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TINDAK BALAS SINTETIK 4-HYDROXYBENZOIK ASID KE ATAS 

SALURAN KALIUM Kv1.4 YANG DI EKSPRESIKAN KE DALAM OOSIT 

Xenopus laevis  

 

ABSTRAK  

Kajian yang mendalam sedang dijalankan ke atas produk semulajadi terutamanya 

pokok-pokok herba yang telah lama dipraktikkan di dalam perubatan tradisional 

seperti Cina dan Ayurveda untuk merawat penyakit saraf seperti sawan dan sakit 

kepala. 4-hydroxybenzoik asid adalah fenol tidak flavonoid yang boleh ditemui dari 

pucuk Dendrocalamus asper (buluh), buah-buahan (strawberi dan epal) dan bunga-

bungaan. Di dalam kajian ini, tindak balas 4-hydroxybenzoik asid diuji ke atas 

saluran kalium Kv1.4 yang telah diekspresikan ke dalam oosit Xenopus laevis 

sebagai model sistem. Kv1.4 adalah saluran kalium dari keluarga Shaker yang pantas 

dinyahaktifkan melalui dua mekanisma; jenis N yang pantas dan jenis C yang 

perlahan. Ianya memainkan peranan penting dalam repolarisasi, hyperpolarisasi dan 

mengembalikan potensi membran melalui pengawalan pergerakan K+ menyeberangi 

luar membran sel. cRNA Kv1.4 yang telah disediakan dalam kerja molecular 

disuntik ke dalam oosit sihat yang telah diambil melalui pembedahan X.laevis di 

bahagian abdomen bawah. Arus dihasilkan daripada K ions dikesan oleh voltan 

apitan dua-elektrod-mikro (TEVC), dengan potensi kawalan dari -80mV dan 

peningkatan 20mV sehingga +80mV. Bacaaan dari rawatan oleh 0.1% DMSO, 

konsentrasi 4-Hba dan penghalang saluran kalium diambil pada +60mV. Analisis 

dijalankan menggunakan perisian pClamp diikuti t-test pelajar. Nisbah amplitud 



xi 
 

akhir / puncak adalah merupakan indeks aktiviti saluran Kv1.4 dengan n ≥ 6 

(bilangan oosit yang diuiji). Nisbah yang rendah menunjukkan potensi membran 

yang rendah (repolarisasi) dan penambahan nyahaktif saluran Kv1.4. Pengurangan 

nisbah dari 5 konsentrasi yang berbeza (1µM, 10µM, 100µM, 1mM dan 2.5mM) 

dibandingkan dengan 0.1% DMSO sebagai kawalan. Kesemua konsentrasi 

menunjukkan keputusan signifikasi statistik dengan p < 0.05 kecuali untuk 100µM. 

Peningkatan arus konsentrasi yang dinormalisasikan melalui perbandingan dengan 

penghalang saluran kalium (TEA dan 4-AP) menunjukkan signifikasi statistik bagi 

kesemua konsentrasi. Kajian ini juga menunjukkan tempoh masa yang diambil oleh 

setiap konsentrasi untuk mempengaruhi nyahaktiviti Kv1.4 didapati tidak 

memainkan apa-apa peranan penting. Kesimpulannya, 4-hydroxybenzoik asid 

dikenal pasti dapat menambah baik kesan nyahaktiviti Kv1.4 dalam mengurangkan 

atau merepolarisasikan potensi membran supaya ledakan saraf yang tidak normal 

dapat dihalang. Ini dapat dilihat melalui perbandingan dengan DMSO dan juga 

penghalang saluran kalium. IC50 didapati sedikit tinggi dari 10µM dan konsentrasi 

yang lebih tinggi (100µM, 1mM dan 2.5mM) menujukkan kesan sampingan toksik. 

