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FERUM, KUPRUM DAN STANUM DISOKONG SILIKA 
ABU SEKAM PADI: PENYEDIAAN, PENCIRIAN DAN 

KEGUNAANNYA SEBAGAI MANGKIN UNTUK TINDAK 
BALAS BENZOILASI FRIEDEL-CRAFTS 

 
 

ABSTRAK 

 

Mangkin ferum, kuprum dan stanum disokong silika disediakan melalui kaedah sol-

gel menggunakan silika yang diekstrak daripada abu sekam padi. Mangkin yang 

terhasil dilabel sebagai RHA-xFe (x = 5, 10, 15 dan 20 wt.%), RHA-10Cu dan RHA-

10Sn. Mangkin-mangkin ini dicirikan menggunakan teknik fizikal-kimia seperti 

XRD, FT-IR, penjerapan-N2, AAS, SEM-EDX, TEM, DR UV-Vis, 29Si MAS NMR, 

EPR, TGA-FT-IR dan penjerapan piridin-FT-IR. Mangkin-mangkin ini didapati 

bersifat amorfus. Analisis unsur mengesahkan kehadiran logam dalam kekisi silika. 

Kajian keasidan pada mangkin dengan menggunakan kaedah jerapan FT-IR-piridin 

menunjukkan bahawa, tidak ada tapak asid Brønsted. Namun, ia mengandungi tapak 

asid Lewis. Aktiviti mangkin, RHA-xFe dengan muatan ferum berbeza telah dikaji 

untuk benzoilasi p-xilena, anisol dan toluena dalam fasa-cecair, dengan benzoil 

klorida sebagai agen pembenzoilasi. Kesan untuk pelbagai pemboleh ubah tindak 

balas seperti muatan ferum, jisim mangkin, perkadaran molar reaktan, suhu tindak 

balas, jenis mangkin, larut-lesap logam dan penggunaan semula mangkin turut 

dibincang. RHA-10Fe didapati sebagai mangkin paling efisien dari segi penukaran 

dan selektiviti. Perbandingan aktiviti pemangkinan RHA-10Fe, RHA-10Sn dan 

RHA-10Cu dalam tindak balas benzoilasi sebatian aromatik pada keadaan optimum 

tindak balas didapati mengikut urutan: RHA-10Fe >> RHA-10Sn > RHA-10Cu. 

Namun, keselektifan hasil didapati mengikut urutan: RHA-10Fe >> RHA-10Cu > 

RHA-10Sn untuk benzoilasi p-xilena dan toluena, manakala untuk benzoilosi anisol 
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adalah mengikut urutan: RHA-10Fe >> RHA-10Sn > RHA-10Cu. Garam homogen 

ferum (Fe(NO3)3.9H2O) menunjukkan aktiviti lebih tinggi berbanding mangkin 

heterogen (RHA-10Fe dan RHA-10Fe(Cal)). Manakala selektiviti tertinggi terhadap 

produk yang diingini dicapai menggunakan RHA-10Fe(Cal) dalam tindak balas 

benzoilasi. Pengurangan dalam aktiviti pemangkinan diperhati apabila mangkin 

digunakan semula, yang boleh dikaitkan dengan larut-lesap sebahagian daripada 

tapak aktif ferum semasa tindak balas. Pengkalsinan mangkin mengurangkan larut-

lesap logam dan meningkatkan penggunaan semula mangkin. Kajian kinetik bagi 

benzoilasi sebatian aromatik ke atas RHA-10Fe didapati mengikut tertib pseudo 

pertama. Satu mekanisme telah dicadangkan untuk laluan pemangkinan keatas 

mangkin yang disediakan.  
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IRON, COPPER AND TIN INCORPORATED RICE HUSK 
ASH SILICA: PREPARATION, CHARACTERIZATION 
AND APPLICATION AS CATALYSTS FOR FRIEDEL-

CRAFTS BENZOYLATION REACTIONS 
 

ABSTRACT 

 

Iron, copper and tin incorporated silica catalysts were prepared via sol-gel 

method using the silica extracted from rice husk ash. The modified catalysts were 

denoted as RHA-xFe (x = 5, 10, 15 and 20 wt.%), RHA-10Cu and RHA-10Sn. 

Prepared catalysts were characterized by various physico-chemical techniques such 

as XRD, FT-IR, N2-sorption, AAS, SEM-EDX, TEM, DR UV/Vis, solid state 29Si 

MAS NMR, EPR, TGA-FT-IR and FT-IR-pyridine adsorption. The catalysts were 

found to be amorphous. Elemental analysis confirmed the presence of the metals in 

the silica framework. The acidity studies on the catalysts by using FT-IR-pyridine 

adsorption demonstrated that, there is no Brønsted acid sites. However, it has mainly 

Lewis acid sites. The catalytic activity of RHA-xFe with different iron loadings was 

studied for liquid-phase benzoylation of p-xylene, anisole and toluene with benzoyl 

chloride as benzoylating agent. The effect of various reaction parameters such as iron 

loadings, catalyst mass, molar ratio of the reactants, reaction temperature, catalyst 

type, leaching of metal and catalyst reusability was discussed. Compared to other 

iron loadings, RHA-10Fe was found to be the most efficient catalyst in terms of 

conversion and selectivity. Comparison of catalytic activity of RHA-10Fe, RHA-

10Cu and RHA-10Sn in the benzoylation reaction of the aromatic compounds under 

the optimized reaction conditions was found to be in the order: RHA-10Fe >> RHA-

10Sn > RHA-10Cu. However, the products selectivity followed the order: RHA-

10Fe >> RHA-10Cu > RHA-10Sn for the benzoylation of p-xylene and toluene, 
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while for the benzoylation of anisole as in the order: RHA-10Fe >> RHA-10Sn > 

RHA-10Cu. The homogeneous iron salt (Fe(NO3)3.9H2O) was tested for the reaction 

under the optimized conditions, and it showed higher activity over the heterogeneous 

catalysts (RHA-10Fe and RHA-10Fe(Cal)), whereas the highest desired product 

selectivity was obtained using RHA-10Fe(Cal) in the benzoylation reaction. Upon 

reuse of the catalyst, some decrease in the activity was observed, which can be 

related to leaching of some active iron sites during the reaction. The calcination of 

the catalyst reduced the leaching of the iron and improved the reusability. The kinetic 

study of the benzoylation of the aromatic compounds over RHA-10Fe was found to 

follow a pseudo-first order rate law. A mechanism was proposed for the catalytic 

pathways over the prepared catalysts.  
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Introduction 

 

1.1 General introduction 

Malaysia is one of the rice producing countries in the world. The annual 

production of rice leaves behind about 3.6 million tons of husk as a waste product 

(Rahman et al., 1997). It is usually disposed by combustion giving ca. 20% of rice 

husk ash (RHA). Unfortunately, this RHA residue left after the combustion causes 

environmental problems (Rahman et al., 1997; Chandrasekhar et al., 2003). 

