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KESAN CaO, CuO DAN V2O5 TERHADAP SIFAT-SIFAT DIELEKTRIK 

BARIUM ZINK TANTALAT (BZT) 

 

ABSTRAK 

BZT mempunyai pemalar dielektrik (εr) yang tinggi dan lesapan dielektrik (tan δ) 

yang rendah. Walau bagaimanapun, suhu pensinteraan yang tinggi diperlukan untuk 

menghasilkan BZT yang mempunyai sifat-sifat dielektrik yang cemerlang. Oleh itu, bagi 

mengatasi masalah tersebut, pendopan dilakukan ke atas BZT dan mengkaji kesan 

pengurangan suhu pensinteran berdasarkan pendopan CaO CuO dan V2O5 ke atas BZT. 

CaO dipilih kerana penggantian Ca menghasilkan struktur baru dan mengelakkan 

pengurangan sifat-sifat dielektrik pada julat frekuensi yang tinggi. Manakala, 

penambahan CuO dapat mengelakkan peruapan Zn yang menyebabkan pengurangan 

sifat-sifat dielektrik. Pemilihan V2O5 sebagai bahan dop kerana mempunyai suhu 

leburan yang rendah. Dalam kajian ini, rekabentuk eksperimen dibahagi kepada tiga 

bahagian. Bahagian pertama, eksperimen dijalankan bagi menghasilkan fasa tunggal 

BZT pada suhu yang terendah dan 1150°C menghasilkan keputusan yang terbaik. Fasa 

kedua, BZT yang terhasil daripada fasa pertama dibahagikan kepada dua, bahan asal 

BZT yang disinter pada suhu 1350°C dan BZT yang didop, (0.1 hingga 2.5 mol%) dan 

disinter pada 1250°C. Sampel yang disediakan dianalisis menggunakan analisis XRD, 

FESEM, ketumpatan dan pengecutan. Fasa ketiga, sifat-sifat dielektrik terhadap kesan 

pendopan daripada fasa kedua dikaji. BZT + xCaO bertindakbalas menghasilkan BCZT 

dan menukarkan struktur heksagonal ke kubik. Manakala, BZT yang didop dengan CuO 

dan V2O5 tidak memberi kesan kepada struktur asal. Penambahan mol% bahan daripada 

0.1 sehingga 0.5 mol% menghasilkan struktur yang lebih padat. Setiap sampel 

menunjukkan hasil yang berbeza bergantung kepada mol% bahan didop dimana 

frekuensi salunan adalah dari 10.3 hingga 14.8 GHz dan kebertelusan dalam julat 26.29 

hingga 75.9 serta kehilangan tangen dalam linkungan 0.04 hingga 0.159. 
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EFFECT OF CaO, CuO AND V2O5 ON BARIUM ZINC TANTALATE (BZT) 

DIELECTRIC PROPERTIES 

 

ABSTRACT 

 

BZT has high dielectric constant (εr) and low dielectric loss (tan δ). However, the 

formation of BZT using solid state method required high sintering temperature to 

produce excellent dielectric properties. Therefore, to overcome these problems, other 

elements were added in BZT and investigate the effect of reducing sintering temperature 

of BZT by doping with  by CaO, CuO and V2O5 respectively. CaO was selected as a 

doping compound because the Ca substitution form a new structured and avoid 

deteriorated dielectric properties in high frequency range. Meanwhile, adding CuO can 

avoid Zn evaporation problem which lower the dielectric properties. The selection of 

V2O5 as a doping compound is to improve BZT dielectric since V2O5 has a relatively low 

melting point. In this study, the experimental design is divided into three phases. In the 

first phase, the experiment was designed to produce the lowest calcination temperature 

that form single phase of BZT and 1150°C give the best result. For the second phase, 

BZT produced from the first phase was divided into; pure BZT sintered at 1350°C and 

doped BZT, (0.1 to 2.5 mol%) sintered at 1250°C. The samples produced were 

characterized using XRD, FESEM density and shrinkage analysis. In the third phase, the 

effects of dopants from second phase were investigated on dielectric properties of doped 

BZT. BZT + xCaO appeared to react to form BCZT and turn from hexagonal to cubic 

structure. While for BZT doped with CuO and V2O5, the structure remains unchanged. 

