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PENINGKATAN ALGORITMA KOLONI LEBAH MADU 

UNTUK RAMALAN STRUKTUR TERTIER PROTEIN 

 

 

ABSTRAK 
 

 

Kepentingan peranan protein dalam  proses biologi tubuh manusia telah diakui dan tidak 

diragui lagi. Protein mampu melaksanakan fungsi biologi apabila ia terlipat ke dalam 

struktur tertier. Kaedah ramalan struktur tertier protein secara eksperimen memerlukan masa 

yang lama dan sangat mahal. Tambahan pula, struktur protein juga sering kali tidak dapat 

ditentukan secara eksperimen. Saintis dari pelbagai bidang berusaha menghasilkan teori serta 

kaedah komputasi yang mampu menyelesaikan masalah ramalan struktur protein secara kos-

efektif. Secara komputasi, masalah ramalan struktur protein dirumus sebagai suatu masalah 

optimum dan matlamat utama ialah untuk menggelintar ruangan carian untuk mencari 

protein yang sama bentuk dengan tenaga bebas terendah  (struktur protein). Kajian ini 

bertujuan menyelidik serta meneroka buat kali pertama, kemampuan algoritma berdasarkan 

koloni lebah madu menggelintar ruangan carian untuk mencari protein yang sama bentuk 

dengan tenaga bebas terendah, serta menggabungjalinkan teknik selari ke dalam algoritma 

tersebut untuk meningkatkan keupayaan mencari protein yang sama bentuk. Prinsip-prinsip 

penggabungjalinan dalam koloni lebah madu (algoritma MBO) dan perlakuan pencarian 

makanan koloni lebah madu (algoritma ABC) telah diadaptasikan untuk menyelesaikan 

masalah mencari protein yang sama bentuk. Algoritma-algoritma selari telah dibangunkan 

untuk meningkatkan prestasi algoritma gelintaran. Daripada algoritma-algoritma yang 

diadaptasi, tenaga bebas terendah telah diperolehi bagi protein yang diuji. Tenaga bebas 

terendah Met-enkephalin telah diperolehi (-12.42 dan-12.9101 kcal/mol). Di samping itu, 

tenaga bebas terendah bagi C-peptida dan struktur terbaik bagi 12 bioaktif peptida juga telah 

ditemui. Prestasi algoritma MBO selari menunjukkan penambahan kelajuan hampir linear 

manakala algoritma ABC menunjukkan penambahan kelajuan linear.  
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ENHANCED HONEY BEES COLONY ALGORITHMS FOR PROTEIN 

TERTIARY STRUCTURE PREDICTION 

 

 

 

ABSTRACT 

 

 

 
There is no doubt about the role that protein plays in the biological processes inside the 

human body. Proteins are able to perform their biological functions when they fold into their 

tertiary structure. Experimental protein tertiary structure prediction methods are time 

consuming and expensive and it is not always possible to determine the protein structure 

experimentally. Scientists from many fields work to develop theoretical and computational 

methods which provide cost effective solutions to the protein structure prediction problem. 

Computationally, the protein structure prediction problem is formulated as an optimisation 

problem and the goal is to search the protein conformational search space to find the lowest 

free energy conformation (protein structure). The aim of this study is to investigate and  

explore for the first time, the capability of the honey bees colony-based algorithms in 

searching the protein conformational search space to find the lowest free energy 

conformation, and to incorporate parallel techniques into the protein conformational search 

algorithms to enhance the protein conformational search. The principles of marriage in the 

honey bees’ colony (MBO algorithm) and the honey bee colony’s foraging behaviour (ABC 

algorithm) were adapted to solve protein conformational search problem. Parallel algorithms 

were developed to enhance the performance of the search algorithms. The adapted 

algorithms were able to find the reported lowest free energy conformation for the test 

proteins. The lowest free energy conformation of Met-enkephalin was found (-12.42 and 

-12.9101 kcal/mol). Lower free energy conformations for C-peptide and good structures for 

the 12 bioactive peptides were found. The parallel MBO algorithm gained near linear speed-

up and the parallel ABC algorithm gained linear speed-up.  
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CHAPTER ONE 

INTRODUCTION 

 
 

 
Protein is constructed from a list of 20 amino acids types. Proteins play a vital role in 

the biological processes of the human body. Significantly, a protein will only be able to 

perform its biological function when it folds into its tertiary structure. This tertiary structure 

is known as the biological active state or the native state. Moreover, many of the drugs 

become effective when their structures are closely associated with the structure of the proteins 

(Ogura et al., 2003). 

 

In Bioinformatics, especially in protein data, three kinds of information are closely 

related (Satou et al., 1997). They are sequence, structure, and function. The sequence 

determines the structure, and the structure determines the function.  