However, RHA can be employed as raw materials in a variety of applications such as 

pozzolan in cement and concrete (Siddique, 2008). The chemical analysis of RHA 

shows that it contains 90-97% of silica, which can exist either in amorphous phase or 

in crystalline phase. The recovery of amorphous silica from RH is considered to be 

the cheapest alternative source of silica due to the presence of abundant source of 

rice husk around the country. Further, since the ash is obtained as a fine powder, it 

does not require more grinding and thus, making it the most economical source for 

nanoscale silica (Liou, 2004). 

By using RHA as the silica source in the preparation of the catalysts the 

production costs can be reduced substantially besides helping to overcome 

environmental pollution. Indeed, utilization of silica as a support for the preparation 

of the catalyst via a sol-gel process promises several advantages such as it allows a 

better control over the texture, homogeneity, composition and the structural 

properties of the catalysts. Other advantages are, lower temperature, high yield, short 

processing time, cost effectiveness and environment friendly (Campanati et al., 

2003).  
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Acylation of aromatic compounds to prepare aromatic ketones is of 

commercial importance in various areas of the fine chemical and pharmaceutical 

industry. In the Friedel-Crafts acylation, an aromatic ketone is prepared by the 

reaction of an aromatic compound with an acylating agent in the presence of an acid 

catalyst (Jasra, 2003). Metal halides such as AlCl3 and protonic acids like H2SO4 and 

anhydrous HF are used as acid catalysts (Olah, 1963). However, these conventional 

catalysts have drawbacks in terms of a requirement of more than stoichiometric 

quantities, non-regeneratable, require further treatment after reaction, produce large 

amounts of hazardous corrosive waste and catalyze undesirable side reactions (Smith 

et al., 1998; Jacob et al., 1999). Therefore, the demand for fewer pollutants and a 

more effective chemical process has become the current concern. 

In recent years, the drive towards cleaner and safer production methods and 

higher selectivities has given industry the impetus to change some of the Friedel-

Crafts processes in favor of catalysts featuring higher selectivities and easier 

handling. A number of heterogeneous solid catalysts based on zeolites, metal oxides, 

clays, heteropoly acids, sulphated zirconia and mesoporous silica have been 

reviewed for Friedel-Crafts acylation reactions (Sartori and Maggi, 2006; Jana, 

2006).  

In this study, heterogeneous catalysts were prepared by using silica from rice 

husk ash as support for some metals, namely, iron, copper and tin at room 

temperature via a sol-gel method. The prepared catalysts were characterized using 

different techniques, e.g. elemental analysis, textural analysis, surface analysis, and 

spectroscopic analysis. The activity of these catalysts was tested for the Friedel-

Crafts acylation reaction, i.e. benzoylation of p-xylene, anisole and toluene. The 
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reaction conditions were optimized for these reactions with the prepared catalytic 

systems, and their kinetics were studied.  

 

1.2 Rice husk (RH) 

Rice husk (RH) is the milling by-product of rice, a major food material in rice 

producing countries, including Malaysia. It is a major agriculture waste material 

produced in significant quantities on a global basis. It has been reported that 

Malaysia produces 18 million tons of paddy rice that leaves behind about 3.6 million 

tons of husk as a waste product (Rahman et al., 1997). However, RH has little or no 

commercial application. It is usually either burned or discarded, resulting not only in 

resource wasting, but also in environmental pollution (Usmani et al., 1994; Chang et 

al., 2006). Therefore, for both industrial and environmental purposes, it makes sense 

to try and utilize the RH. Researches are being carried out to overcome this problem, 

which includes generating valuable products from this waste material. As such the 

utilization of RH will not only reduce the pollution problem caused by the ash but 

also produce value added products from the economic perspective.  

 

1.2.1 Properties and chemical composition of rice husk 

RH is a thin but abrasive skin covering the edible rice kernel. The major 

constituents of rice husk are cellulose, lignin and silica ash (Yal�in and Sevin�, 

2001). The chemical constituents in RH are found to vary from sample to sample, 

which may be due to the different geographical conditions, type of paddy, climatic 

variation, soil chemistry and fertilizers used in the paddy growth (Chandrasekhar et 

al., 2005). RH consists of organic and inorganic elements. Chandrasekhar et al. 

(2003) reported that the organic content in RH was 72% of the husk by weight. The 
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actual chemical composition of RH is variable, typically: ash 20%, lignin 22%, 

cellulose 38%, pentosans 18%, and other organics 2% (Chandrasekhar et al., 2003; 

Adam and Chua, 2004). The silica content in the ash was found to be more than 90–

97% (Mansaray and Ghaly, 1997) with a small proportion of metallic elements. 

 

1.2.2 Rice husk ash (RHA) 

Rice husk ash (RHA) is produced by burning the husks of a rice paddy. On 

burning, cellulose and lignin are removed leaving behind silica ash. The controlled 

temperature and environment of burning yields better quality rice husk ash as its 

particle size and specific surface area are dependent on the burning conditions 

(Siddique, 2008). 

The physical properties of RHA largely depend on the burning condition. 

