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DEDAHAN RADIASI KEPADA PESAKIT DAN KARDIOLOGIS DALAM 

PROSEDUR INTERVENSI KARDIOLOGI 

 

ABSTRAK 
 
 

Prosedur intervensi kardiologi diketahui memberi radiasi dos yang tinggi 

kepada pesakit dan kardiologis kerana memerlukan masa fluroskopi yang panjang. 

Tujuan Kajian ini adalah untuk menentukan radiasi dos yang diterima oleh pesakit 

dan kardiologis semasa menjalankan prosedur intervensi kardiologi, seperti koronari 

angiografi (CA), koronari angioplasti (PTCA) dan CA+PTCA. 

Pengukuran radiasi dos pesakit dan kardiologis telah dijalankan di bahagian 

kardilogi, Pusat Perubatan Gleneagles (GMC, Pulau Pinang, Malaysia) dengan 

menggunakan Filem Kodak EDR2 dan filem Gafchromic XR-RV2. Pergantungan 

pada tanaga, pergantungan pada dos, kadar dos dan lengkungan kalibrasi  dos bagi 

kedua-dua filem juga telah diuji.  

Semasa mengukur dos kulit maxima pesakit (MESD), filem Kodak EDR2 

dan filem Gafchromic XR-RV2 diletakkan di atas meja dan di bawah badan pesakit 

dengan kedudukan X-ray tiub yang terletak di bawah meja. Nilai dos 35.38 – 2442.7 

mGy untuk MESD dan 10.9 – 344.4 Gy cm2 untuk pendaraban dos dengan luas 

(DAP) telah didapati. Korelasi yang baik telah didapati (R2 = 0.8212) dan (R2 = 

0.7344) diantara MESD dan DAP dalam prosedur CA dan CA+PTCA masing-

masing, tetapi DAP didapati kurang baik untuk menjadikan penunjuk MESD pada 

prosedur PTCA. Nilai dos kulit maxima pesakit di dalam peyelidikan ini 2443 mGy 

adalah di bawah nilai permulaan dos 3000 mGy untuk kecederaan kulit yang 

dicadangkan oleh Pentadbiran Makanan dan Ubat-ubatan (Amerika Syarikat).  



 xv 

Dos efektif untuk kardiologis telah diukur dengan menggunakan dosimeter 

pendar kilau haba (TLD) yang terletak di pemegang TLD dan lekat di atas kelenjar 

tiroid kolar baju kardiologis sepanjang dua bulan berturutan. TLD mengukur dos 10 

mm dibawah kulit [Hp(10)]. Jangkaan untuk Hp(10), min efektif dos per DAP nilai 

index (E/DAP), min efektif dos per prosedur (E/procedure) dan maxima efektif dos 

tahunan telah didapati.  

Nilai jangkaan dos tahunan diantara keempat-empat kardiologis ialah 0.11 – 

0.44 mSv dan adalah dibawah had yang dicadang oleh International Commission on 

Radiological Protection (ICRP).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xvi 

RADIATION EXPOSURE TO PATIENTS AND CARDIOLOGISTS IN 

INTERVENTIONAL CARDIOLOGY PROCEDURES 

 
 

ABSTRACT 
 
 

Interventional cardiology (IC) procedures are known to give high radiation 

doses to patients and cardiologists as they involve long fluoroscopy time. The 

objective of the study was to determine the dose received by patients and 

cardiologists during interventional cardiology procedures, such as coronary 

angiography (CA), percutaneous transluminal coronary angioplasty (PTCA) and 

CA+PTCA.  

Patients and cardiologists dose measurements were carried out at the 

cardiology department at the Gleneagles Medical Centre (GMC, Penang, Malaysia) 

by using Kodak EDR2 films and Gafchromic XR-RV2 films. The energy 

dependence, dose dependence, dose rate and dose calibration curve of both the films 

were also studied.  

The films were placed on the table underneath the patient for an under table tube 

position when measuring patients’ maximum entrance skin doses (MESD). Values of 

35.38 – 2442.7 mGy for MESD and 10.9 – 344.4 Gy cm2 for dose area product (DAP) 

were found. A good correlation was found (R
2
= 0.8212) and (R

2
= 0.7344) between the 

MESD and DAP values for the CA and CA+PTCA procedures respectively, but DAP 

was found to be poor indicator of MESD for PTCA procedure. The highest MESD value 

of 2443 mGy in this study was below the typical threshold dose value of 3000mGy for 

skin injury recommended by the Food and Drug Administration (FDA, United States).  

 

 



 xvii 

Effective dose for four cardiologists were measured using 

Thermoluminescent dosimeters (TLDs) placed inside the TLD holder and then 

placed at the cardiologist over the thyroid collar for 2 consecutive months. The TLD 

measured the dose at 10mm below the skin [Hp(10)]. The estimation of Hp(10), mean 

effective dose per DAP index value (E/DAP), mean effective dose value per 

procedure (E/procedure) and annual maximum effective dose were obtained.  