Increasing the mol% of dopants from 0.1 to 0.5 mol% produced more compacted 

structure. Each samples showed a resonance frequency from 10.3 to14.8 GHz and 

dielectric constants in the range of 26.29-75.9 and the dielectric loss is 0.04-0.159 

depending on the mol% of dopant.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Microwave dielectric materials play an important part in the developing of the 

satellite communication including Global Positioning Systems (GPS) to environmental 

monitoring via satellites (Sebastian et al., 2008). The widely research that is related to 

microwave telecommunication, satellite broadcasting has resulted in an increasing 

demand for dielectric resonators (DR), which are low loss ceramics pucks used mainly 

in wireless communication devices (Sebastian et al., 2008). The development of high 

dielectric constant (εr), low dielectrics loss (tan δ) has enabled the production of 

miniaturized resonators and filters through the use of DR. A DR is an electromagnetic 

component that exhibits resonance with useful properties for a narrow range of 

frequencies (Pern et al., 1999). The properties that required for DR are suitable range of 

resonance frequency (f), low tan δ, and high εr. Low tan δ or high quality factor (Q) 

gives a smaller bandwidth (BW) at the f, a lower degree of noise, and less power loss 

(Muller et al., 2000). Thus, it is important to develop and study dielectrics with a high Q 

factor in the microwave regime.  

Complex oxides are playing important role in the wireless communications and 

also in particular cellular phone. In the form of the ceramic DR they have had a great 

impact on the microwave-based wireless communications industry by reducing the size 

and cost of filter and oscillator components in products ranging from cellular telephones 

to GPS. Understanding more to the current materials in the aspects of their processing, 
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synthesis and structure property relationship is needed for further system miniaturization 

of new ceramics with higher εr  and good temperature stability along with lower tan δ.  

Before the development of complex perovskite take control in DR, Cohen et al. 

(1965) use TiO2 as a DR. Although it has a high εr  and low tan δ, it has poor stability of 

f that prevented its commercial exploitations. The earliest commercialization of DR was 

started in the early 1970 when the first temperature stable, low tan δ barium tetratitanate 

(BaTi4O9) ceramics were developed by Masse et al. (1971). Since then extensive 

theoretical and experimental work and development of DR materials has occurred. 

Ba(Zn1/3Ta2/3)O3 (BZT) is a ceramic composition that contained Ba, Zn, Ta and 

O elements. Dielectrics properties of complex perovskite compounds such as BZT and 

Ba(Zn1/3Nb 2/3)O3 (BZN) have been extensively investigated for their use as DR for 

satellite communication systems at microwave frequencies >10 GHz (In et al., 1993). 

BZT is a well-known ceramic material having a high εr(εr ∼29) and high Q 

(Q×f∼80,000 - 150,000 GHz). BZT has a complex perovskite structure and belongs to 

the family of materials A(B’1/3 B”2/3)O3 [A = Ba, B’1/3 = Zn, B”2/3= Ta] used in 

microwave communication system (Ioachim et al., 2007). 

High sintering temperature above 1500°C or prolonged heat treatment will lead 

to volatilization of ZnO and the escape of ZnO loss will lead to poor densification near 

the surface of the samples (Reaney et al., 2003). The depletion of ZnO also will 

contribute to the second phase likes Ba3Ta2O8 and BaTa2O6. The secondary phases that 

occur in BZT also the factor that causes the Q values factor decrements. The Zn loss 

during the processing also will decrease the dielectric properties and also play an 

important role in controlling the crystal structure. Kawashima et al. (1983) suggested 
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that the increase in Q values might be due to lattice distortion (c*/a* ratio) rather than 

ordering of Zn and Ta cations, porosity or grain size. Zn and Ta cations are ordered, 

BZT has a hexagonal crystal structure and the c*/a* ratio deviates from the value for an 

ideal hexagonal unit cell (31/2/21/2 = 1.2247) which is called the c*/a* ratio. Meanwhile, 

Koga et al. (2006) said that the Q values of BZT system was found to depend not only 

on the ordering but also on their ceramic microstructure. 

When Zn and Ta cations are disordered over the B-site, the crystal structure of 

BZT is cubic perovskite with Pm3m space group symmetry. When B-site cations order 

along the [111] direction of this simple perovskite compound, a hexagonal superlattice is 

formed with space group P3m1. This ordering has been investigated for its effect on the 

microwave Q values. A strong relationship between ordering parameters and microwave 

Q values in BZT system was experimentally observed by Kawashima et al. (1983) under 

various heat conditions. They also reported that improvement of the microwave Q 

values in the BZT system by prolonged sintering and indicated that this Q values 

improvement corresponded with an increase in cation order of the structure.  