Particularly, the time and temperature of burning affect the structure and 

characteristics of RHA (Della et al., 2002). The partial burning of rice husks 

produces black RHA, whereas the complete burning results in either white or grey 

RHA (Ismail and Waliuddin, 1996). In addition, the burning at a high temperature 

(more than 800 °C) produces crystalline silica of α-cristobalite and tridymite 

(Siddique, 2008). While the controlled burning at 500 to 800 °C results in non-

crystalline or amorphous silica, which is highly reactive due to its ultrafine size and 

high surface area, which can provide sufficient surface for any metal to disperse on it 

(Real et al., 1996; Mekhemer et al., 1999). Due to the fact that rice husk ash contains 

high silica content, it can be used as an economically viable material for silica gel 

and powder production (Kamath and Proctor, 1998). 
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1.2.3 Preparation and purity of silica from RHA 

The presence of silica in rice husk has been known since 1938 

(Chandrasekhar et al., 2003; Radhika and Sugunan, 2006a), while its recovery 

potential had been realized since 1984 (Kaupp, 1984). It is considered as a good 

source of highly reactive silica.  

To prepare high purity silica with a high specific surface area from rice husk, 

either direct combustion (Kapur, 1985; Luan and Chou, 1990; Della et al., 2002) of 

the husk or treatment with various chemicals was attempted (Chakraverty et al., 

1988; Conradt et al., 1992; Yal�in and Sevin�, 2001; Matori et al., 2009) before 

and after combustion at temperatures ranging from 500 to 1400 °C for different 

intervals of time (Della et al., 2002). 

Quite a few kinds of acids (HCl, H2SO4, HNO3 and HF) have been reported to 

be used in the pre-treatment (Mishra et al., 1985; Patel et al., 1987; Liou, 2004), but 

HCl is the most often used. 

Chakraverty et al. (1988) found that the leaching of RH in dilute HCl (1 N) 

was effective in substantially removing most of the metallic impurities. Acid 

treatment of RH prior to combustion does not affect the amorphicity of the silica 

produced. After acid leaching, the silica produced was completely white in colour 

and had high purity (Chakraverty et al., 1988). 

Other acids, such as H2SO4, HNO3 had also been used in acid pre-treatment 

(Patel et al., 1987; Proctor, 1990; Ahmed and Adam, 2007). The general leaching 

effects of H2SO4, HNO3 and HCl is similar, but HCl leaching of RH is superior to 

H2SO4 and HNO3 in removing the metallic ingredients (Matori et al., 2009). 

Chemical treatment before combustion was found to be more advantageous 

because some metal oxides may contaminate the resulting silica. It has been found 
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that some kinds of metal oxides, especially K2O, contained in RHA cause the 

formation of black particles in the silica from an untreated husk and also cause the 

surface melting of SiO2 particles and accelerate the crystallization of amorphous 

SiO2 into cristobalite (Proctor, 1990; Krishnarao, 2001; Chandrasekhar et al., 2006). 

Real et al., had reported this phenomena is due to the strong interaction between the 

silica and the K+ contained in RH, which leads to a dramatic decrease of the specific 

surface area if K+ cations were not removed before the heat treatment of the samples 

(Real et al., 1996; Real et al., 1997). Therefore, the main effect of acid leaching is to 

remove metal oxides, especially potassium oxides. 

Some alkalis, such as NaOH and NH4OH, have also been used to pre-treat 

RH (Patel et al., 1987; Conradt et al., 1992; Yal�in and Sevin�, 2001). However, 

the effects of alkali pre-treatment are not as obvious as the effects of acid pre-

treatment. 

Amorphous silica from RHA can be extracted using the sol-gel process at low 

temperature alkali extraction because the solubility of amorphous silica is very low at 

pH < 10 and increases sharply pH > 10 (Iler, 1979). This unique solubility behavior 

enables silica to be extracted in a pure form from RHA by solubilizing under alkaline 

conditions and subsequently precipitating at a lower pH (Kamath and Proctor, 1998). 

This simple and low energy method to produce silica by alkaline solubilization and 

subsequent acid treatment had been reported by Kamath and Proctor (1998) and 

Kalapathy et al. (2000a) to be the more economical process having the potential to 

replace the conventional high energy smelting processes (Iler, 1979; Brinker and 

Scherer, 1990). This is because thermal treatment of RH actually produces energy 

instead of consuming energy. The energy produced could be recovered in the form of 

heat or electricity. 
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Kalapathy et al. (2002) used an improved method to produce silica with 

lower sodium content by adding silicate solution to hydrochloric, citric or oxalic acid 

solutions until pH 4.0 were reached.  

Ahmed and Adam (2007) studied the effect of different concentration of 

NaOH (1.0 , 3.0 and 5.0 M) in the preparation of the silica, and they found that the 

change in alkali concentration used during the preparation had only affected the 

porosity and pore structure of the prepared silica and did not affect the chemical 

environment. 

 

1.2.4 Application of the silica extracted from RHA 

Due to the high silica content of RHA, it can be used in many industrial and 

chemical applications such as filler, additive, vegetable oil refining, pharmaceutical 

products, detergents, adhesive agents, semiconductors, optical devices, glass, 

ceramics, cements, chromatography and production of porous materials (Proctor and 

Palaniappan, 1990; Fuad et al., 1995; Padhi and Patnaik, 1995; Kalapathy et al., 

2000b; Chandrasekhar et al., 2003).   

Amorphous silica with high purity and reactivity is an excellent starting 

material for the synthesis of various fine chemicals such as silicon carbide, silicon 

nitride, magnesium silicide and high purity elemental silicon (Singh et al., 1995; Sun 

and Gong, 2001; Martínez et al., 2006). Furthermore, it is useful for the synthesis of 

different types of zeolites; zeolite beta (Prasetyoko et al., 2006), zeolite A and Y 

(Hamdan et al., 1997), zeolite ZSM-5 (Rawtani et al., 1989) and zeolite ZSM-48 

(Wang et al., 1998). 
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Recently, the use of RHA as sources for the synthesis of mesoporous silica 

such as SBA-15, MCM-41 and MCM-48 has already been reported in the literature 

(Endud and Wong, 2007; Jang et al., 2009; Bhagiyalakshmi et al., 2010). 