The estimated annual dose among four cardiologists of 0.11 – 0.44 mSv is 

well below the dose limits proposed by the International Commission on 

Radiological Protection (ICRP 60). 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Interventional Cardiology  

Nowadays, the number of angiographic studies has increased dramatically. 

Interventional cardiology procedures are known to give high radiation doses to 

patients and cardiologists as the procedures involve long fluoroscopy times. The 

extensive use of X-rays in this technique results in an increase risk of deterministic 

and stochastic effects. Deterministic effect occurs when the dose threshold is 

exceeded whereas in stochastic effect there is no threshold dose.  Stochastic risk is 

commonly based on the effective dose that relates the risk from a non-uniform 

exposure in the body to the risk from an equivalent whole body exposure. In contrast, 

deterministic risk is closely related to entrance skin dose. Increase in the dose above 

the threshold dose will lead to greater damage (Wanger et al., 1994). Therefore the 

maximum entrance skin dose (MESD) may be used to assess proximity to threshold 

levels.  

 Physicians performing interventional cardiology (IC) and interventional 

radiology (IR) procedures should be aware of the potential for serious radiation 

induced skin injury caused by long periods of fluoroscopy which occur with some of 

these procedures. Reports of patient skin injuries in interventional radiology (IR) and 

in interventional cardiology (IC) are fully documented in the scientific literature 

(Martin, 1995; Vano et al., 1998; Wanger et al., 1998, 1999, 2000; Koenig et al, 

2001). So, it is necessary to optimize the imaging equipment used during 

angiography with any dose saving techniques. It is important to measure the radiation 

doses received by the personnel involved in the cardiology procedure (Vano, 2003).  
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Due to growing concern about high radiation dose in complex procedures, the 

Food and Drug Administration (FDA, 1994), the World Health Organization (WHO, 

1997), the International Commission on Radiology (ICRP, 2000) and the 

International Atomic Energy Agency (IAEA, 1996) have published documents on 

how to avoid deterministic effect of skin injuries in cardiology procedures. 

Interventional cardiology (IC) refers to diagnostic and non-surgical procedures 

of the heart. Normally IC involves four procedures: coronary angiography (CA), 

percutaneous transluminal cornonary angioplasty (PTCA), CA and PTCA, and 

ablation. CA, PTCA, CA and PTCA procedures were selected for this study. 

During interventional CA procedure, a patient is injected with a contrast media 

through a catheter and the blood vessels in the anatomical region of interest are then 

highlighted on a sequence of radio graphical images to detect the narrowing of 

coronary arteries (Radiology info, 2008). As such, it may be performed if the patient 

is suffering from symptoms of unstable angina, chest pain or unexplained heart 

failure.  

In interventional percutaneous transluminal coronary angioplasty procedure 

(PTCA), cardiologists use catheters to get inside blood vessels for diagnostic tests as 

well as to restore damaged vessels. The small incisions which are performed on 

patients allow a shorter recovery time compared to surgical procedures. During 

angioplasty procedure, imaging techniques are used to guide a balloon-tipped 

catheter, a long, thin plastic tube, into an artery and advance it to where the vessel is 

narrow or blocked. The balloon is then inflated to open the vessel, deflated and 

removed. In some cases, a small wire mesh tube called a stent is permanently placed 

in the newly opened artery or vein to help it remain open (Radiology info, 2008). 
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CA and PTCA procedures refer to damaged vessels of the patient will be treating 

immediately after the diagnose test of patient vessels performed to improve blood 

flow in the vessels or arteries. The PTCA procedure proceeds immediately after the 

CA procedure is also call ac hoc PTCA. Interventional cardiology procedures have a 

tremendous advantage over invasive surgical procedures and are increasingly 

common during the past few years. Figure 1.1 shows how does a contrast material is 

injected through a catheter into one of the arteries. The contrast material is viewable 

using x-ray equipment and the catheter used in angiography is a long plastic tube.  

 
 

Figure 1.1: Contrast material is injected through a catheter into one of the arteries. 

Source: http://nmh.adam.com/content.aspx?productId=108&pid=42&gid=000179 

 

 

 

 

 

 



 4 

1.2  Research objectives 

1. To calibrate the EDR2 and Gafchromic XR-RV2 films using the 

Toshiba X-ray Radiography System and the Interventional Unit in 

terms of energy dependence, dose dependence and dose rate. The 

dose calibration curves were also obtained for both the films.  

 

2. To measure cardiologists’ and patients’ radiation doses during 

coronary interventional procedures and to compare the patients’ 

absorbed doses from dose-area product (DAP) and film entrance 

skin dose.  