Oleh itu, konsentrasi yang terbaik dari kajian ini adalah 10µM dengan curaman Hill 

(slope) 0.1799.     
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THE RESPONSE OF SYNTHETIC 4-HYDROXYBENZOIC ACID ON Kv1.4 

POTASSIUM CHANNEL SUBUNIT EXPRESSED IN Xenopus laevis 

OOCYTES  

 

ABSTRACT  

Extensive researches are being made on natural products especially herbs and plants 

that have long been practiced in traditional medicines such as Chinese and 

Ayurvedic that have been used to treat neuronal disorders such as convulsive, 

dizziness and headaches. 4-hydroxybenzoic acid is a non-flavonoid phenol found 

abundantly in Dendrocalamus asper shoots (bamboo), fruits (strawberries and 

apples) and flowers. In this study, the response of synthetic 4-hydroxybenzoic acid 

was tested on Kv1.4 potassium channel that was expressed in Xenopus laevis oocytes 

as the model system. Kv1.4 is a rapidly inactivating Shaker-related member of the 

voltage-gated potassium channels with two inactivation mechanisms; the fast N-type 

and slow C-type. It plays vital roles in repolarization, hyperpolarization and 

signaling the restoration of resting membrane potential through the regulation of the 

movement of K+ across the cellular membrane. cRNA of Kv1.4 prepared during 

molecular work was injected into viable oocytes that was extracted through surgery 

at the lower abdomen of X.laevis. The current produced from K ions were detected 

by the two-microelectrode voltage clamp (TEVC) method, holding potential starting 

from -80mV with 20mV step-up until +80mV. Readings of treatments with 0.1% 

DMSO, 4-Hba concentrations and K channel blockers were taken at +60mV. The 

ratio of tail / peak amplitude is the index of the activity of the Kv1.4 channels with n 
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≥ 6 (number of oocytes tested). Lower ratio signifies lower membrane potential and 

enhancement of Kv1.4 channel inactivation.  The decreases of the ratios of 5 

different concentrations (1µM, 10µM, 100µM, 1mM and 2.5mM) were compared 

with 0.1% DMSO as the control. All concentration showed statistically significant 

results with p < 0.05 except for 100µM. The normalized current of the 4-hba 

concentrations were compared with potassium channel blockers (TEA and 4-AP) and 

all groups showed statistically significant results. This study also showed that time 

taken for each concentration to affect Kv1.4 does not play any significant roles. In 

conclusion, 4-hydroxybenzoic acid was found to be able to enhance the inactivation 

of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing 

can be inhibited which can be seen through comparison of DMSO and potassium 

channel blockers. With IC50 slightly higher than 10µM, increasing concentrations 

(100µM, 1mM and 2.5mM) had shown to exhibit toxicity effects. The best 

concentration from this study is 10µM with Hill slope of 0.1799.  
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CHAPTER 1 

 

INTRODUCTION  

 

1.1 Background of Study  

Following the regulation of membrane potential by the movements of 

inhibitory ions such as K+ and Cl- and excitatory ions such as Na+ and Ca2+, 

depolarization or more positive membrane potential could results in neuronal 

firing whereas repolarization and hyperpolarization or more negative 

membrane potential contribute to neuronal inhibition (Purves, et al. 2012). 

Any irregularities or disruption to this mechanism would interfere with the 

normal neuron action and inactivation which could result in many neuronal 

disorders.  

 

Based on previous studies and researches, potassium ions have been 

identified as the most diverse ion channels that can be found in almost every 

part of the human body encoded by more than 70 genes classified into 12 

subfamilies (Kv1 – 12) (D’Adamo, et al. 2013). Nevertheless, limited studies 

have been done on A-type transient current producing with double 

inactivation mechanisms (N-type and C-type), Kv1.4 channel (Jefferys, 

J.G.R. 2010; Chen H. et al. 2013; Oliva, et al. 2005). Kv1.4 channel can be 

found abundantly in Schaffer collateral axons and part of the molecular layer 
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of the dentate gyrus. It also formed heteromerization with Kv1.1 and Kvβ1.1 

subunits in the mossy fiber boutons that synapse with the pyramidal neurons 

in CA3. Mutations from this heteromeric formation can contribute to the 

episodic ataxia type 1 (EA1) seizure (D’Adamo, et al. 2013).  