                

1.2.5 Applications of the silica as adsorbent and catalyst support 

Properties like high surface area and porosity give added advantage to the 

silica for its use as adsorbents, catalysts and catalyst supports. RHA has been 

evaluated as an adsorbent of minor vegetable oil components (Proctor and 

Palaniappan, 1990; Proctor et al., 1995). Proctor and Palaniappan (1990) have 

studied the ability of RHA to adsorb free fatty acid from soy oil. Adam and co-

workers (Saleh and Adam, 1994; Adam and Ravendran, 2000) had shown that the 

adsorption of saturated fatty acid on RHA follows a Langmuir isotherm. 

In another work, Adam and Chua (2004) studied the chemical incorporation 

of aluminium ions into RHA by the sol-gel technique and its adsorptive capability 

towards fatty acids. The RHA-Al was found to be a very good adsorbent for palmytic 

acid.  

The application of silica as a catalyst support has been extensively studied to 

meet the demand for high surface area, high metal dispersion, high thermal stability, 

high melting point and high reactivity material (Radhika and Sugunan, 2006b). 

Instead of commonly used silica gel (SiO2), Chang et al. (Chang et al., 1997; Chang 

et al., 2003a; Chang et al., 2005) for the first time adopted rice husk ash (RHA) as a 

catalyst-support and found that nickel-loaded RHA exhibited a very high activity for 

CO2 hydrogenation (Chang et al., 2001; Chang et al., 2003b). In all reported cases 

either the incipient wetness impregnation method or ion exchange methods were 

used to physically incorporate the metal ions into the rice husk silica matrix. 
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Consequently, preparation of catalysts utilizing RHA as a cheap source of silica is a 

very attractive alternative to the current use of tetraethyl orthosilicate (TEOS) as a 

starting material for most silica based catalysts. To date, several publications had 

been reported on the use of rice husk ash as a matrix for preparing metal supported 

heterogeneous catalysts for the Friedel-Crafts alkylation reaction of aromatics (Adam 

et al., 2006; Adam and Andas, 2007; Adam and Ahmed, 2008; Ahmed and Adam, 

2009) and for the oxidation reaction (Renu et al., 2008; Adam et al., 2009; Adam and 

Fook, 2009; Adam and Sugiarmawan, 2009).  

Recently, we showed that chemical incorporation of iron into rice husk ash 

silica resulted in an excellent catalyst for the Friedel-Crafts benzylation of toluene, 

benzene and xylenes (Adam et al., 2006; Adam and Ahmed, 2008; Ahmed and 

Adam, 2009). 

Adam and Andas reported the synthesis of 4-(methylamino) benzoic acid 

incorporated iron-silica catalyst extracted from rice husk. This catalyst, (RHA-Fe 

(5%-amine)) was found to be more selective to mono benzyl toluene in the 

benzylation of toluene (Adam and Andas, 2007). 

In all these previous reports, iron supported rice husk silica has been used as a 

catalyst for the Friedel-Crafts alkylation reaction. However, there is no published 

literature on iron loaded rice husk silica being used as a catalyst for the Friedel-

Crafts acylation reaction. 

 

1.3 Catalysis and catalyst 

Catalysis is the key to chemical transformations. The most industrial 

syntheses and nearly all biological reactions require catalysts (Hagen, 2006). 

Furthermore, catalysis plays a fundamental role in the industries. Specifically, two of 

the largest industrial segments, chemicals and petroleum processing, depend on 
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catalysis; many of the modern, cost and energy-efficient environmental technologies 

are catalytic. Biocatalysis offers exciting opportunities for producing a broad range 

of pharmaceuticals and specialty chemicals, and for bioremediation of the 

environment (Nur, 2006). 

Catalyst is defined as a substance that increases the rate of attainment of 

chemical equilibrium without itself undergoing chemical change (Thomas and 

Thomas, 1997). Catalyst increases the reaction rate by offering another route of 

reaction with lower activation energy of the reaction system. There are many 

chemical reactions including Friedel-Crafts acylation reactions, which need these 

catalysts in order to enhance the reaction rate. The presence of the catalyst is 

essential for (i) obtaining new products, (ii) increasing productivity, (iii) decreasing 

the raw materials and energy consumption, (iv) minimizing the waste production and 

safeguarding the environment (Barrault, et al., 2002). Today, catalysts play a vital 

role in the chemical industries, with a total contribution of ~20% of world Gross 

National Product (GNP) in the 20th century (Clark, 2002). In addition, 80% of the 

industrial reactions such as acylation, oxidation, hydrogenation, epoxidation etc. use 

catalysts. 

 

1.3.1 Classification of catalysts 

The numerous catalysts known today can be classified according to structure, 

composition, area of application, or state of aggregation. According to state of 

aggregation, catalysts can be classified into two large groups: homogeneous and 

heterogeneous catalysts (Hagen, 2006). Homogeneous catalyst is referred as the 

catalyst that exists in the same phase with the reactants, e.g. AlCl3 has been widely 

used as a homogeneous catalyst in the Friedel-Crafts acylation reaction (Olah and 
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Molnár, 2003), whereas heterogeneous catalyst is a catalyst which has a different 

phase with the reactants, e.g. zeolites, which are extensively employed in petroleum 

refinery processes (Weitkamp, 2000). Catalyst can be gas, liquid or solid. Most 

industrial catalysts are liquids or solids, whereby the latter react only via their surface 

(Hagen, 2006). According to Hagen, the heterogeneous catalysts can be divided into 

two parts: bulk catalysts and supported catalysts. In supported catalysts, the 

catalytically active substance is applied to a support material, which has a large 

surface area and is usually porous (Hagen, 2006). 

Heterogeneous catalysis is the backbone of the modern chemical industry, 

because of the necessity to achieve environmental benign processes in the industry. 