Kawashima et al. (1993) reported that to achieve a perfect hexagonal structure at 

1350°C takes at least 120 hours. However, Desu and O’Bryan (1985) pointed out that 

there is another factor at work during these long sintering times, the weight loss occur 

due to the loss of volatile ZnO. They noted that the c*/a* ratio and ordering do not 

occur simultaneously in the data of Kawashima et al. (1993) as would be expected if the 

only factor was ordering. They suggested that the continue c*/a* ratio after ordering is 

complete due to the loss of the ZnO. Loss of ZnO is greater on the surface compare with 

the bulk because slow diffusion rate of Zn through the dense ceramic. 
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However, BZT was a particular interest for microwave applications because it 

can be fabricated with exceptionally high Q values at microwave frequencies. The 

microwave dielectric properties of BZT is affected by it structure. The ordering of B site 

cations has been influence the Q values of BZT ceramics (Varma et al., 2005). For pure 

BZT, high temperature for sintering was needed to achieve high Q values but sintering 

at temperatures above 1500°C leads to volatilization of ZnO and also increase the cost 

of manufacturing. The escape of ZnO led to poor densification and decreases the 

dielectric properties of BZT (Sebastian et al., 2008). To overcome these problems, other 

elements were added in the pure BZT. The adding of new elements also increases the 

dielectric properties. It has been reported by Kim et al. (2004) that addition of small 

amount of 1 mol% TiO2 and 0.75 mol% Al2O3 can improve the Q and εr  values of the 

materials. Another study, Jeong et al. (2005), found that extra addition of 0.3 mol% 

Ta2O5 can also increase dielectric properties. For example, a small amount of Ta2O5 can 

improved the Q values and the 1:2 order structure still maintain without changing to 1:1 

ordering. Lee et al. (1998) found that lanthanum (La) substitution at the A site in BZT 

decreased the 1:2 ordering and at higher concentrations transformed to 1:1 ordered 

phase. For all dopants, grain growth occurred. The increase in Q values for small 

amount of doping is attributed to increase in density and grain growth (Jeong et al., 

2005). However, the large addition amount of dopants elements (>2mol %) can decrease 

the density and Q values of BZT (Daevies et al., 2008).  

Varma et al. (2005) made an investigation on the effect of dopant addition in the 

BZT. They added several dopants of varying valencies, ionic size and concentrations 

and studied the variations in densification, and microwave dielectric properties. It was 
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found that the Q values increased when the ionic radii of the dopant is close to that of B-

site ions (Zn or Ta). The Q values increased when the ionic radii of the dopant is close to 

that of Zn (0.74 Å) or to that of Ta (0.64 Å). An amount of 0.5 mol% of Mg, Ni, Cr, In, 

Ga, Sn, Zr, Ce, Mn, and Sb improved the Q. values When the amount of dopant was 

increased to 1 mol%, the Q values were found to increase only for Cr, Ga, Zr, Ce, and 

Sn. The highest Q values were found for doping with Zr, Cr and Ce. In the doped 

samples the Q values are very much improved although the order parameter is 

decreased. Since these dopants having ionic radii close to that of the B-site ions improve 

Q values, it implies that these dopants are substituting for Zn or Ta in BZT. 

There are many methods that producing the electroceramic powder like BZT. 

Generally, powder mixing method selection are depends on manufacturing cost, 

technical needed and the ability of the choosing method to achieve the needed 

properties. Mclaren et al. (1999) was prepared the BZT by hydrothermal methods. 

Varma et al. (2006) prepared BZT nanopowder by the decomposition of a citrate 

precursor gel. However, the sinterability of BZT ceramics that made from nanopowder 

was very poor and on the sintering at high temperatures cause depletion of ZnO and 

form second phase of BZT, BaTa2O6. Varma et al. (2006) succeed in sintering BZT 

ceramics from nanopowder by using solid state method. Therefore, the solid state 

method is the cheapest method to produce this dielectric material. It is because this 

method is the cheapest manufacturing cost and simple procedure compare with sol gel 

and hydrothermal synthesis. Even though sol gel and hydrothermal synthesis can solve 

the high processing temperature problem but the quantity that produce is in small 

volume and the cost for these methods also expensive. Kong et al. (2007) stated that the 
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weakness of using sol gel is due to expensive alkoxide metal as a starting material and 

very sensitive with environment such as heat, light and moisture. Moisture sensitivity 

means the experiment must be conducted in vacuum room. So, the final product in a big 

amount is difficult to produce (Warikh et al., 2008).   