 

3. To deduce the dose levels and the references dose levels and 

compare these values with the limited current values that may be 

available in Malaysia. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

 

2.1 Literature review 

2.1.1 Introduction 

Radiation exposure in interventional cardiology procedures are influenced by 

many factors which normally relate to the cardiologists and the performance of the 

equipment used. The cardiologists’ skill and experience, screening time, dose rate of 

the image intensifier, image quality, the patient size, the number of radiographs taken, 

the methodology, the type of interventional approach (e.g. femoral or radial 

technique) (Clark et al., 2000; Padovani et al., 2001; Kuon et al., 2003; Larrazet et 

al., 2003) and the complexity of the procedure would affect the radiation dose (Balter 

et al., 2008).  

To determine and measure radiation exposure to a patient and a cardiologist, 

some dosimetric techniques have been investigated by previous authors (Betsou et al., 

1998; Geise et al., 1999; Fletcer et al., 2002; Balter, 2006; Doğan et al., 2008). 

Research on patient dose evaluations in interventional cardiology mainly focuses on 

the measurement or the estimation of two basic parameters. They are dose area 

product (DAP) and the maximum entrance skin dose (MESD) over the most 

irradiated patient area.  Dose measurement can be obtained either directly or 

indirectly. Indirect dose measurement is a measure of dose at a defined location 

either using a physical dose measurement at a convenient point (IEC, 2000) or by 

performing calculations based on equipment operating parameters and system 

geometry. In this investigation, direct measurement techniques were applied. There 



 6 

are several dosimeters for direct measurements. All of these methods have problems 

associated with them and can be summarized as follows: 

Themoluminescent dosimeters (TLD) can be used as a direct measurement of 

skin dose. However, the location of maximum skin exposure is very hard to predict. 

Hence many TLD chips are required to be placed over the expected location. 

Therefore, TLDs are difficult to use in routine applications for skin dose 

measurement. However, TLDs are suitable as personal dosimeters to evaluate 

cardiologist dose (Doğan et al., 2008). 

Silicon diode dosimeters have characteristics that make them very attractive 

as dosimeters (Attix, 1991). They have several unique properties that are not 

available with other types of detectors. They have higher sensitivity, instantaneous 

response, and their small size and ruggedness offer special advantages over 

ionization chambers. Silicon diodes can be used directly, but they have to be 

calibrated against with ionization chamber measurements. Their major limitation 

includes energy dependence in photon beams, directional dependence, thermal 

effects and radiation-induced damage. In the use of diodes for real time estimation of 

maximum entrance skin dose it has to be positioned at maximum irradiated dose 

which is not easy. They have the disadvantage that may overlay the human anatomy.  

Slow radiographic film also can be used for directly mapping skin doses to 

determine the probability of a possible injury (Vano et al., 1997; Guibelalde et al., 

2003), but it cannot be used in areas where radiation is too high as the film then 

begins to saturate. It is also sensitive to room light and requires wet chemical 

processing. It cannot give online information. Although a new type of slow 

radiographic film such as Gafchcromic XR-RV2 can overcome the problem faced by 

silver halide film, but the cost of XR-RV2 is too high (Canne et al., 2006). 
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Dose area product (DAP) is the most convenient method for the indirect 

measurement of patient dose especially for dynamic procedures such as 

interventional procedures where the X-ray irradiation area to the patient and 

projection direction of the X-ray beam are continuously varying. DAP is very 

convenient for estimating stochastic risk for patient (Le, 1992; McParland, 1998). 

But, DAP cannot be used to evaluate deterministic risk because DAP cannot provide 

information about the most irradiated area in the patient skin. The measurement is an 

estimated dose over wide variability of the irradiated area.  

 

2.1.2 Patient dose measurement 

There are many different physical quantities that can be used to express the 

amount of radiation delivered to a patient body. Radiation quantities used in this 

investigation for measurement patient dose were dose area product (DAP), also 

called as a kerma area product (KAP) and maximum entrance skin dose (MESD).  

KERMA is the acronym for Kinetic Energy Released in the Medium or 

sometimes Kinetic Energy Released per unit Mass. Air kerma is the amount of 

concentration of radiation energy (in joule, J) actually deposited or absorbed in a unit 

(kg) mass of air. In order words, air kerma is recognized as absorbed dose in air. 

Ionization chamber can be calibrated to measure air kerma as well as exposure. The 

unit of kerma is the joule per kilogram, J/kg, and its special name is gray (Gy). 