 

The determination of the protein sequence from the genes encoded in the DNA is known 

as the first genetic code while the determination of the protein structure from the amino acids 

sequence is considered as the determination of the second genetic code (Chan and Dill, 1993; 

Hardin et al., 2002). While the first genetic code has been solved, the second code is still not 

fully understood and needs more research in order to break it. Protein Structure Prediction 

(PSP) is currently perhaps the biggest problem in Bioinformatics (Keedwell and Narayanan, 

2005). 

 

The PSP problem is simply stated as “Given a protein sequence, what is its tertiary 

structure?”. Solving this problem is not as simple as its statement. The prediction of a 

protein‟s structure from its amino-acid sequence is regarded as a great challenge in many 

scientific disciplines. It is a fundamental scientific problem and a great challenge in structural 
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Biology (Brock and Brunette, 2005), computational Biology, Chemistry (Floudas, 2007), and 

Bioinformatics (Helles, 2008; Kanehisa, 1998; Meidanis, 2003), and it is one of the unresolved 

problems in Biophysics. One of the most important objectives of Bioinformatics is the 

prediction of protein structure (Hu et al., 2008; Mount, 2004; Rizk, 2006).  Protein structure 

can be determined by using experimental methods and computational methods. Figure 1.1 

gives an overview of the PSP. As shown in this figure, the genome projects over the world 

produce new protein sequences which are stored in protein sequence databases. The structures 

of these sequences can be determined using structure prediction methods. These structures are 

stored in structure databases. The structures are used to solve different bioinformatics and 

medical problems such as protein function prediction and drug design. PSP methods are 

divided into experimental and computational methods.    

 

 

Figure 1.1: Overview of protein structure prediction 
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Experimental protein structure determination methods such as Nuclear Magnetic 

Resonance (NMR) and X-ray crystallography are the main trusted and mostly used methods. 

They are the main sources of information about protein structure (Chen et al., 1994). 

However, they have some drawbacks. They are difficult to use, time-consuming, laborious 

and expensive. As they need special equipment and human efforts, the determination of the 

structure of a single protein may take from several months up to years of laboratory work. In 

addition, not all protein structures can be determined using experimental methods (Evans et 

al., 1995; Zhang, 2002a). As an example, the NMR method can determine the structure of 

proteins which are not longer than 100 amino acids (Jones, 2000) while protein 

crystallisability is a prerequisite for the X-ray method. So it cannot be applied to all proteins 

because not all proteins can be crystallised (Chen et al., 1994; Chen et al., 2007).  

 

Because of these limitations, the experimental protein structure determination is still 

slower than sequence determination. Various genome projects are identifying more new 

genes than the number of protein structures being determined by experimental methods 

(Karl-Heinz, 2003). This has led to an obvious big gap between the number of known protein 

sequences deposited in sequence databases and the number of determined protein structures 

deposited in structure databases. For example, the protein sequences in Swissprot database 

(UniProtKB/TrEMBL Release 2010_10 of 5 October 2010) have 12098541 entries, while 

the protein structures in Protein DataBase (PDB) (up to 12 October 2010) register 68562 

structures. Therefore, other fast methods of protein structure prediction are needed to resolve 

this gap. 

 

The prediction of the protein structure from the protein sequence demands a 

continuous development of new methods to solve the problems especially when there is less 

experimental information. Because of the challenges in the determination of protein 

structures experimentally, scientists from many fields such as Biology, Computer Science, 

Mathematics, Biochemistry, and Physics work to develop theoretical and computational 
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methods to predict the protein tertiary structures. Computational PSP is the only alternative 

to deduce the protein structure and understand its function (Sundararajan and Kolaskar, 

1996b). 

 

Computational methods have become one of the most important research topics in 

modern molecular biology (Liu et al., 2005). Theoretical methods are important and 

necessary to help biologists in obtaining protein structure information (Liu et al., 2005; 

Suzuki and Okuda, 2008; Zhang, 2002b). They provide a cost-effective solution to the PSP 

problem (Beiersdorfer et al., 1997; Das et al., 2008; Greenwood and Shin, 2002; Ogura et al., 

2003). Furthermore, using computational methods enables the structure prediction of a large 

number of protein sequences which cannot be determined experimentally (Baker and Sali, 

2001). Computational methods are traditionally classified into three approaches. These are 

Homology Modelling (HM) or Comparative Modelling (CM), Fold Recognition (FR) or 

Threading and Ab initio.  

 

Ab initio methods are based on the Anfinsen thermodynamic hypothesis (Anfinsen, 

1973) which states that the tertiary structure of the protein is the conformation with the 

lowest free energy. Predicting the protein structure using the ab initio methods is one of the 

top ten challenges in Bioinformatics (Meidanis, 2003). 