 

1.2 Problem Statement  

Complex perovskites Ba(B’1/3B”2/3)O3 compounds are very promising materials 

for electroceramic applications due to their attractive properties. The important 

characteristics required for DR are high εr  and low tan δ (Sebastian et al., 2008). BZT 

compound with excellent dielectric properties has been selected because of the potential 

applications in satellite broadcasting at frequencies higher than 10 GHz. Zirconia tin 

titanate, (Zr1-xSnx)TiO4, BZN and Ba(Mg1/3Ta2/3)O3 (BMT), having high εr are also 

widely used as a DR but these materials are not suitable in high frequency applications 

due to high tan δ at high frequency range (Sebastian et al., 2008). Therefore, BZT is the 

best materials due to the stability of it properties in high frequency range.     

The formation of BZT materials into dense ceramic resonators with excellent 

dielectric properties required very careful and demanding processing procedures because 

BZT is difficult to optimize on a commercial scale. This is a significant problem related 

to the BZT production cost. The atomic scale structure of BZT depends on the 

processing conditions since they control the extent to which the octahedral B-sites of the 

parent simple perovksite are occupied in an order manner by the Zn and Ta cations 

(Bieringer et al., 2003). The most common method that always uses to produce complex 

perovskites is solid state method. Even though this method is the easiest and the 
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cheapest method compare to the sol-gel, hydrothermal and etc., this method is still 

dealing with the high sintering temperature and long soaking time to produce very 

excellent dielectric properties. BZT has to be sintered at high temperature (1550°C) and 

long soaking time (120 hours). However, this procedure will also leads to volatilization 

of ZnO and increase the manufacturing cost. The escape of ZnO led to poor 

densification and decreases the dielectric properties of BZT (Cava et al., 2001). To 

overcome these problems, many researchers tried to dope BZT with many elements, 

respectively. It has been reported by Kim et al. (2004) that addition of small amount of 1 

mol% TiO2 and 0.75 mol% Al2O3 can improve the Q and εr  values of BZT. Another 

study found that extra addition of 0.3 mol% Ta2O5 can also increase dielectric properties 

(Jeong et al., 2005). For example, a small amount of Ta2O5 can improved the Q values 

and the 1:2 order structure still maintain without changing to 1:1 ordering. Lee et al. 

(1997, 1998) found that lanthanum (La) substitution at the A site in BZT decreased the 

1:2 ordering and at higher concentrations transformed to 1:1 ordered phase. Most of the 

researchers are successfully produce good dielectric properties compare to the pure BZT 

but the problem that involved with high sintering temperature is still cannot be solved. If 

they can sintered in short soaking time (6 to 10 hours) they still required high sintering 

temperature (>1550°C) in order to produce excellent dielectric properties (Sebastian et 

al., 2008). 

The reason of using CaO, CuO and V2O5 is that these dopant have never been 

reported in previous literature. However, these dopants have been used in many 

materials such as BaTiO3 (Moura et al., 2007), bismuth sodium titanate (Bi0.5Na0.5TiO3, 

BNT) and barium zirconate titanate (Ba(Zr 0.07Ti 0.93)O3, BZT), Bi2O3–ZnO–Ta2O5 
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(Shen et al., 2004), bismuth based pyrochlores (Iqbal et al., 2010) and produce excellent 

dielectric properties at low sintering temperature. CaO is introduced as a doping 

compound because the Ca substitution form a new structured and avoid deteriorated 

microwave dielectric properties in high frequency range. CaO also exhibits high 

radiation resistance and also produce high 𝜀𝜀𝑟𝑟 . While, adding CuO can avoid Zn 

evaporation problem which lower the dielectric properties. The selection of V2O5 as a 

doping compound is to improve BZT dielectric since V2O5 has a relatively low melting 

point and can produce excellent dielectric properties. Therefore, with appropriate 

compositional design and selection of sintering temperature and duration, there is a 

possibility to decrease the sintering temperature and soaking time without Zn 

vaporization and produced BZT with excellent dielectric properties. 