Although heterogeneously catalyzed processes are widely used in large scale 

petrochemical processes, the majority of fine, speciality pharmaceutical chemicals 

manufacturing processes rely on homogeneous catalysts, with solid catalysts used in 

little beyond hydrogenations. Many of these processes were developed simply to 

maximize product yield, disregarding the environmental impact of the inorganic 

waste and toxic byproducts formed during the reaction. Most of the waste is 

generated during the separation stage of the process when a typical water quenched 

and neutralization (for acidic or alkaline systems) results in the formation of large 

volumes of hazardous waste (Clark, 2002). Therefore, the industries nowadays prefer 

to use solid heterogeneous catalyst compared with liquid homogeneous catalyst. In 

addition, heterogeneous catalysts offer numerous potential advantages over 

homogeneous catalysts, such as easier working up procedures, easy catalyst 

separation from the reaction mixture, reduction of environmental pollutants, 

avoidance of salt formation and waste disposals (Wilson and Clark, 2000). The use 

of microporous and mesoporous solid catalysts has shape selective properties, an 
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additional benefit in fine chemical synthesis. Furthermore, the modification of the 

solid catalysts by metals having redox functions along with acidic or basic properties 

extends their catalytic scope to redox reactions. Hence, the development of reusable 

solid catalysts having redox function along with their acidity or basicity for the liquid 

phase Friedel-Crafts acylation reactions is useful for the preparation of fine 

chemicals (Jana, 2006).   

 

1.3.2 Supported catalysts 

Supported catalysts consist of an active phase dispersed on a support. The 

catalytic reaction takes place on the surface (i.e. in the pores) of the catalyst. Good 

supports combine relatively high dispersion with a high degree of thermal stability of 

the catalytic component (Campanati et al., 2003). There are a number of materials 

that partly or wholly satisfy these requirements and utilized as heterogeneous 

catalysts for Friedel-Crafts acylation reaction, including zeolites, metal oxide, 

heteropoly acids, clays, alumina and mesoporous materials (Clark, 2002; Sartori and 

Maggi, 2006). 

The preparation of supported catalysts aligns all the unit operations toward 

dispersing an active agent on a support that may be inert or catalytically active. The 

wetting of the support with a solution or slurry of the active phase precursors is the 

operation that characterizes such a preparation. The other operations (drying, 

washing, calcination, forming) are ruled by the same laws, depend on the same 

parameters and use the same equipment. The most common preparation methods for 

supported catalysts are incipient wetness impregnation, ion-exchange, adsorption and 

deposition–precipitation (Perego and Villa, 1997). The sol-gel process can also be 

successfully applied for catalyst preparation (Brinker and Scherer, 1990; Gonzalez et 
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al., 1997). The sol-gel method has several promising advantages over precipitation 

method for preparing ultrafine, high purity, single and multicomponent oxide glasses 

and ceramic composites with the advantages of high purity, lower sintering 

temperature, a high degree of homogeneity, high yield, small processing time, cost 

effectiveness and environmental friendly (Naskar and Chatterjee, 2004; Chatterjee 

and Naskar, 2006). Sol-gel process offers better control over surface area, pore 

volume and pore size distribution of the catalysts (Perego and Villa, 1997; 

Campanati et al., 2003). 

In general, the sol-gel process involves the transition of a system from a 

liquid sol (mostly colloidal) into a solid gel phase. In a typical sol-gel process, the 

precursor is subjected to a series of reaction including hydrolysis, condensation, 

gelation, aging and drying to produce a gel (Vansant et al., 1995). This route makes 

it possible to incorporate metals into various matrices (e.g. silica, alumina, etc.) with 

very small particle size and homogeneous distribution. The resulting materials are 

proven to be active catalysts in different reactions.  

 

1.4 Friedel-Crafts reactions 

Since its discovery in 1877 by Charles Friedel and James Mason Crafts, the 

Friedel-Crafts reactions have become the most common and important 

transformation in organic chemistry. It is widely used not only in research but also in 

chemical production industries (Olah, 1963). One of the best definitions for Friedel-

Crafts reactions is given by Nobel Prize laureate G. A. Olah in the classical series 

‘Friedel-Crafts and Related Reactions’ (Olah, 1963) in which he defines these 

reactions ‘to be any substitution, isomerization, elimination, cracking, 

polymerization or addition reactions taking place under the catalytic effect of Lewis 

acid type acidic halides (with or without co-catalysts) or proton acids’. 
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  Friedel-Crafts reactions are electrophilic in nature and can be divided into 

two main categories – alkylation and acylation. The essential feature of the reaction 

consists in the replacement of a hydrogen atom of an aromatic compound by an alkyl 

or acyl group derived from an alkylating or acylating agent in the presence of Lewis 

acids (e.g. AlCl3, BF3, FeCl3, ZnCl2, etc.) or protonic acids (e.g. H2SO4, HF, etc.). 

Among all the catalysts, AlCl3 is commonly used as an extremely powerful catalyst 

for the Friedel-Crafts type reactions (Olah and Molnár, 2003).  

 

1.4.1 Friedel-Crafts acylation 

Friedel-Crafts type acylation of aromatic compounds is an important reaction 

used in the synthesis of aromatic ketones, which are important chemical 

intermediates in the pharmaceutical, fragrance, flavor, dye and agrochemical 

industries (Geneste and Finiels, 2006; Sartori and Maggi, 2006). For example, they 

are components in the synthesis of nonsteroidal anti-inflammatory drugs Ibuprofen 

and S-Naproxen (Andy et al., 2000; Jasra, 2003). Friedel-Crafts acylation is an 

electrophilic aromatic substitution to afford ketones by replacing one of the hydrogen 

of an aromatic ring (Scheme 1.1). Carboxylic acids, acid halides and anhydrides, 

serve as acylating agents and Lewis acid metal halides are the characteristic catalysts 

required to induce the transformation (Olah and Molnár, 2003). 