 

Based on the Anfinsen thermodynamic hypothesis, the PSP problem is formulated as 

an optimisation problem (Morales et al., 2000; Garduno-Juarez et al., 2003; Ogura et al., 

2003; Crivelli and Head-Gordon, 2004; Bortolussi et al., 2005; Vengadesan and Gautham, 

2005; Yun-Ling and Lan, 2006). The goal is to search the protein conformational search 

space to find the lowest free energy conformation. This conformation is the structure 

associated with a stable state. Protein conformation refers to the protein tertiary structure and 

can be traditionally defined as the organisation of its atoms in the three dimensional space. 

These atoms can be inter-converted purely by rotation about a single bond. Most molecules 
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can adopt more than one conformation. Protein has an infinite number of non 

superimposable conformations (Karl-Heinz, 2003). 

 

In order to predict the protein structure using ab initio methods, a proper 

representation of protein conformation is required. An energy function is used to calculate 

the conformation energy while a conformational search algorithm is utilised to search the 

conformation search space to find the lowest free energy conformation. 

 

1.1 Problem Statement  

The PSP problem is a hard combinatorial optimisation problem (Greenwood and Shin, 

2002; Lee et al., 1997) as it involves searching the conformational search space for the 

lowest free energy. Conformational search algorithms explore the protein conformational 

search space with a major goal to find the lowest free energy conformation (Zhang, 2002a). 

Searching the protein conformational space is a grand challenge in protein tertiary structure 

prediction due to the large number of possible conformations and the local minimum 

problem. In general, if a protein has n atoms, the degree of freedom is 3n-6. Accordingly, a 

protein with 100 amino acids where each amino acid has 20 atoms, the number of degrees of 

freedom is equal to ([(100*20)*3]-6=5994) (Schulze-Kremer, 2000). In other words, by 

considering five torsional angles for each of the 100 amino acids and taking five values for 

each angle, the number of possible conformations will be 25
100

.  

 

Thus, the PSP problem is considered as an NP-hard problem (Khimasia and Coveney, 

1997, Morales et al., 2000, Garduno-Juarez et al., 2003) or even NP-Complete problem 

(Seung-Yeon et al., 2003, Bortolussi et al., 2005). Protein conformational search algorithms 

need an exponential time to search the protein conformational search space which is similar 

as searching for "a needle in a haystack" (Dill et al., 1993). It is impractical to test all the 

feasible conformations to find the lowest free energy conformation. Therefore, the success in 

predicting protein tertiary structure is dependent on the efficiency of the searching method to 
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pass over different conformations without testing all conformational possibilities (Zhou and 

Abagyan, 2002) and without regard to the folding processes (Day et al., 2003; Morales et al., 

2000). 

 

There is a need for a robust and efficient searching algorithm. Since the problem is a 

combinatorial optimisation problem, many optimisation algorithms have been developed to 

search the protein conformational space. Some of the most common algorithms are Monte 

Carlo (MC) (Evans et al., 1995; Ripoll and Thomas, 1990), Simulated Annealing (SA) 

(Fadrná and Koca, 1997; Ogura et al., 2003; Tanimura et al., 2004; Yun-Ling and Lan, 

2006), and Genetic Algorithms (GA) (Beiersdorfer et al., 1997; Garduno-Juarez et al., 2003; 

Gates et al., 1995; Khimasia and Coveney ,1997a; Madhusmita et al., 2008; Schulze-Kremer, 

1994; Schulze-Kremer, 1996; Unger and Moult, 1993; Xiang, 2000).  

 

 Recent years have showed the application of Swarm Intelligence (SI) based 

algorithms in solving Bioinformatics problems (Das et al., 2008). In the PSP problem, the 

idea of using the cooperative and collective behaviour of social insects to search the protein 

conformational search space was addressed by Huber and van Gunsteren (1998).  Ant 

Colony Optimisation (ACO) (Daeyaert et al., 2007; Fidanova and Lirkov, 2008; Hu et al., 

2008; Shmygelska, 2006; Shmygelska et al., 2002a; Shmygelska and Hoos, 2003; 

Shmygelska and Hoos, 2005) and Particle Swarm Optimisation (PSO) (Datta et al., 2008) 

were used to predict the structure of the protein. 

 

SI based algorithms that are inspired by the behaviour of the honey bees colony can be 

classified into different classes. Marriage in honey Bees Optimisation (MBO) algorithm is 

inspired by the process of reproduction (marriage) in the honey bees colony, and Artificial 

Bee Colony (ABC) algorithm is inspired by the foraging behaviour of the honey bees colony. 

