrMela and

RHAPrSO3H as heterogeneous catalysts.

3. To characterize the catalysts using various spectroscopic and

microscopic techniques such as CHN analysis, TGA, Powder X–ray,

N2 adsorption–desorption, FT-IR, 29Si and 13C MAS NMR, SEM/

EDX and TEM.

4. To investigate the catalytic potential of the catalysts on the

esterification of different alcohols with acetic acids.

5. To determine the reaction kinetic parameters of each catalyst in the

esterification reaction.
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1.11 Outline of Thesis

This thesis consists of six chapters. They are briefly outlined below.

Chapter 1 provides an overview on the study and reviews the available

literature on silica modification. It describes the synthesis strategies and the

mechanism of synthesis. It also discusses some relevant materials such as Sac, Mela,

acid and base catalysts for esterification.

Chapter 2 gives an account of the synthesis of silica with silylating agent

using a simple strategy and also describes the catalysts synthesis with

physicochemical characterization method used in this study. It also describes the

experimental procedures used in this study.

Chapter 3 and 4 deals with the physicochemical characterization of the

samples synthesized by different methods. The elemental composition was

determined using a combination of chemical analysis (CHN) with Energy Dispersive

X–ray (EDX). Thermal analysis and N2–sorption studies are used to calculate the

loading of the grafted organic molecule. FT-IR spectroscopy is used to monitor the

change in the functional groups. Solid state 29Si and 13C MAS NMR studies were

carried out to understand the catalysts structures. X–ray diffraction (XRD),

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy

(SEM) were also used to determine the morphology of the modified silica and the

synthesised catalysts.
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Chapters 5 describe the catalytic performances of the bases and acid catalyst

samples. The esterification of ethanoic acid versus different alcohols were

investigated. The effect of reaction time, temperature, molar ratio of the reactants

and the amount of the catalyst on esters formation were evaluated to optimize the

reaction conditions. The reusability of the catalyst, the temperature effect on the

regeneration of the catalyst, the reactions of methanol with different acids (acetic

acid (C2), capric acid (C10) and myristic acid (C14)), reaction kinetics and

mechanisms are also reported.

Finally, in Chapter 6 a summary of the results obtained and the conclusions

are presented.
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Chapter Two

Experimental Methods

2.0      Raw materials

All chemicals are of AR grade or high purity and was used directly without

further purification. These include; sodium hydroxide (Systerm, 99%), nitric acid

(Systerm, 65%), CPTES (Sigma–Aldrich, 95%), MPTMS (Merck, 95%), APTES

(Merck, 98%), toluene (J.T. Baker, 99.8%), Sac (Fluka, 99%), Mela (Acros

Organics, 99%), hydrogen peroxide (J.T. Baker, 30%), triethylamine (Et3N) (R&M

chemical, 99%), dimethylformamide (DMF) (Systerm, 99.5%), dichloromethane

(DCM) (Merck, 99%), methanol (Systerm, 99.9%), ethanol absolute (HmbG

Chemical, 99.74%),1–propanol & 1–butanol (R&M chemical, 99.5%), benzyl

alcohol (Unilab, 97%), tertiary–butyl alcohol (Merck, 99%), 2–propanol (Unvasol,

99%), acetic acid (Systerm, 99.5%), capric acid (C10) (Acidchem, 99%), myristic

acid (C14) (Acidchem, 98%), and n–decane (Acrös Organics, 99%). The rice husk

(RH) was collected from a rice mill in Penang, Malaysia.

2.1      Extraction of silica from rice husk

The rice husk RH was chosen as the source of amorphous silica as it was

available in abundance. The silica was extracted from RH according to a reported

method Kalapathy, et al. (2000); Ahmed (2008).

The RH was washed with water then rinsed with distilled water and dried at

room temperature for 24 h. A 35 g sample of the cleaned RH was stirred with
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