Kerma can be quoted for any special material at a point in free space or in any 

absorbing medium (Multimedia electronic resource, 2001)    

Dose area product (DAP) or kerma area product (KAP), is a multiplication of 

the dose and the area exposed, often expressed in Gy cm2. DAP is independent of the  
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source-skin-distance. Modern x-ray systems fitted with a DAP meter are able to 

record accumulated DAP during an examination (Leeds X-ray Imaging Research, 

2008)    

The entrance skin dose (ESD) is the absorbed dose in the skin at a given 

location or at the surface of entry of radiation for patient undergoing interventional 

procedure; it includes the backscatter radiation from the patient. ESD can be 

measured directly with a dosimeter such as using a slow film. Maximum entrance 

skin dose (MESD) refers to maximum absorbed dose received by a portion of the 

exposed patient’s skin (Multimedia electronic resource, 2001).  

Patient dosimetry in interventional procedures is extremely complex due to 

irradiation of different anatomical areas with X-ray beams changing to various 

projections, diverse field sizes, radiation qualities, focus to film distances and focus 

to image intensifier distances. For all these reasons, patient entrance dose is difficult 

to derive and has a high uncertainty (Poletti, 1997). Therefore, a lot of research has 

been done by previous authors to develop and investigate a suitable method to 

evaluate radiation dose (Vano et al., 1997; Betsou et al., 1998; Balter, 2006; Doğan 

et al., 2008).  

Vano et al (1995) studied DAP values in several interventional radiology 

procedures including CA and PTCA to evaluate patients’ stochastic risks. They 

obtained a mean value of 87.50 Gy cm2 for PTCA procedures and 66.51 Gy cm2 for 

CA procedures. DAP is an easily available estimate but information about 

radiological risk cannot be deduced directly from DAP value, as the latter depends 

on the body area irradiated.  
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Vano et al. (2001) also reported no general correlation was observed between 

the dose area product (DAP) and the maximum skin dose. Cumulative skin dose 

estimates throughout the procedure should be discarded as a realistic method for 

assessing deterministic risk in cardiology procedures. Maximum skin dose from 107  

– 711 mGy and dose area product of 27.3 to 370.6 Gy cm2 were found in their study. 

Betsou et al ( 1998) reported mean DAP values of 30.40 Gy cm2 and 37.60 

Gy cm2 for CA and PTCA respectively while Van de Putee et al (2000) reported 

60.60 Gy cm2 and 115.30 Gy cm2 for CA and PTCA respectively. According to Van 

de Putee et al, the mean DAP gives only approximately indication of the skin dose 

and they suggested direct measurement is the best way to obtain information about 

the skin dose. Tsapaki et al (2003) reported, mean DAP values of 47.30 Gy cm2 and 

68 Gy cm2 for CA and PTCA respectively.   

Efstathopoulos et al (2004) found that 66% of the total DAP is caused by 

cineangiography which occupies only 13% of the total exposure time. Thus, small 

changes in digital cineangiography time may result in a considerable reduction of 

patient radiation dose. However a poor correlation was found between DAP values 

and total exposure time (fluoroscopy time and cineangiography time).  

 Morrish et al obtained DAP values from 28.0–39.3 Gy cm2 for CA and from 

61.3–92.8 Gy cm2 for PTCA. They found that a strong relationship between patient 

weight and tube potential; the DAP had also a good correlation with the tube 

potential.  

To measure the patient entrance skin dose, Guibelalde et al. (2003) used 

Kodak EDR2 film in interventional cardiology to map the patient skin doses and to 

estimate maximum skin dose up to 1400 mGy. Film dependence on kVp is negligible 
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and the processor condition has to be standardized to obtain skin dose estimation. 

The linear range for accurate dose measurement is from 50 mGy to 500 mGy.  

Morrell et al. (2006) reported all skin doses were well below 1 Gy in 

coronary angiography but 23% of patients received skin doses of 1 Gy or more 

during PTCA procedures. DAP was not an adequate indicator of patient skin dose 

and Kodak EDR2 film saturates at 1 Gy. Canne et al. (2006) successfully used 

Gafchromic XR Type R films to evaluate maximum skin dose values within a range 

of 200 – 1700 mGy. The uncertainty on maximum skin dose values was estimated to 

be within 10 – 15 %. 

 

2.1.3 Cardiologists effective dose measurement  

The impact of radiation to the cardiologist does not occur in such a 

predictable manner as skin damage. So called stochastic effects are caused by 

incorrectly repaired radiation damage to cells, and the effects such as cancer, can 

develop years after exposure. The dose absorbed by a cardiologist can be converted 

to a measure of the biological damage caused by applying a radiation weighting 

factor (WR), depending upon the nature of the radiation, for fluoroscopy X-ray, the 

radiation weighting factor is 1. This is referred to as the equivalent dose.  

Effective dose takes into account the specific organs and area of the body that 

are exposed. Different areas and organs have different tissue weighting factor (WT), 

the absorbed dose to each organ is summed with tissue weighting factors to provide 

an effective dose. If more than one area has been exposed, then the total body 

effective dose is just the sum of the effective doses of each exposed area (Leeds X-

ray Imaging Research, 2008). Estimating effective dose for cardiologist in 

interventional procedure involves complex calculations because many variables such 
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as distance, beam orientation, use of protective screens and apron and complexities 

in procedures affect the cardiologist dose exposure (Williams, 1997). 