These algorithms have been applied to many applications and optimisation problems. 
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Previously unsolved old problems can be insightfully investigated using algorithms 

inspired from honey bee behaviour (Olague and Puente, 2006). Using the principles of honey 

bees colony, the difficult combinatorial optimisation problems such as protein tertiary 

structure prediction can be solved. In this study, we ask whether honey bees colony inspired 

conformational search algorithms, which is based on the foraging behaviour of the honey 

bees colony and process of reproduction behaviour, can be used to find the lowest free 

energy conformation of proteins. 

 

1.2  Justification for using SI Algorithms to Solve the PSP Problem 
 

 The justifications for using the SI algorithms to solve the PSP problem are:- 

 

1) SI algorithms are adapted and being successfully applied to optimisation 

problems in a variety of fields that involve combinatorial complexity (Denby 

and Le Hégarat-Mascle, 2003). 

2) Collective behaviour can speed up the search in combinatorial optimisation 

problems (Dorigo et al., 1996; Haynes, 1997). 

3) SI algorithms have attracted researchers working on bioinformatics problems 

over the world (Das et al., 2008). They play a role in the bioinformatics task, i.e. 

the PSP (Das et al., 2008). 

 

1.3 Motivation  

Through the knowledge of the protein tertiary structure, much valuable information can 

be revealed. This information is essential in helping scientists get a better understanding of the 

protein functionality and the understanding of many diseases that occur as a result of protein 

mis-folding (Greenwood and Shin, 2002; Schlick, 2002). With this in mind scientists can 

design new drugs that interact with targeted proteins and modify their functions (Chen et al., 

1994), and design new drugs that can cure diseases (Greenwood and Shin, 2002; Schlick, 
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2002; Yun-Ling and Lan, 2006). From a practical point of view, the sequence structure gap is 

the main factor motivating the need for predictions of protein structure (Mala, 2008). 

 

As the conformational search problem is computationally expensive, parallelisation of 

the sequential algorithms is needed to enhance their performance.  

 

1.4 Objectives  

The main aim of this research is to enhance the protein tertiary structure prediction 

problem using a spectrum of SI algorithms. In particular, the present study focuses on the 

adaptation of algorithms inspired by the honey bees colony to search the protein 

conformational search space for the lowest free energy conformation. Since searching the 

protein conformational search space is computationally expensive, there is potential that the 

adapted algorithms be parallelised. As such, the study focuses on the following specific 

objectives. 

 

1) To enhance the protein conformational search by adapting the concepts of marriage 

in honey bees colony (MBO algorithm).  

2) To enhance the protein conformational search by adapting the concepts of the 

foraging behaviour of honey bees colony (ABC algorithm). 

3)   To incorporate parallel techniques into the protein conformational search algorithms 

to speed up the protein conformational search. 

 

1.5 Scope of the Study 

This study focuses on using computational PSP methods in solving the protein tertiary 

structure prediction problem, that is, using the ab initio method, in particular, in the protein 

conformational search problem. The representation of the protein conformation is the torsion 



9 

 

angles of the main chain and the side chain of the amino acids. The size of the proteins, 

which used in this study, is ranged from 5 to 20 amino acids. 

 

1.6 Main Contributions 

This study adapts honey bees colony based algorithms to solve the PSP problem. 

The novel contribution of this research is the use of honey bees colony based algorithms and 

torsion angles representation with secondary structure information to determine protein 

tertiary structure. This study makes the following contributions: 

1. Refines the generic MBO algorithm and introduces three new modifications to 

its structure. 

2. Adapts the refined MBO algorithm to solve the protein conformational search 

problem as the first applications of the MBO algorithm for this problem. 

3. Parallelises the MBO algorithm as the first attempt to parallelise the MBO 

algorithm and applies it to solve the protein conformational search problem. 

4. Introduces two new modifications to the ABC algorithm and adapts it to solve 

the protein conformational search problem. 

5. Parallelises the ABC algorithm and applies it to solve the protein conformational 

search problem. 

 

1.7 Thesis Organisation 

The body of this thesis consists of eight chapters. The organisation of the rest 

chapters is as follows: 

 

Chapter 2: 

This chapter gives a background about the protein and an overview of computational 

PSP methods. It also gives an overview on SI and honey bees colony. The MBO and ABC 

algorithms are also presented. 
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Chapter 3:  

This chapter reviews the protein conformational search algorithms. It also reviews 

the parallel protein conformational search algorithms and the applications and modifications 

of MBO and ABC algorithms. 

 

Chapter 4: 

This chapter provides information on the research framework. It contains information 

on the data pre-processing and the datasets used in the research and the methodology 

employed for the different parts of the work.  