 

1.3 Research Objective 

 This study is focusing on dielectric properties of doped BZT and characterization 

of the BZT doped by various elements using solid state method. Therefore, the main 

objectives are: 

i. To investigate the lowest calcination temperature for producing single phase 

of BZT using solid state method. 

ii. To study the effect of reducing sintering temperature of BZT by doping with   

CaO, CuO and V2O5 respectively 

iii. To study the dielectric properties of BZT doped with CaO, CuO and V2O5 , 

respectively.   
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1.4 Scope of Work 

Basically, this study can be divided into 3 phases which are: 

i. Finding the lowest calcination temperature to produce single phase of BZT using 

solid state method. 

ii. Reducing the sintering temperature of BZT by doped-BZT.with CaO, CuO and 

V2O5 respectively. 

iii. Studying the dielectric properties of doped-BZT. 

 

In the first phase, the solid state method used by other researchers such as 

Kawashima at al. (1983), Kim et al. (2001), Roulland et al. (2003) and Zaou et al. 

(2005) to produce BZT was employed. However, survey of the literature has not 

revealed any researcher using exactly the same chemicals in synthesizing a BZT doped 

CuO, CaO and V2O5 powder. Hence, these doped elements is seemed to be a newly 

elements developed during this thesis work. For the calcination process, the pure BZT 

powders obtained from the solid state method were calcined in a furnace at various 

temperatures ranging from 750 to 1250°C. The powders, calcined at different 

temperatures were then examined for their phase(s) content.  

For the second phase, the BZT produced from the first phase was pressed and 

sintered at 1250°C, 1300°C and 1350°C in 4 hours soaking time, respectively. This is to 

determine the reference sintering temperature for pure BZT. Meanwhile, the BZT that 

produced from the first phase doped with 0.1 to 2.5 mol % of CuO, CaO and V2O5. The 

mixture were then calcined at 1150°C in 1 hour soaking time before being pressed into 
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pellets and sintered in three different sintering temperatures at 1200°C, 1250°C and 

1300°C in 4 hours soaking time, respectively. 

While, for the third phase, the final product of the doped-BZT were analyzed 

using network analyzer to investigate the doped-BZT microwave dielectric properties. 

Characterization work was carried out after finding the optimum sintering 

temperature. Different properties of the sintered doped BZT such as grain size and 

microstructure, density, phase formation, resistivity, shrinkage and dielectric properties 

were examined with various analytical equipments such as Field Emission Scanning 

Electron Microscopy (FESEM), network analyzer and etc.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Microwave Communications 

Electromagnetic waves travel in a straight line at approximately the speed of 

light and are made up of magnetic and electric fields that are the right angles to each 

other and at right angles to the direction of propagation (Tomasi et al., 2004). Modern 

microwave and radio frequency (RF) engineering were widely used due to the explosion 

in demand for voice, data and video communication capacity (Golio et al., 2001). 

Microwave technology almost controlling the communication industry because increase 

in demand for communications systems such as mobile telephony, broadcast video and 

GPS to environmental monitoring via satellites (Golio et al., 2001). Most of the 

microwave based device systems are located from the range 300 MHz to 300 GHz as 

shown in Figure 2.1 (Golio et al., 2001). The microwave region can be divided into three 

sections, ultra high frequency (UHF) region from 300 MHz to 3 GHz, super high 

frequency (SHF) region from 3 GHz to 30 GHz and extremely high frequency (EHF) 

region from 30 GHz to 300 GHz (The Spectrum Plan, 2006). Compare with the radio 

waves, microwave can carried much more information because they have higher 

frequency and shorter wavelength (λ). Higher frequency can produce large BW that can 

achieve higher data transmission rates while the short λ allows the energy to be 

concentrated into a small area. 
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Figure 2.1: Microwave spectrum and applications (Golio et al., 2001). 

 

2.1.1 Dielectric Resonators (DR) 

 A DR is an electromagnetic component that exhibits resonance with useful 

properties for narrow range of frequencies (Sebastian et al., 2008). DR is always used as 

a filters and oscillators. Richinger et al. (1939) showed that microwaves resonators in 

the form of unmetallized dielectric objects can function similarly to bulk metallic 

cavities and in late 1960s, the DR started to be used due to the development of low tan δ 

ceramics materials.  A DR tends to resonate at the frequency of the carrier signal to 

allow the signal to be efficiently separated from other signals in the microwave band; 

this frequency is called the f. The f depends on the dielectric material and the size of the 

resonator. 