Thermoluminescent dosimetry is the most suitable for measurements carried 

out on personal dosimeters. Several methods to measure the effective dose have been 

developed by using either one or two dosimeters (Vano et al., 1998; Delichas et al., 

2003; Morrish et al., 2008; Gerritjan et al., 2008).  

Niklason et al. (1994) proposed a method to estimate effective dose from the 

radiation dose by using two dosimeters. The method was independent of the lead 

apron’s thickness but takes into account the thyroid shield. Correction factors were 

applied to an over-apron collar dose and an under-apron dose to estimate the 

effective dose. Correction factors were suggested for two cases, both with and 

without a thyroid shield. Effective dose may be estimated by the under-apron dose 

plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-

collar dose if a thyroid shield is worn. He has reported that the annual radiation dose 

above the lead apron for 28 radiologists averaged 48 mSv and under the lead apron 

dose average 0.88 mSv.  

Niklason method was supported by Padovani et al. (2001) and Mateya et al. 

(1997). Padovani et al. compared two simple algorithms (the Rosenstein-Webster and 

Niklason algorithms) with the other experimental data. Both the algorithms 

combined the readings of two dosimeters, one worn under the protective apron and 

the other on the neck outside the apron, to estimate effective dose for a range of 

imaging conditions typically found in medical fluoroscopy.  Padovani et al. 

concluded that the Niklason algorithm's estimates were in better agreement with the 

experimental assessments of effective dose. Padovani derived the algorithm from 

Niklason, to estimate the effective dose by using a single dosimeter.  
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Mateya et al. reported that the effective dose estimation without the lead 

apron was within 0.2 to 20% of the expected values. However, the effective dose 

based on personal monitors worn at the waist (underneath the apron) was 

underestimated while monitors placed at the neck (above the apron) was significantly 

overestimated. Meteya et al. suggested that accurate estimation of effective dose 

from personal monitors under conditions of partial body exposures remained 

problematic and was likely to require the use of multiple monitors. 

Vano et al. (2006) reported occupational radiation dose of interventional 

cardiologists during a 15-year follow-up. The individual dose values in the range of 

100 – 300 mSv per month in 1989 was significantly reduced to 1.2 mSv per year in 

2004. Vano et al suggested the most effective method of reducing radiation risk was 

by training personnel in radiation protection and the proper use of radiation 

protection facilities, specially ceiling-suspended protective screens. 

 

2.2 Theory 

2.2.1 Film Dosimetry 

Photographic film is the oldest radiation-monitoring device worldwide mainly 

because of its simplicity and ease of use. When ionizing radiation of sufficient 

energy falls on a photographic film, some of the silver halide grains in the 

photographic emulsion interact with the incident radiation. After development, the 

silver halide grains reduce to metallic silver, which causes the blackening of the film. 

The degree of blackening of the film is measured by determining the optical 

density，OD of the film with a densitometer. This instrument consists of a light 

source, a tiny aperture through which the light is directed and a light detector to 
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measure the light intensity transmitted through the film. The optical density, OD, is 

defined as: 

OD = Log 10  ÷÷
ø

ö
çç
è

æ

tI
I 0

    (2.1) 

where I0 is the amount of light collected without film and It is the amount of light 

transmitted through the film (Khan, 2003). The optical density of the exposed film is 

quantitatively related to the magnitude of the exposure.  A densitometer gives a 

direct reading of optical density if it has been calibrated by a standard strip of film of 

known optical density.  

Radiographic film Kodak EDR2 and Gafchromic XR-RV2 are used to map 

skin dose and to measure patient dose during the interventional procedures. PTCA 

procedures have higher entrance skin doses than CA procedures, as the maximum 

skin dose of PTCA procedures can reach more than 2Gy. Kodak EDR2 which has a 

dose range 50mGy to 1400mGy cannot be used in PTCA measurements. Therefore, 

Kodak EDR2 is used for coronary angiogram (CA) procedures while Gafchromic 

XR-RV2 is used for PTCA procedures.  

 

2.2.2 Thermoluminescent Dosimeter 

2.2.2.1 Introduction 

Among the wide choice of solid state detectors that can be used for 

applications in radiotherapy, diagnostic radiology and radiation protection of the 

patient and physicians, thermoluminescent dosimeters (TLD) and diodes are 

currently the most used. Thermoluminescent (TL) materials are readily available 

commercially and do not require to be linked with a cable to the reading equipment 

for reading. They also have the advantage of providing very sensitive dosimeters 
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with small volumes and which when correctly chosen, are equivalent to the different 

human tissues (Attix, 1991). In this study, TLD, LiF:Ti,Mg (TLD 100) were used to 

measure the cardiologists’ effective dose and ion-chamber was used for the proposed 

calibration .   