 

H

(Z) R-CO-X
Catalyst (Z)

CO-R

HX

 

Scheme 1.1: Friedel-Crafts acylation reaction: (Z)–Ar–H = aromatic compound; (Z) 
= substituent group(s); R–CO–X = acylating agent; R = alkyl or phenyl group; X = 
Cl, Br, I, RCOO or OH. 
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1.4.2 The difference between Friedel-Crafts type acylation and alkylation 

reactions 

Acylating agents in general are more reactive than alkylating agents in 

Friedel-Crafts type reactions. The reaction of acyl halides with aromatic compounds 

in the presence of Friedel-Crafts catalyst proceeds more readily than the 

corresponding alkylation with alkyl halides. Usually it is difficult to introduce more 

than one acyl group into an aromatic ring. This occurs because the deactivated nature 

of the acylated product is not further active in multiple acylation. Another significant 

difference is that more than stoichiometric amounts of the catalyst is required, 

compared with the catalytic quantity only that is required in the alkylation. This is 

due to the formation of complex between the catalyst and the carbonyl group of the 

ketone product. The electrophile in a Friedel-Crafts acylation is an acylium ion, 

which is stabilized by resonance and is not prone to rearrangement unlike Friedel-

Crafts alkylation (Olah, 1963; Sykes, 1986; Olah and Molnár, 2003). 

 

1.4.3 Homogeneously catalyzed acylation 

AlCl 3 is a very active catalyst, and it is the most frequently used catalyst in 

aromatic Friedel-Crafts acylation, but other Lewis acid metal halide (FeCl3, SnCl4, 

ZnCl2, etc.) also show high activity. Since the activity of Lewis acid metal halides 

depend on the reagents and reaction conditions, relative reactivity orders may be 

established for a given reagent only under given reaction conditions. Based on their 

activity in the acetylation with acetyl chloride of toluene, SbCl5, FeCl3, SnCl4 and 

TiCl4 are also efficient catalysts. Whereas ZnCl2 is usually a relatively weak Lewis 

acid in Friedel-Crafts acylation and requires higher temperature (Gore, 1955; Olah 

and Molnár, 2003). 
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Boron trifluoride (BF3) is another important, reactive Friedel-Crafts catalyst 

that has been widely used. Since BF3 is a volatile gas it can form many complexes 

and can be readily recovered for reuse. For example, acylation of 2-

methylnaphthalene with iso-BuCOF and BF3 gives high yield (83%) of the 6-

substituted isomer in contrast to AlCl3 (30%) (Hyatt and Raynolds, 1984). Brønsted 

acids such as HF, H2SO4, H3PO3, etc., are also available to induce acylation. 

Perfluoroalkanesulfonic acids were shown to be highly effective. Certain metal 

powders, such as Zn, Cu, Al and Fe were also found to affect acylations with acyl 

chlorides (Gore, 1955). The use of homogeneous catalysts is recognized with a 

number of disadvantages. The major disadvantage of the above homogeneous 

catalysts is that more than a stoichiometric amount of the catalysts are needed due to 

the complex formation with the acylating agent as well as the carbonyl product. The 

intermediate complex is usually hydrolyzed with water and consequently, produces a 

large amount of waste products that cause serious technological and environmental 

problems (Gaare and Akporiaye, 1996; Smith et al., 1998). Mild Lewis acids like 

rare earth triflates and bismuth(III) salts have been realized as catalysts, forming 

fewer stable complexes with the product, but achieved limited success (Métivier, 

2001). In industrial processes, the reaction brings another disadvantage to this system 

where it has a difficulty in product purification due to the large amount of side 

products (Hu et al., 2000). In addition, the inherent disadvantage of the use of these 

catalysts is non-regeneratable, low selectivity and generated hazardous corrosive 

waste products (Campanati et al., 1998). 

The quantity, handling, corrosive nature and disposal of the Lewis acids and 

the hazardous nature of mineral acids, led to environmental concerns that have 
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stimulated research aimed at the development of safer and non-waste producing 

alternatives based on heterogeneous solid acid catalysts. 

 

1.4.4 Heterogeneously catalyzed acylation 

Heterogeneous solid acid catalysts have certain advantages over the 

homogeneous ones. They offer easier separation and recovery of the products and 

catalyst from the reaction mixture. These are reusable, generally not corrosive and do 

not generate problematic side products. Additionally, they contribute shape 

selectivity to the product. Thus shape selective heterogeneous catalysts are very 

capable of replacing traditional homogeneous Friedel-Crafts catalysts (Jana, 2006). 

Different classes of materials have been studied and utilized as heterogeneous 

catalysts for Friedel-Crafts acylations.  

The most common solid acids that have been studied are zeolites. Among the 

various types of zeolites, beta, Y, mordenite, MCM-22 and ZSM-5 are widely used 

for Friedel-Crafts acylation reactions (Pandey and Singh, 1997; Laidlaw et al., 2001; 

Choudhary et al., 2003; Singh and Venkatesan, 2003; Klisáková et al., 2004). It is 

reported that, the activity of zeolite in the liquid-phase acylations largely depends on 

their structural features and the activity increases from medium to large pore and 

from mono to three dimensional channel systems (Klisáková et al., 2004). Due to the 

above reasons, beta zeolite is found to be the best and the most suitable zeolite 

catalyst for Friedel-Crafts acylation of aromatics in comparison to the others. 

Unfortunately, the catalytic activity of microporous beta zeolite is restricted by their 

small pore sizes of around < 8 Å, which makes them unsuitable for reactions 

involving bulky substrates (Wilson and Clark, 2000; Jana, 2006).  
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However, recent developments in material chemistry have led to the 

discovery of the mesoporous molecular sieves family (Beck et al., 1992) offering 

pore sizes in the range 20–100 Å which opens up new possibilities for liquid-phase 

acid catalysis by enabling rapid diffusion of reactants and products through the pores, 

thus minimizing consecutive reactions (Wilson and Clark, 2000). Choudhary et al. 

had reported the usage of mesoporous Si-MCM-41 and its modification by oxides 

and chlorides of gallium and indium as Lewis acids in Friedel-Crafts acylation of 

aromatics with acyl chloride (Choudhary et al., 2000; Choudhary et al., 2002; 

Choudhary and Jana, 2002b). MCM-41 has also been used for the acylation of 

various bulky aromatic compounds, e.g. naphthalene and substituted naphthalenes 

(Gunnewegh et al., 1996; Choudhary and Jha, 2007). 