 

Chapter 5:  

This chapter introduces the refined MBO algorithm and the proposed three 

modifications. It describes the adaptation of the refined MBO and modified MBO algorithms 

to solve the protein conformational search problem. The major components of the algorithms 

are described and the experimental results and evaluations are presented.  

  

Chapter 6: 

This chapter presents the adaptation of ABC algorithm to solve the protein 

conformational search problem. It explains the two new proposed modifications to the ABC 

algorithm and the adaptation of the modified ABC algorithm to solve the protein 

conformational search problem.  

 

Chapter 7: 

This chapter presents the parallel design and implementations of the MBO and ABC 

algorithms and discusses their results. 

 

Chapter 8: 

 In this chapter, the study closes with a summary of the results and some concluding 

remarks. Suggestions for future work are also presented. 
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CHAPTER TWO 

BACKGROUND 

 

2.1 Introduction 

PSP problem is one of the most difficult problems faced by researchers today. PSP is 

one of the most compelling challenges for scientists in Bioinformatics. It is still one of the 

fundamental unsolved problems in Bioinformatics and computational structural biology and 

in many other research areas (Das et al., 2008). So far, there is no radical solution available 

to this problem. The main difficulty of this problem is centred in finding a correct way to 

calculate the protein energy as well as exploring the large conformational search space for 

the lowest free energy protein conformation. A wide variety of computational methods has 

been developed to predict the protein structure. 

 

This chapter starts by giving a background about the protein in section 2.2 and an 

overview of computational PSP methods in section 2.3. An overview on Swarm Intelligence 

is given in section 2.4, and honey bees colony are described in section 2.5. Sections 2.6 and 

2.7 provide an overview on the MBO and ABC algorithms. A summary of the chapter is 

given in section 2.8. 

 

2.2 Protein Background 

 
Proteins are the main building blocks and machineries for all living organisms. They 

play important roles in the activities inside the cells of the living organisms. Inside the 

human body, there are thousands of protein types. Proteins are the key components of the 

human body. They build up the cellular components and mediate biological and metabolic 

processes. Each cell of the human body contains a number of proteins that play various 
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essential biological functions such as the enzymatic activity of the cell, attacking diseases, 

transporting and sending biological signal transmissions. These functions are fundamental to 

the life through which the human body performs its functions properly.  

 

The protein is formed inside the cell when the Deoxyribonucleic acid (DNA) 

transcribes the encoded genes into messenger Ribonucleic acid (mRNA) which is translated 

by the ribosome into a sequence of amino acids that compose the protein. This is known as 

the central dogma of molecular biology which is shown in Figure 2.1. 

  

 Proteins are polymers of connected amino acids whose composition is encoded in 

genes. These amino acids are the basic building blocks of the protein. There are twenty 

amino acid types in nature. Each of them is denoted by a different letter (or three letters) as 

shown in Table 2.1. Proteins differ only by the sequential order and the number of amino 

acids. The length of the protein molecule can vary from a few to many thousands of amino 

acids.  

 

 

 

Figure 2.1: The central dogma of molecular biology (Bergeron 2003) 
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Table 2.1: The twenty amino acids 

 

Name 1-Letter  3-Letter  
Alanine A Ala 
Arginine R Arg 

Asparagine N Asn 
Aspartic D Asp 
Cysteine C Cys 
Glutamic E Glu 
Glutamine Q Gln 

Glycine G Gly 
Histidine H His 
Isoleucine I Ile 
Leucine L Leu 
Lysine K Lys 

Methionine M Met 
Phenylalanine F Phe 

Proline P Pro 
Serine S Ser 

Threonine T Thr 
Tryptophan W Trp 

Tyrosine Y Tyr 
Valine V Val 

 

Each amino acid consists of two parts: a main chain or backbone and a side chain or 

R chain. The main chain is the same in all the amino acid types. The differences are in the 

side chain which determines the chemical properties of the amino acid. The main chain 

contains a central carbon (Cα) which is bonded with an amino group (--NH2), a hydrogen 

atom (H) and a carboxylic acid group (-COOH). The side chain is attached to the central 

carbon which is denoted by (R) as shown in Figure 2.2. There are 20 different types of side 

chains in nature. Some are simple, made of only one atom and some are complicated 

containing many atoms. 
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Amino acids are connected to each other by a peptide bond. The peptide bond is formed 

between two amino acids when the carboxyl group of the first amino acid interacts with the 

amino group of the second amino acid. A water molecule is released due to this interaction 

as shown in Figure 2.3. 

Figure 2.  2 : Amino acid 

Source:  http://www.mcat45.com/content/protein 
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Proteins can be delineated through four different hierarchical levels as shown in 

Figure 2.4. These are as follows:- 

 

Primary structure: is the chain of amino acids sequence.  