 

2.2.2.2 TL materials and TL Process 

Thermoluminescent materials are non conducting crystalline solids 

(semiconductors or insulators). Many materials have the property of 

thermoluminescence but only a few possess all the other characteristics desirable in 

dosimeters. When such materials are exposed to ionizing radiation, much of the 

radiation energy is trapped in the crystal lattice rather than released immediately. 

Heating the materials can cause this trapped energy to be released as light.  The light 

emission phenomenon is called thermoluminescence (TL). Materials with this 

property are referred to as TL materials. The amount of the emitted light is a measure 

of the absorbed energy, TL materials can function as integrating dosimeters (Attix, 

1991; Claudio et al., 1998).  

Thermoluminescence is a two stage process: 

1. The radiation energy is absorbed and trapped in the TL material. 

2. The trapped energy is released in the form of light when the TL material is 

heated. 
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2.2.3 Fluoroscopy 

Fluoroscopy is an imaging technique commonly used by physicians to obtain 

real-time images of the internal structures of a patient through the use of a 

fluoroscope. Like normal X-rays, it delivers a dose of ionizing radiation to the patient 

and so must only be used when the benefits to the patient outweigh the risk of 

developing cancer due to the radiation. Modern fluoroscopes couple the screen to an 

X-ray image intensifier and CCD video camera allowing the images to be played and 

recorded on a monitor (University Virginia Health System, 2008).  

Fluoroscopy is used in many types of examination and procedures, such as 

barium X-rays, cardiac catheterization and placement of intravenous (IV) catheters 

(hollow tubes inserted into veins or arteries). In cardiac catheterization, fluoroscopy 

enables the physician to see the flow of blood through the coronary arteries in order 

to evaluate the presence of arterial blockages (University Virginia Health System, 

2008). 

Fluoroscopy and radiography share some of the same imaging chain 

components, but differences exist. The primary difference is that the radiation 

exposure rate is much lower for fluoroscopy compare with radiography. Fluoroscopy 

of an average-sized adult abdomen typically is normal performed at approximately 

45 mGy/min. For an abdominal radiograph, the entrance skin exposure to the patient 

is approximately 3 mGy with an exposure time of 200 msec for an exposure rate of 

900 mGy/min, which is 20 times higher than the rate for fluoroscopy. However, the 

total exposure for a radiograph is much lower than a typical fluoroscopic 

examination because the fluoroscopic exposure time is extended. To avoid radiation 

injury to the patient, low fluoroscopic exposure rates are required. 
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CHAPTER 3 

GENERAL INSTRUMENTATION 

 

3.1 Equipments and materials 

General instruments and materials used in this study are shown in table 3.1. 

Table 3.1 describes and summarizes the location and the main function of the 

equipments and materials used for this study. This study had been done in the 

cardiology department, at the Gleneagles Medical Centre (GMC) for patients and 

cardiologists doses measurement and the medical physics laboratory, Universiti 

Sains Malaysia (USM) for calibration purpose.  

Table 3.1:  Location and main purpose of the equipments and materials used in this    
study 
Instruments and 
materials 

Location Purpose 

Kodak EDR2 film GMC & USM To act as a dosimeter 
To measure patients’ entrance skin 
dose in CA procedures 
 

Gafchromic® XR-
RV2 film 

GMC & USM To act as a dosimeter 
To measure patients entrance skin 
doses in PTCA and CA+PTCA 
procedures 
 

Medical film processor 
model SRX-101A 
 

USM To develop EDR2 film 

Perspex Phantom 
 

GMC & USM To simulate patients’ chest 

TLD LiF:Mg,Ti GMC & USM To measure cardiologists effective 
doses 
 

Harshaw TLD reader 
model 3500 
 

USM To heat and read TLDs 

Labotherm Program 
Controller S27 
Furnace 
 

USM To anneal TLDs 



 17 

PTW flat diagnostic 
ion chamber type 
77337 
 

USM A calibrated dosimeter 
To calibrate EDR2, XR-RV2 films 
and TLDs 
 
 

PTW UNIDOS 
Freiburg electrometer 
 

USM A calibrated dosimeter 
To measure and display the dose  
measured by the ion chamber 
 

Unfors Mult-O-Meter 
517L 

USM To calibrate PTW flat diagnostic ion 
chamber 

Philips Integris HM 
3000 Interventional 
Unit 

GMC X-ray machine for interventional 
procedures 
To irradiate EDR2 and XR-RV2 films 
during interventional procedures 
 

Toshiba KXO-15R X-
Ray Radiography 
system 

USM X-ray machine used to calibrate films 
and TLDs 

 
 

3.2 Film Dosimetry 

3.2.1 EDR2 (Extended Dose Range) film 

Kodak EDR2 film (Eastman Kodak, Rochester, New York) is a low sensitive 

film and is available in 25.4 cm × 30.5 cm sheets. It belongs to the line of Kodak 

Ready-Pack products. Kodak EDR2 films are pre-wrapped in light proof paper and 

are ready to use with an exposure range from 25 cGy to 400 cGy. The film is a 

convenient medium for calibration and monitoring exposure, relatively insensitive to 

X-ray energies and the response extends to high exposures.  