 Around 1960s, many researchers investigated the behavior of dielectrics at 

microwave frequencies including Okaya et al. (1962), Barash et al. (1962), Coleman et 

al. (1960), Hakki  et al. (1960) and Cohn et al. (1968). Many problems occurred at that 

time due to the limited number of the suitable materials. The first DR was in the form of 

TiO2 single crystal (Khisk et al., 2007). Rutile (TiO2) has high εr  and low tan δ but its 
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large f of the temperature coefficient made it impractical for many applications. By the 

1970s, the commercialization of DR for real applications had begun introduced to the 

worldwide. 

 

2.1.2 Dielectric Resonator Antenna (DRA) 

Several DR can fabricate to form DRA. DRA can produce high degree of 

flexibility and versatility over a wide frequency range that suit many requirements. DRA 

offer many advantages. First, the DRA size is proportional to the λo /√εr  where εr the 

dielectric constant of the DRA and λo is the wavelength of the f. The different values of 

εr (range from 4 to 100) can be used. Therefore, it gives the flexibility to control the size 

and BW (Khisk et al., 2007). Second, DRA has much wider impedance BW compare 

with microstrip antenna. Compared with microstrip antenna, DRA can radiate through 

the whole antenna surface except the grounded part while microstrip antenna can 

radiates only through narrow radiation slot (Khisk et al., 2007). The DRA operating BW 

can be varies by choosing suitably εr  of resonator material and its dimensions. Third, 

DRA consists high dielectric strength and high power handling capacity. This antenna 

can operate in wide temperature range due to the temperature stable ceramics. 

 There are three major of important properties that need to be considered to 

choose the materials for DRA. The εr controls the resonator dimensions and should be as 

high as possible. A low tan δ is very important for high performance devices because the 

lower tan δ, the higher the efficiency and lower the noise (Pern et al., 1999). To increase 

the efficiency of DR in telecommunication applications, low return loss and high BW 

are required.  
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2.1.2.1 Effect of DRA Height and Shape 

 The mode of operation and performance of a DRA can be varied by selecting a 

DR with desired structure. The systematic research already been conducted in 1983 and 

1984 towards the different shape of DRA such as cylindrical, hemisphere, and 

rectangular shape (Long et al., 1983). Each of these shape were characterized with the 

value of εr , radius (a), height (h), and thickness (d). Mridula et al. (2004) state that the 

different between h and width (w) for rectangular DRA give an effect to the f and return 

loss.  

Figure 2.2 shows those two units of DRA that have different h which is DR1 and 

DR2. The f for DR1 exist at 1.795 GHz with 6.12% BW and suitable to operate at GSM 

1800 (1710-1880 MHz) frequency. While, the f for DR2 occurred at 2.445 GHz and it is 

suitable to operate in wireless local area network (WLAN) frequency (2.4-2.484 GHz). 

In Figure 2.3, two units of DRA that have different BW which is DR3 and DR4. For DR3, 

it is suitable for GPS band (1.565-1.585 GHz) and for DR4 for PCS 1900 band (1.85-

1.99 GHz). These results show that different dimension of DR can produce different f 

for different applications.  
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Figure 2.2: Return loss for antenna with two samples different h (Mrindula et al., 2004) 

 

Figure 2.3: Return loss for antenna with two samples different BW (Mrindula et al., 
2004) 
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2.1.2.2 The Hemispherical DRA 

 The geometry of the hemispherical DRA is shown in Figure 2.4. The 

hemispherical DRA is of limited practical value. It is because due to the difficulty 

involved in fabrication and lack of any degree freedom in choosing the design 

parameters. For the materials that have certain εr , the radius of sphere will determine 

both the f and the radiation that will produce. Therefore, the designer cannot control the 

size of the antenna and its BW. The designer has difficulty to control the size of antenna 

or BW due to the limited characterization.  

 

Figure 2.4: Hemispherical DRA (Petosa et al., 2007) 

 

 

 



35 
 

2.1.2.3 The Rectangular DRA 

 The DRA with a rectangular cross section is characterized by h, w, d, and εr  as 

shown in Figure 2.5. The rectangular shape offers a second degree of freedom which is 

h/w and d/w making it most versatile of the basic shape. There is greater amount of 

flexibility in designing the rectangular DRA to achieve desired profile and BW 

characteristics for a given f and 𝜀𝜀𝑟𝑟  since the ratio of (d/w) and (h/w) can be chosen 

independently. The choice of aspect ratio will also have an impact in the radiation. Thus, 

it allowed the designer to make many choices to design the DRA for certain application.      