 

Kv1.4 is responsible in regulating the amplitude of back-propagating action 

potentials of the neuron through its double inactivation mechanisms which 

could result in non-conductance of K+ and repolarization (Rasmusson, et al. 

1998). Therefore, the enhancement Kv1.4 inactivation will help to overcome 

the abnormal high frequency of action potential which underlies many 

neuronal disorders such as convulsive, fits, epilepsy and even stroke (Wulff, 

et al. 2009). The double inactivations are hypothesized to occur through the 

permeation and allosteric mechanisms which are influenced by many factors 

such as pH, oxidation and extracellular [K] (Claydon, et al. 2004; Xu, et al. 

2001).  

 

In this study, the efficacy of synthetic 4-Hydroxybenzoic acid (4-Hba) in 

promoting and enhancing potassium Kv1.4 channel inactivation was tested by 

expressing the channel via cRNA injection in the model system of Xenopus 

laevis oocytes. 4-Hba is a non-flavonoid phenolic compound (Khadem and 

Marles, 2010) that can be found in many natural products such as 

Dendrocalamus asper and Veronica peregrina L. (Kim, et al. 2014). 

Extraction of Dendrocalamus asper shoots by our collaborator Universiti 

Malaysia Terengganu (UMT), found abundance of 4-hydroxybenzaldehyde. 
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However, as the compound is in excess of valence electrons for bonding, it 

can be easily oxidized to 4-hydroxybenzoic acid (Dobhal, et al. 2010) which 

is a more stable structure. In addition, based on previous study by Bilal 

(2015), preliminary screening of the effects of 4-hba, palmitic acid and lauric 

acid found that 4-hba can enhance the inhibitory current of GABA (A) 

channels which were expressed in X.laevis oocytes unlike palmitic and lauric 

acids. Nevertheless, the effect of this compound on Kv1.4 channels which 

also helps to lower the membrane potential has never been tested, making it 

as the objective of this study.  

 

Every cell functions and regulates itself by the movement of ions, proteins 

and molecules across the cellular membrane that separates the intracellular 

from the extracellular environment. These movements of ions with charges 

across a barrier lead to electrical potential difference or membrane potential 

that can be detected by electrodes. This is called the electrophysiology study 

techniques (Bierwirtz and Schwarz, 2014). Two-electrode voltage clamp 

(TEVC) technique used in this experiment allows the measurement of ions 

flow across the oocytes membrane by injecting two microelectrodes, one for 

detecting the voltage and another for current injection. The voltage is 

clamped at -80mV and any current and membrane potential changes read by 

the electrodes are compared to calculate the differences which can vary due 

to additional Kv1.4 expression of cRNA in the oocytes.  
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The extraction of Xenopus laevis oocytes were carried out by surgery. 

Incision less than 1cm were made on the lower abdomen of the anesthetized 

selected frog and all the lobes of oocytes were pulled out using forceps. A 

normal female frog usually has more than 5 lobes of oocytes that produce 

hundreds of them. The incised muscle and skin were sutured again so that the 

frog can live for another oocytes extraction on the opposite side of the 

abdomen if necessary (at least 3 months apart). These oocytes will be 

individually screened and selected for bigger oocytes with clear separation of 

yellowish ‘vegetal’ and dark brown ‘animal’ poles (Sigel and Minier, 2005). 

Then, the oocytes were incubated for a night before cRNA injection of the 

Kv1.4 using the micropipette can be done.  