Secondary structure: is formed due to the interactions between the atoms of the main chain 

which results in local structures such as α-helix and β-sheet.  

Tertiary structure: is the three dimensional arrangement of the atoms of the amino acids as 

the secondary structural elements are packed together due to polarity and the interactions 

between the side chains. 

Quaternary structure: a protein which consists of several protein subunits (domains) held 

together. 

 

Figure 2.3: Peptide bond 

Source: http://www.mcat45.com/content/protein. 
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Figure 2.4: The four protein structure levels 

Adapted from https://peggleston-bioreview.wikispaces.com/Life+Molecules?f=print 

 

2.3 Computational Protein Structure Prediction Methods 

Computational PSP methods are classified into three classes based on the sequence 

similarity to the target sequence and the utilisation of protein information available in 

structure databases (Bonneau and Baker, 2001; Yi-Yuan et al., 2005; Zhang 2002b). These 

classes are: 

 

a) Homology Modelling, 

b) Fold Recognition and 

c) Ab initio. 

 

Tertiary structure 

Primary structure  

Secondary structure 

Quaternary structure 
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Homology Modelling and Fold Recognition use sequence similarity in the prediction 

processes but the ab initio method does not. Computational methods also can be grouped into 

two groups: “non-optimisation” or knowledge-based methods (Homology Modelling and 

Fold Recognition) and “optimisation methods” (ab initio). 

 

2.3.1 Homology Modelling 

Homology Modelling (HM) also known as Comparative Modelling (CM) is the 

easiest, most reliable, and the most successful computational protein tertiary structure 

prediction method (Augen, 2004; Jones, 2004; Pedersen, 1999; Zhang, 2002a). HM is based 

on the observations of the structure experimental data which indicate that the protein 

sequence determines the protein structure and that the similarity in the protein sequence 

imposes the similarity in the protein structure (Zhang, 2002b). This similarity could be 

interpreted as the new proteins which evolve progressively by adding, deleting or changing 

the location of the amino acids while retaining the structure and function of the protein 

during this process (Zhang, 2002a).  

 

Figure 2.5 depicts the HM processes. HM methods do not have to care of the folding 

mechanics of a protein. They build a model of tertiary structure based on the identifiable 

sequence association between the target protein and another protein or proteins of known 

structure. The prediction starts by searching for suitable structure templates for the target 

protein sequence. This is performed by comparing the sequence of the target protein with the 

sequences of proteins of known structures in the structure databases. The sequence of the 

target protein is then aligned to the structural templates. The protein backbone is built from 

the alignment, the loops are added and the side-chains are placed. Finally, the model is 

further refined.  
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In order to have successful and accurate structure prediction using HM, the target 

protein should have a clear evolutionary relationship to at least another protein with known 

structure which is already stored in the structure databases (Bergeron, 2002; Skolnick and 

Kolinski, 2001; Skolnick et al., 2006; Zhang, 2008). In other words, HM is limited to predict 

the structure of protein families with at least one known structure. HM cannot help in 

understanding how and why a protein folds into a specific structure (Lee et al., 2009). This is 

because understanding the effects of different forces that play important roles in the 

formation of secondary and tertiary structure cannot be obtained by using HM (Pillardy et 

al., 2001; Volker et al., 1999). 

 

The quality of the prediction using HM depends on the degree of similarity between 

the target protein and the proteins in the structure databases (Floudas, 2007; Pillardy et al., 

2001). The higher the similarity is, the higher the prediction quality  (Shortle, 1999). The 

sequence alignment is the bottleneck of the HM (Schonbrun et al., 2002). Achieving a good 

Figure 2.5: Homology Modelling 

http://koehllab.genomecenter.ucdavis.edu/teaching/ecs129/09 
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quality alignment plays an important role in the success of the HM (Schonbrun et al., 2002) 

and in the accuracy of the predicted structure (Shortle, 1999; Zhang, 2002b). 

 

2.3.2 Fold Recognition or Threading  

In cases where the HM methods fail to find similar protein sequences to the target 

protein sequence, then the Fold Recognition (FR) or threading methods can take its place to 

predict the protein structure based on the similarity between the sequence of the target 

protein and the structure of known protein folds.  

 

FR methods are based on the fact that the number of protein folds in nature is 

limited, and that the structure of the target protein should be similar to one or some of these 

folds (Lotan, 2004). When the target protein is structurally similar to some known protein 

folds, these proteins are said to be remote homologous. FR tries to identify the remote 

homologue from the known protein folds. FR chooses the fittest fold to the target sequence 

by aligning the target sequence with the known protein structure folds (sequence-structure 

alignment) from a set of alternatives according to some energy function (Pedersen, 1999). 