    

Figure 2.5: Rectangular DRA (Petosa et al., 2007) 
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2.1.2.4 The Cylindrical DRA 

 The cylindrical DRA offers greater design flexibility, where the ratio of a/h 

controls the f and dielectric properties. So, for a given εr and f, different tan δ can be 

obtained by varying the DRA dimensions. Fabrication is also simpler than the 

hemispherical DRA. The cylindrical DRA is characterized by h, a, and εr as shown in 

Figure 2.6. The cylindrical shape offers one degree of freedom more than hemispherical 

shape which is the aspect ratio a/h. Thus, the cylindrical DRA can be made to resonate 

at the same frequency as a wide and thin cylindrical DRA. However, the tan δ for both 

resonators is different. DRA that use for electronic circuit usually been produce in 

cylindrical shape or pellet that have high εr(>35) (Long et al., 1983).    

 

Figure 2.6: Cylindrical DRA (Petosa et al., 2007) 
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2.1.3 Dielectric Microwave Properties 

 

2.1.3.1 Dielectric Resonance Frequency (f) 

 The f is the frequency which capacitance and inductance are cancelling to each 

others. The f of a DR in the HE11δ mode can be estimated by Equation 2.1 formulated by 

Long et al. (1988). 

𝑓𝑓 =
6.324𝑐𝑐

2𝜋𝜋𝜋𝜋√𝜀𝜀𝑟𝑟 +  2
 �0.27 + 0.36 �

𝜋𝜋
2𝑑𝑑�+  0.02 �

𝜋𝜋
2𝑑𝑑�

2
�                        (2.1) 

where; 

f   = Resonance frequency 

εr  = Dielectric constant 

a   = Radius of resonator (m) 

d   = Thickness of resonator (m) 

  The f can be changed by altering the dimensions of DR. f increase when the size 

of DR decreases and εr values are low.  

 

 

 

 

 



38 
 

2.1.3.2 Dielectric Constant (𝛆𝛆𝐫𝐫) 

 The εr  is the degree of polarizability or energy storing capacity when the 

potential is applied across it. High εr  values were needed for circuit miniaturization. 

This is because the λ inside the DR is inversely proportional to the square root of its 

εr  as given by the Equation 2.2. 

𝜆𝜆𝑑𝑑 =  𝜆𝜆𝑜𝑜  /�𝜀𝜀𝑟𝑟                                         (2.2)     

Where; 

𝜆𝜆𝑑𝑑 = Wavelength in dielectric 

𝜆𝜆𝑜𝑜 = Wavelength in air 

εr = Dielectric constant 

High εr  values can reduce the size of the antenna. A relatively small antenna can 

efficiently radiate high frequency electromagnetic wave. When √εr  increase, the λd will 

decrease and when the microwave frequency enter the dielectric material, the length of λ 

will decrease and produce short λ that performed better frequency as shown in Figure 

2.7. Materials with low εr  values are used for electrical insulator applications. Materials 

with high εr  values are used as a DR or capacitors for charge storage and other function.  

 

Figure 2.7: The λ is reduced by factor of √εr   when the waves enter the dielectric 
material (Sebastian et al., 2008) 
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Polarization happen when electric field is applied to a dielectric material, there 

are no long range of transport of charge of material but the charge of material are 

displaced in response to the applied field. The orientation of the charge reduce the 

effective of electric field between the plates because the charged tied up charges on the 

plate of the condenser but it increase the ability of the plates to store charge. Relaxation 

time was needed to achieve the equilibrium orientation and relaxation frequency as a 

reciprocal for relaxation time. 

Figure 2.8 shows various types of polarization. At the highest frequencies (1013 

to 1015 Hz), the electron is the polarizing species in a material. Electronic polarization 

occurs when an applied electric field causes the shift of the electron cloud. Ionic 

polarization occurs at frequencies below 1013 Hz and this is due to the displacement of 

positive and negative ions with respect to each other (Nair et al., 2002). Below 1010 Hz, 

orientation polarization occur because molecules that contain permanent dipole rotating 

between the two equivalent equilibrium positions and space charge polarization that 

produced at frequencies below 105 Hz form due to the mobile charge carriers that are 

impeded by physical barrier (Nair et al., 2002). 