Exact dose responses of EDR2 are a function of facility dependent factors 

such as processing conditions (processing time, processing temperature, processing 

equipment, processing chemistry), the density sampling (digitizer equipment and 

calibration) and exposure monitoring equipment.  
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Normally, long and complex interventional procedures require wider dose 

measurement ranges. EDR2 film with a limited dose range is good to estimate skin 

dose distributions in coronary angiography (CA), where the maximum skin dose is 

normally below 1Gy. Guibelalde et al. (2003) successfully used it to measure 

maximum skin dose up to 1400 mGy undergoing CA and PTCA procedures.  

 

3.2.2 Gafchromic® XR-RV2 

Recently, ISP (International Specialty Products, Wayne, NJ) have introduced 

a new reflective Gafchromic® film XR-RV2 (Gafchromic Radiochromic Dosimetry, 

2008) to replace Gafchromic® XR-R. XR-RV2 film has a higher sensitive dose 

range than XR-R film. Gafchromic® XR-RV2 shown in figure 3.1, has been 

developed to specifically measure absorbed dose at both low and high energy 

photons where the energies are between 30 keV and 30MeV.  

Gafchromic® XR-RV2 is the most suitable dosimeter to map patient skin 

dose in complex interventional procedures. It is used to measure a dynamic dose 

range from 1cGy to 50Gy. Some features of XR-RV2 are dose-rate independent; 

dose fractionation independence and orientation independence. It is self developing 

and needs no post-exposure processing, tissue equivalent and can be handled in room 

light (Sharifeh et al., 2005) (Gafchromic Radiochromic Dosimetry, 2008).   

Gafchromic® XR-RV2 has several advantages compared with the silver 

halide films; the films are not sensitive to visible light and need no wet chemical 

processing. Gafchromic films can give immediate visualization information of 

patient exposure which enables cardiologists to treat latent skin injuries and to avoid 

future exposure in that region. 
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The active layer of Gafchromic® XR-RV2 is approximately 17 μm. It is 

sandwiched between two sheets of polyester; one transparent film substrate with 

thickness 97 μm and one opaque, white film substrate with thickness 97 μm.  

The transparent polyester substrate used in the film contains a yellow dye. 

The yellow dye enhances the visual contrast of the chromatic changes when the film 

is exposed to radiation. The yellow dye also protects the active layer against 

exposure by UV and blue light and thereby enable the film to be even more tolerant 

of being handled in the light. The opacity of the white substrate in XR-RV2 is 

provided by a baryta filling. It employs the same active component as XR-R film but 

includes a proprietary high Z material thus making it more sensitive than XR-R film 

(Gafchromic Radiochromic Dosimetry, 2008). This thickness of layer may vary from 

batch-to-batch and hence a new calibration should be done when a different lot 

number or batch is used. 

GAFCHROMIC® XR-RV2 radiochromic dosimetry films may be measured 

with reflective type densitometers, film scanners or spectrophotometers. The analysis 

of flatbed scanner method was reported in literature (Thomas et al., 2003; Delle et al., 

2006). When the active component in the films is exposed to radiation, it reacts to 

form a blue colored polymer with an absorption maximum at about 635nm 

(Gafchromic Radiochromic Dosimetry, 2008; Cheung et al., 2005). Therefore, the 

response of GAFCHROMIC® XR-RV2 dosimetry media is enhanced by 

measurement with a red light. 
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Figure 3.1: Configuration of GAFCHROMIC® XR-RV2 dosimetry film 

Source: http://online1.ispcorp.com/_layouts/Gafchromic/index.html 

 

3.3 Film Development 

Automatic medical film processor manufactured by Konica Minolta, model 

SRX-101A shows in figure 3.2 was used to develop EDR2 films. The Konica 

Minolta SRX 101A processor produces high quality radiographs with easy operation; 

the developer and fixer used are in accordance with developing EDR2 films.  

The processor was allowed to warm up about 30 minutes before developing 

the film. In order to assure the highest quality images, it is necessary to keep the rack 

rollers and guides clean. One to two cleaning films were inserted every time before 

the EDR2 films were processed.  

 

Figure 3.2: Automatic medical film processor model SRX-101A 
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3.4 Perspex Phantom 

Normally, water is the most preferred material because it approximates the 

radiation absorption and scattering properties of muscle and other soft tissues. Water 

is also universally available with reproducible radiation properties. 