Figure 2.6 gives an overview of FR. 



20 

 

 

 

Similar to HM, the sequence similarity plays an important role in the quality of the 

prediction of the FR methods. FR methods fail to predict the precise fold when the similarity 

of the sequence is low. For that, new folds cannot be predicted because the prediction is 

based on already known folds (Ginalski et al., 2005). FR is limited by the high 

computational cost of the energy functions that are used to determine the correct fold 

(Zhang, 2002a). Moreover, FR does not provide a general understanding of the role of 

particular interactions in the formation of protein structure and the mechanisms of protein 

folding (Pillardy et al., 2001). Finally, according to Zhang (2008) the progress and 

development in the FR methods have reached a steady state. 

Proteins sequence 

 
Fig. 2.6: Fold Recognition 

http://biology.polytechnique.fr/proteinsathome/documentation2.php. 

 

Known protein folds 
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2.3.3  Ab Initio 

Generally, both HM and FR methods fail to predict the protein structure when the 

similarity between the sequence of the protein and sequences/known folds of known 

structures is low or cannot be detected. In this case, ab initio provides a valuable complement 

to these methods because it can be applied more generally to predict the structure of any 

protein sequence (Floudas et al., 2006; Ye, 2007).  

 

The word “ab initio” or “de novo” means “from the first principles” or “from the 

beginning”. Ab initio PSP methods try to predict the protein tertiary structure from the amino 

acids‟ sequence using physical principles. They try to fold the protein from a random 

conformation to the native conformation i.e. the tertiary structure (Skolnick and Kolinski, 

2001). Ab initio methods are based on the Anfinsen thermodynamic hypothesis (Anfinsen, 

1973). Anfinsen hypothesis is the most widely accepted and used hypothesis in PSP (Ngan et 

al., 2008). It explains the process of protein folding and it was formulated in a Nobel Prize 

winning experiment. This experiment revealed that the protein amino acids have all the 

necessary information of the forces that fold the protein into its native conformation, which 

is the conformation with the lowest free energy (Chan and Dill, 1993). Therefore, the natural 

conformation of the protein in the real world corresponds to the free energy minimal 

conformation. 

 

Based on Anfinsen thermodynamic hypothesis the PSP problem is formulated as a 

combinatorial minimisation optimisation problem (Bortolussi et al., 2005; Crivelli and Head-

Gordon, 2004; Garduno-Juarez et al., 2003; Morales et al., 2000; Ogura et al., 2003; Yun-

Ling and Lan, 2006).  Basically, ab initio protein tertiary structure prediction methods 

perform a conformational search guided by an energy function (Floudas et al., 2006; Lee et 

al., 2009). The aim is to search the protein conformational search space to find the lowest 

free energy conformation. In order to achieve that, three main components of the ab initio 

method must be considered (Bonneau and Baker, 2001; Hardin et al., 2002; Huang et al., 
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2000; Jones, 2000; Lee et al., 2009; Osguthorpe, 2000; Pedersen, 1999; Zhang, 2002b). 

These components are: 

(1) A proper protein representation.  

(2) An energy function compatible with the protein conformation representation is 

used to calculate the conformation energy. 

(3) A conformational search algorithm which is utilised to search the conformation 

search space to find the lowest free energy conformation.  

 

Since the PSP problem is formulated as an optimisation problem, optimisation is one 

of the promising approaches to solve this problem (Hoek, 1994). A wide range of 

optimisation methods have been developed to tackle this problem. Optimisation methods 

represent the conformation of a protein as a set of parameters. These parameters form the 

protein conformational search space. The protein conformational search space consists of all 

possible conformations of the protein. The prediction of the protein tertiary structure using 

ab initio methods is performed by searching the protein conformational search space to 

locate the global minimum energy conformation. This is accomplished by generating many 

conformations by making changes to the parameters. The generated conformations are 

evaluated by employing the energy function. The search is performed iteratively and the 

conformation corresponding to the global minimum is finally chosen to be the structure of 

the protein (Jones, 2000; Pillardy et al., 2001).  

 

Protein tertiary structure prediction using ab initio methods is the “holy grail” of the 

PSP field (Helles, 2008; Jones, 2000). Ab initio PSP remains a difficult challenge today 

(Ngan et al., 2008). Developing an accurate ab initio PSP method is one of the top ten 

challenges in bioinformatics (Meidanis, 2003) and a major goal of theoretical molecular 

biology (Friesner and Gunn, 1996). It is a true computational challenge to predict the protein 

tertiary structure using only the protein sequence information. It is the most complicated 

prediction approach (Feldman, 2003). According to Yang (2008) predicting the structure of 
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protein with larger than 150 amino acids using ab initio methods is a non-trivial task and 

considered a challenge due to a lack of accuracy yield by energy functions and large 

conformational search space (Chivian et al., 2003) which includes multiple local minimum 

solutions. Because of these complexities, it is generally believed that the prediction of the 

protein tertiary structure from first principles is impossible (Okamoto, 2000). On the 

contrary, other researchers are of the opinion that the problem can be optimally solved 

(Pillardy et al., 2001). 