The use of clays in the acylation of aromatics by acyl chloride as acylating 

agent is very limited in the literature. Montmorillonite K10 and KSF with or without 

modifications by Fe (III) and Zn (II) were reported for the acylation of activated 

aromatics by acyl halides (Cornélis et al., 1990; Cornélis et al., 1993; Choudary et 

al., 1998). Bentonite clay supported polytrifluoromethanesulfosiloxane was also 

applied for the acylation of highly activated aromatic compound (ferrocene) with 

acyl chloride (Hu and Li, 2004). In addition, the use of clay based solid for the 

acylation of nonactivated aromatics, e.g. benzene by acyl halide was reported by 

Choudhary et al. (2001a). 

Heteropolyacids (HPAs) are an interesting class of super acids. One 

important advantage of HPAs is that it can be utilized both homogeneously and 

heterogeneously depending on the nature of the solvent. Numerous reports exist on 

the use of HPAs based catalysts for acylation reactions. Kozhevnikov had reviewed 

the Friedel-Crafts acylation of arenes catalyzed by HPA-based solid acids 
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(Kozhevnikov, 2003). Kozhevnikov and coworkers reported efficient acylation of 

anisole with a bulk supported HPAs and Cs salt of HPA (Kaur et al., 2002a; Kaur 

and Kozhevnikov, 2002b). It is well-known that one of the major problems 

associated with HPAs in the bulk form is its low efficiency due to low surface area, 

rapid deactivation, and relatively poor stability (Sartori and Maggi, 2006). 

 

1.4.5 Green chemistry and solid acids 

Solid acids are heterogeneous catalytic materials that are used in green 

chemistry applications. Green chemistry has a number of principles (Anastas et al., 

2000). Some of them are: (i) the prevention of chemical waste is better than a focus 

on cleanup or treatment of chemical waste after it is formed; (ii) encouraging 

economy/efficiency, in part by minimizing or eliminating solvents, separating agents, 

and protecting groups; (iii) reducing the toxicity of products and byproducts; (iv) the 

use of renewable raw material feedstocks; (v) searching for reactions that take place 

at room temperature and pressure in order to reduce energy consumption; and (vi) 

choosing substances that minimize the potential for chemical accidents.  

Many of these green chemistry principles are directed at the development and 

utilization of solid acids. Solid acids can be used to replace corrosive and toxic Lewis 

and Brønsted acids, such as AlCl3 and HF, which are presently used in large-scale 

chemical syntheses, thereby producing less waste and increasing the safety of the 

manufacturing process. In addition to replacing undesirable conventional acid 

reagents, solid acids have the advantages of being reusable, non-corrosive, highly 

selective, easily separable from reaction mixtures, and generating fewer hazardous 

byproducts (Macquarrie, 2000; Sartori and Maggi, 2006). 
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1.5 Scope of the thesis 

Acylation of aromatic compounds is the main route for the formation of 

aromatic ketones, which are widely used in various areas of fine chemical and 

pharmaceutical industry. Recently, a few articles have been published by our group 

(Adam et al., 2006; Adam and Andas, 2007; Adam and Ahmed, 2008; Ahmed and 

Adam, 2009) which showed that, iron incorporated rice husk silica was an efficient 

catalyst for the Friedel-Crafts alkylation reaction. However, literature review show 

that there are no reports on the catalytic activity of iron incorporated rice husk silica 

for the Friedel-Crafts acylation reactions, i.e. benzoylation of aromatic compounds. 

Hence it was thought interesting to study in detail the incorporation of various 

heteroatoms namely iron, copper and tin in the silica framework from rice husk ash 

and to evaluate its catalytic activity in the Friedel-Crafts benzoylation reactions of p-

xylene, anisole and toluene. 

Commercially, the starting materials for the production of most silica based 

catalysts are tetraethyl orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS). 

However, the use of these organosilicon compounds requires high cost (Adam and 

Iqbal, 2010). In this present study, the use of the silica extracted from rice husk ash 

has been used in place of commercial silica. This will lower the cost of the catalyst 

production since rice husk can be obtained free of charge.  

The work reported in this study focuses on the synthesis of RHA-xFe with 

different loadings using rice husk ash as a silica source at room temperature via sol-

gel method. The modification with tin and copper was also studied in order to 

compare with the iron based catalysts.  

Characterization of the prepared catalysts was carried out using Fourier 

Transform-Infrared (FT-IR) spectroscopy to study the functional groups while the 



 21 

nature of the samples was analyzed by powder X-ray Diffraction analysis (XRD). 

Further characterization of the samples was also carried out using 29Si Magic Angle 

Spinning NMR (MAS NMR) spectrometer and Electron Paramagnetic Resonance 

(EPR) for iron catalysts as well as the copper catalyst to study the silicon and metal 

environments in the structure. The textural properties such as the specific surface 

area, pore volume and average pore diameter were measured using nitrogen gas 

adsorption-desorption analysis. The thermal stability of the samples was determined 

by utilizing thermogravimetry analysis coupled with Fourier Transform-Infrared 

spectrometer (TGA-FT-IR). The diffuse reflectance UV-Vis (DR UV-Vis) had been 

also obtained for the samples in order to study the coordination environment of the 

metal. The surface acidity of the samples was monitored by Fourier Transform-

Infrared (FT-IR) spectroscopy of adsorbed pyridine. 

The final part of this study is to test the catalytic activity of the as-synthesized 

catalysts and calcined catalyst towards Friedel-Crafts benzoylation of aromatics (p-

xylene, anisole and toluene) with benzoyl chloride as the benzoylating agent. The 

products were analyzed by gas chromatography (GC) and the identification of 

products was carried out using gas chromatography with the mass spectrometry 

detector (GC-MS) and with the authentic pure samples. 

 

1.6 Research objectives 

The objectives of this research are listed as follows: 

� To prepare RHA-xFe (x = 5, 10, 15 and 20 wt.%), RHA-10Cu and RHA-

10Sn catalysts using rice husk ash as the silica source via the sol-gel method. 

� To characterize these modified catalysts in detail by various physico-

chemical and spectroscopic techniques such as XRD, FT-IR, N2-sorption, 
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AAS, SEM-EDX, TEM, DR UV/Vis, solid state 29Si MAS NMR, EPR, TGA-

FTIR and FT-IR-pyridine adsorption.    