 

Figure 2.8: Frequency dependence of polarization process and peak power losses 
(Sebastian et al., 2008) 
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2.1.3.3 Dielectric Loss (tan δ) 

 Due to the different physical processes such as dielectric resonance, electrical 

conduction and dielectric relaxation, the tan δ of a material denotes quantitatively 

dissipation of the electrical energy (Bartfoot et al., 1967). The total tan δ is the sum of 

the intrinsic and extrinsic losses. The intrinsic losses are dependant on the composition 

of the material while the extrinsic losses are the additional losses due to the 

imperfections in crystal structure. The losses are determined by the phonon interactions 

in ideal crystals, impurities, vacancies, porosity, grain boundaries and dopants in real 

materials.  

 The intrinsic losses happen due to the anharmonic lattice forces that control the 

interaction of phonon system. This is because the microwave frequency is lower than 

phonon frequency so the microwaves cannot directly interact with the individual 

phonons. From theory, lowest tan δ can be achieved from a single crystal since defects 

and impurities can increase the phonon scattering. Extrinsic losses can be divided into 

two groups; 1) losses in real homogeneous single crystals causes by dopant, impurity 

and vacancies and 2) losses in inhomogeneous ceramics due to extended grain 

boundaries, vacancies and second phase. The losses from point 1 can be seen as energy 

transfer from the excited microwave to transverse optical phonons. Through scattering 

and interaction with other phonon, thermal phonons can be generating from these optical 

phonons.  
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2.1.3.4 Minimum Return Loss 

 Minimum return loss is a portion of a signal that cannot be absorbed by the end of 

line termination, or cannot cross an impedance change at some point in the transmission 

system. Minimum return loss value must less than -10 dB. The minimum return loss is 

influence by the thickness of the DRA. It proves by Ain et al. (2007) that use different 

thickness of resonator were produced different operation of f. Based on Figure 2.9, the 

minimum return loss decreased when the thickness of DR decrease. Therefore, the minimum 

return loss values indicated that by reduce the thickness of DR can minimize the return loss 

during the operation. This suggests that with low value of minimum return loss, this DR has 

very good efficiency in a telecommunication system. This result also proven that the f can 

be achieved by modified the resonator from many aspect such as thickness, sintering time 

and dopants.  

  
(a) 

 
(b) 
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(c) 

Figure 2.9: Thickness effect for the DR towards return loss. (a) 2 mm, (b) 2.5 mm (c) 3 
mm (Ain et al., 2007) 
 
 
2.1.3.5 Bandwidth (BW) 

 BW is a total distance or range between the highest and lowest frequency of 

acceptable operation and multiplied by 100 and represented by % BW as in Equation 

2.3.  

% 𝐵𝐵𝐵𝐵 =  
𝑓𝑓2− 𝑓𝑓1

𝑓𝑓𝑐𝑐
 × 100                 (2.3) 

Where; 

𝑓𝑓1 = lower frequency limit where the magnitude of the spectrum is 10 dB weaker than      

        the strongest frequency component in the whole occupied spectrum. 

𝑓𝑓2 = higher frequency limit where the magnitude of the spectrum is 10 dB weaker than  

        the strongest frequency component in the whole occupied spectrum. 

fc = center frequency defined as the averaged between the higher frequency limit and  

         the lower frequency limit divided by 2.  

For both higher and lower frequency limits are taken at -10 dB levels. It is 

because the BW can be accepted when the specific range of the frequencies over which 

antenna is capable of transmitting and receiving signals above -19 dB relative to the 

strongest frequency component in the entire spectrum     



43 
 

 

Figure 2.10: Measurement of BW based from the f  

 The resonator BW is depends on the f, εr, tan δ and the thickness (d) of the 

pellets. But in this research the scope are more in f and the εr. The BW and εr are 

interrelated; therefore there is always a trade off between them in arriving at optimum 

dielectric properties for telecommunication applications.  

 

2.2 Perovskite Structure 

The structural chemistry of ABO3 perovskites can be described in terms of close 

packing of AO3 layers, where at the B-sites cations occupy 100% of resultant BO6 

oxygen octahedra. The BO6 octahedra is connected exclusively through corner sharing 

when the AO3 layers are arranged in cubic close packing and then, the structure form in 

a cubic perovskite. In an ideal cubic perovskite, the A and B cations have an equilibrium 

bond distances to oxygen without any distortion of the unit cell. So, it was classified in 

the space group Pm3m and the tolerance factor, t = 1 (Long et al., 1983).  

As shown in Figure 2.11, the B atoms are at the center of 6 oxygen that are 

arranged at the corner of a regular octahedron. The octahedra are linked at their corner 

into a three dimensional simple cubic network, enclosing large holes that are occupied 