 

Ab initio methods are not limited to predicting the structures of proteins which 

belong to protein families that have known structures. However, ab initio methods are 

computationally expensive and provide low to moderate accuracy. Regardless of the 

accuracy of the ab initio methods, these methods are useful since the predicted structure with 

errors could be used to predict some aspects of the protein function (Sanchez et al., 2000). 

 

Ab initio methods can be classified into (i) knowledge–based ab initio and (ii) 

classical ab initio (Forman, 2001) or Simulation methods (Zhang, 2002a). Knowledge-based 

methods use constraints and rules which are inferred from the data of known structures. 

Simulation methods, however, do not use databases and predict the structure based on 

physical principles. Their accuracy is low and the success is limited to small proteins (less 

than 100 amino acids) (Lee et al., 2009). The following subsections describe the three ab 

initio components. 

 

Table 2.2 summaries the advantages and disadvantages of the computational PSP 

approaches. As the focus of this study is on ab initio PSP methods, in the following 

subsections, the three main components of the ab initio PSP are described in details. 
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Table 2.2: The Advantages and disadvantages of the computational PSP approaches 

 
Approach Advantages Disadvantages 

Homology Modelling  Most accurate. 
 Cannot predict structure 

of new proteins. 

Fold Recognition 
 Prediction is done based on 

a limited number of protein 

folds. 

 Cannot predict structure 

of  new proteins. 

 Computationally 

expensive. 

Ab initio 
 Able to predict the 

structure of any protein. 

 Low to moderate 

accuracy. 

 Computationally 

expensive. 

 

 

2.3.3(a)  Protein Representation 

Many of the real world problems are considered as optimisation problems. Usually, 

when attempting to solve these problems using computational methods, an obvious 

representation of the problem and their control variables are required. It is important that this 

representation should cover possible solutions, and at the same time, it should not cover 

more details since this increases the search space and in consequence the run time of the 

optimisation algorithm (Matthias, 1998). 

 

In order to predict the protein tertiary structure starting from its amino acid sequence 

and to be able to understand the nature and process of the formation of the protein structure 

using computational methods (Kolinski and Skolnick, 2004), it is essential and very 

important to determine an appropriate protein model or representation. Theoretical protein 

models or representations describe and summarise the information of the structure in the real 

world to the required level of details (Pedersen, 1999). 

 

Protein must be clearly represented as much as possible. So, protein representation 

should have enough information to make the explanation of computational PSP experiments 

feasible and as unambiguous as possible (Kolinski and Skolnick, 2004; Skolnick and 
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Kolinski, 2001). The protein representation is important because it determines the size of the 

search space. The protein representation plays an important role in determining the 

computation time required to calculate the energy of the protein. In addition, they should 

enable the generation of a sufficient number of conformations to be searched (Osguthorpe, 

2000) and  should also cover every possible conformation (Matthias, 1998).  

 

There is a wide variety of protein representations in different levels of details. They 

can be classified based on two points of view: the number of particles which represent the 

protein structure or the level of detail (all-atoms, united atoms, virtual atoms with one, two 

or at least two atoms per residue) and  the type of the phase space to be searched continues 

(off-lattice) or discrete (lattice) (Kolinski and Skolnick, 2004; Osguthorpe, 2000). 

 

There is an essential trade-off between the completeness of a protein representation 

and its intricacy. More complete protein structure representations introduce more 

conformational degrees of freedom, making them more complex thereby increasing the size 

of the protein conformational search space (Depristo, 2004; Kolinski and Skolnick, 2004). 

On the other hand, reduced or simplified protein representations try to simplify the PSP 

problem by reducing the complexity of the protein representation. This can be achieved by 

reducing the number of degrees of freedom available to the amino acid (Volker et al., 1999). 

  

 Reduced protein representations are very important tools in PSP (Kolinski and 

Skolnick, 2004). They represent the geometry of the peptide bond and the various secondary 

structure elements but treat side chain and intermolecular force in an approximate manner 

(Levitt and Warshel, 1975). However, according to Bonneau and Baker (2001), the 

differentiation of the accurate native conformation from the similar conformations is one the 

most difficult tasks that researchers face. This is due to the insensitivity of the energy 

function of the reduced model (Bonneau and Baker, 2001).  
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