� To study the catalytic activity of as-synthesized catalysts in the Friedel-Crafts 

benzoylation reaction using benzoyl chloride as benzoylating agent for p-

xylene, anisole and toluene. 

� To study the difference between heterogeneous, homogeneous and calcined 

catalysts. 

� To study the effect of metal loadings, catalyst mass, molar ratio, reaction 

temperature, catalyst type, catalyst stability and catalyst reusability on the 

Friedel-Crafts benzoylation reaction. 

� To study kinetics of Friedel-Crafts benzoylation reaction. 

 
 
 



 23 

Experimental 

 

2.1 Raw material and chemicals 

The rice husk which was used as a silica source in this study was supplied by 

Leong Guan Sdn. Bhd, a local rice mill, situated in Seberang Perai Utara, Penang. 

The chemicals used were nitric Acid (HNO3, Systerm®- ChemAR®, 65.0%), sodium 

hydroxide-pellets (NaOH, Systerm®- ChemAR®, 99.0%), iron (III) nitrate-

nonahydrate (Fe(NO3)3.9H2O, Systerm®- ChemPur®, > 98.0%), copper (II) nitrate  

(Cu(NO3)2.3H2O, R&M Chemicals, 99.0%), tin (II) chloride (anhydrous) (SnCl2, 

Sigma-Aldrich, 98.0%), anisole (Merck, ≥ 99.0% (GC)), p-xylene (Fluka, ≥ 98.0% 

(GC)), toluene (R&M Chemicals, 99.0% (GC)), decane (Acrõs- Organics, 99+%), 

benzoyl chloride (Fluka- Chemika, ≥ 98.0%), benzoic acid (Systerm®- AR, 99.0%), 

benzoic anhydride (Fluka, ≥ 95.0%), o-methylbenzophenone (Aldrich, 98.0% (GC)), 

m-methylbenzophenone (Aldrich, 99.0%), p-methylbenzophenone (Aldrich, 99.0% 

(GC)), p-methoxybenzophenone (Fluka, ≥ 98.0% (GC)). All these reagents were 

used directly without further purification. 

 

2.2 Catalysts preparation  

2.2.1 Treatment of rice husk  

The rice husk (RH) was washed with copious amount of tap water to remove 

the adhering soil, dirt and contaminants such as tiny stones and other unwanted 

particles. During the washing process, only the RH that settled at the bottom was 

collected to ensure consistency. It was rinsed with distilled water three times and 

dried at room temperature for 48 h. About 100 g of this clean RH was stirred in 2 L 

of 1.0 M nitric acid at room temperature using an overhead stirrer (Model 
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RW20DZM.n, Kika Labortechnik) for 24 h to remove all metals originating from the 

soil during the lifetime of the rice plant. The acid treated RH was washed thoroughly 

with distilled water until the pH of the rinse became constant (pH meter, Model pH 

510, Eutech Instruments). The wet RH was subsequently dried in an oven at 110 °C 

for 18 h and burned in a muffle furnace (Model AAF 11/7, Carbolite, UK) at 800 °C 

for 6 h for complete combustion. The white rice husk ash (RHA) thus obtained was 

further treated with 1.0 M HNO3 for 24 h to reduce all metallic impurities to 

negligible levels. It was filtered and washed thoroughly with distilled water until a 

constant pH and dried at 110 °C overnight. The treated RHA was used as silica 

source for the preparation of the catalysts. 

 

2.2.2 Extraction of silica as sodium silicate  

About 5.0 g of the treated RHA was added to 250 mL of 1.0 M NaOH in a 

plastic container and stirred for 18 h at room temperature using a magnetic stirrer 

(Model nuova 7, Sybron/Thermolyne, USA) to extract the silica as sodium silicate. 

The solution was filtered to remove un-dissolved particles through Whatman No. 41 

ash less filter paper to yield a clear solution of sodium silicate.  

 

2.2.3 Preparation of silica  

The extracted sodium silicate solution was titrated with 3.0 M HNO3. The 

acid solution was added at a slow rate (1.0 mL min-1) with constant stirring by 

controlling the pH of the solution. The precipitation of silica gel was started at pH 

10. The titration was continued until pH 5. This suspension was kept in a covered 

plastic container for ageing (24 h). The silica gel formed was centrifuged (Model T 

30, JANETZKI), washed with distilled water followed by acetone, filtered through 
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Whatman No. 41 ash less filter paper and dried at 110 °C for 18 h. The material was 

ground to powder and washed again with distilled water several times to improve the 

purity of silica by removing mineral impurities (Kalapathy et al., 2000a; Kalapathy 

et al., 2002), then filtered and dried at 110 °C for 18 h. The silica obtained was 

labeled as RHA-SiO2. 

 

2.2.4 Preparation of iron-rice husk silica 

Iron incorporated rice husk silica catalysts were prepared by the same 

procedure as for silica except, mass of 1.81, 3.62, 5.43 and 7.23 g of Fe(NO3)3.9H2O 

salt were separately dissolved in 3.0 M HNO3 and these solutions were titrated with 

the sodium silicate solution (~ 1.0 mL min-1) with continuous stirring until pH 5 to 

prepare 5, 10, 15 and 20 wt.% iron loaded catalyst respectively. The resulting gel 

was aged for 24 h at room temperature. The gel formed was separated by centrifuge, 

washed with distilled water followed by acetone and dried at 110 °C for 18 h. The 

samples were ground to powder and washed again with distilled water, filtered and 

dried at 110 °C for 18 h. The catalysts obtained were labeled as RHA-xFe (x = 5, 10, 

15 and 20 wt.%) and ~ 5 g of the powder was obtained for each sample. A portion of 

the RHA-10Fe was calcined at 500 °C for 5 h and denoted as RHA-10Fe(Cal). 

 

2.2.5 Preparation of copper-rice husk silica 

To prepare 10 wt.% copper incorporated rice husk silica, 1.90 g of Cu 

(NO3)2.3H2O salt was separately dissolved in 3.0 M HNO3 and this solution was used 

to titrate the sodium silicate solution until pH 5. The copper incorporated silica gel 

was recovered and processed as previously mentioned for the preparation of iron-rice 
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