Although water is the preferred phantom material, there are situations where 

using a solid plastic phantom may be more convenient. It may provide better 

positional accuracy, particularly for low-energy electron beams and for low-energy 

kilo voltage x-ray beams; it is easy to set-up and the chamber can be placed at 

different depths reproducibly. An ideal solid water phantom should be water-

equivalent, but in reality there is no material that meets this requirement. Therefore 

the practical phantoms are, at best, approximations to water.  

The materials for water phantom that have been widely used are acrylic 

(PMMA, known as Perspex or Lucite) and polystyrene. In this study, PMMA 

Perspex solid phantom with the dimension 30cm × 30cm was used. The phantom 

thickness is 1 cm, total 10 slabs which is 10cm thick of Perspex were used to provide 

sufficient backscatter during calibration. 

 

3.5 TLD 3500 reader 

The instrument used to heat a TLD phosphor and to measure the resulting 

thermoluminescence light emitted is called a TLD reader. The TLD phosphor to be 

measured is placed in the heater pan at room temperature and heated while the 

emission is measured with a photomultiplier. 

TLD readers can be simple or complex. With some, each TLD must be 

handled and read individually. Other systems can automatically read hundreds of 

badges and transfer data into the appropriate files of a computer.  
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Harshaw TLD reader, model 3500 shown in Figure 3.3, was used in this 

study. The system consisted of two major components, TLD Reader and the 

Windows Radiation Evaluation and Management System (WinREMS) software 

resident on a personal computer, which was connected to the Reader via a serial 

communication port. The software controls the operation of the Reader which has a 

user interface, storage and the application software.  

The basic external component of the instrument included a sample drawer for 

a single element TLD dosimeter and a drawer for neutral density filters. The rear 

panel housed a voltage-selectable power input module with fuse access, an 

instrument reset button, a fitting for nitrogen gas tubing, a communication port and a 

recessed pressure sensor adjusting screw.  

The instrument used contact heating with a closed loop feedback system that 

produced linearly ramped temperature accurate to within ±1˚C to 400 ˚C. The time 

Temperature Profile (TTP) is user defined in three segments: Preheat, Acquire, and 

Anneal, each with independent times and temperature.  

For low dose measurement, the instrument provided nitrogen to flow around 

the planchet. This eliminated the effects of non-radiation-induced TL. Nitrogen is 

also routed through the Photomultiplier Tube ( PMT ) chamber to eliminate moisture 

caused by condensation. 

 

Figure 3.3: Harshaw TLD reader model 3500 
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3.6 Labotherm Program Controller S27 Furnace 

In this study, Labotherm Program Controller S27 Furnace was used as a 

furnace to anneal the TLDs. The Program controller S27 is an electronic temperature 

program controller that consisted of 8 memories location for one program each, with 

maximum of 4 ramps and 4 holding times. The additional features of the machine 

enabled the user to program the acoustic signal, sequences of higher and lower 

temperature and to be performed with specified start-up time. 

 

3.7 PTW System 

3.7.1 PTW flat diagnostic ion chamber 

A 1 cc flat chamber type 77337 (PTW Freiburg), Figure 3.4, was used 

throughout the project as a tertiary standard dosemeter. This ionization chamber was 

used with diagnostic dosemeters for radiography and fluoroscopy measurement 

during installation and maintenance of diagnostic X-ray installation.  

The ionization chamber was used together with the Freiburg diagnostic 

electrometer (PTW Freiburg) and it had a calibration traceable to the national 

standard of the German national laboratory, PTB, Braunschweig. Refer to Appendix 

B for technical specification and calibration certificate.  

The window material for the ionization chamber was graphite coated and the 

window thickness is 50 μm. The active volume of the chamber is 1.0 cm3 and the 

area density is 7.1 mg/cm2. The maximum voltage is 100 V. Finally, the response of 

the chamber is approximately 4 × 10-8 C / Gy.  
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Figure 3.4: PTW flat diagnostic ion chamber type 77337 

 

3.7.2 PTW UNIDOS Freiburg electrometer 

The PTW UNIDOS Freiburg electrometer ( PTW, Freiburg) shown in Figure 

3.5, was used together with the PTW diagnostic ion chamber. The UNIDOS provided 

several measurements including measurement of current and charge, radiological 

quantities, photon equivalent dose, air kerma and absorbed dose to water.  

The warm-up period for the UNIDOS was 15 minutes and the chamber 

voltage was from 0 to ± 400 V. The UNIODS provided the two measuring modes, 

“dose” mode for measuring X-ray diagnostics and “dose rate” mode for measuring 

radiotherapy. For X-ray diagnostics mode, the UNIDOS displayed in Gy unit. Using 

manually entered correction factor for pressure and temperature, commonly used 

dosimetric quantities could be calculated and displayed. 
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