 

The voltage reading of the injected oocytes under 0.1% DMSO was 

compared with five different concentrations of 4-Hba (1µM, 10µM, 100µM, 

1mM and 2.5mM). At least 6 different viable oocytes were used for each 

concentration. The solutions were controlled by the perfusion system whilst 

the oocytes were impaled by the double electrodes. The voltage is hold at -

80mV, with step-up of 20mV until +80mV. Recordings were taken at +60mV 

which is the potential at which potassium channel is activated. The oocytes 

are bathed in the neutral ND96 (1 min) before 0.1% DMSO (1 min) followed 

by 4-Hba (5 mins) and finally the potassium channel blockers (12.5 mM TEA 

and 5mM 4-AP) (5 mins). In total, there were 12 voltage readings taken for 

every voltage-clamping of each oocytes.  
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In conclusion, this study investigates the response of 4-Hba effect on Kv1.4 

potassium channels inactivations which are responsible in controlling the 

repolarization and restoring the resting membrane potential of the neurons. 

These channels are expressed in Xenopus laevis oocytes that act as model 

system so that the electrophysiological changes elicited can be read by the 

two-electrode voltage clamp technique. Lowering of membrane potential 

shows enhancement action of 4-Hba on the inactivation mechanisms of 

Kv1.4, resulting in prolonged repolarization which is the targeted action to 

overcome abnormal continuous neuronal firing.  

 

1.2 Rationale of Study  

In general, this study aims to investigate the response of synthetic 4-Hba 

which can be found abundantly in natural products. This is to find additional 

and new potential compounds that are able to enhance repolarization of 

membrane potential as a targeted mechanism for abnormal continuous 

neuronal firing (convulsant, fits) treatment through natural resources such as 

herbs and plants that are less toxic and with lower prolong effects. Although 

there are many previous studies investigating potential compounds that can 

enhance repolarization, there have been none on 4-Hba based on our findings 

and researches. In addition, there are also fewer studies on the inactivation 

response of Kv1.4 channels against natural compound and its importance in 

affecting membrane potential and inhibiting the neuronal excitability. If this 

research provides positive answers, it could offer additional discovery on the 
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mechanism and importance of Kv1.4 channel along with proving the 

practicality of natural compounds in treating disorders and deregulations that 

cannot be answered by drugs.  

 

 

1.3 EXPERIMENT GROUP  

There are 4 channels filled with different solutions for every recording. The 

first and second channels are constant but the third and fourth channels are 

manipulated depending on the concentrations of 4-hydroxybenzoic acid 

groups.  

1) First channel = 50ml ND96 solution 

2) Second channel = 50µl DMSO + 50ml ND96 

3) Third channel = experimental group (50µl of 1µM or 10µM or 100µM or 

1mM or 2.5mM 4-hydroxybenzoic acid + 50ml ND96) 

4) Fourth channel = negative control group (50µl of 1µM or 10µM or 

100µM or 1mM or 2.5mM 4-hydroxybenzoic acid + 50µl 12.5mM TEA + 

50µl 5mM 4-AP + 50ml ND96) 

 

1.4 DATA COLLECTION  

The current obtained from recordings were saved in the computer and 

analyzed with p-Clamp10 (Axon Instruments, USA) software and statistically 

tested with student t-test with SigmaPlot12 (Systat Inc, USA) software and 

Prism6 (GraphPad Software, USA).  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 The Regulation of Membrane Potential  

Movement of ions across cellular membrane creates potential difference or 

electrical gradient due to difference of ionic positive and negative charges 

between extracellular and intracellular membrane. This current-like potential 

difference is called membrane potential and it can be detected using 

microelectrodes reading. There are basically four important and influential ions 

that can regulate the membrane potential. These are the Na+, K+, Cl- and Ca2+. 

However, the firing, inhibition and resting of the neurons are majorly affected 

by the influx and efflux of Na+ and K+.  

 

The membrane is at resting phase (-70 to - 60 mV) at (0) based on Fig. 2.1. 

During this phase, Na-K ATPase pump channel is opened allowing the influx 

of 2 potassium ions and efflux of 3 sodium ions across the cellular membrane. 

Therefore, the concentration of K+ is higher inside and Na+ is higher outside. 

According to Purves, et al. (2012), intracellular membrane potential is also 

aided by protein anions and is balanced by extracellular Cl- concentration. 

When a signal or stimulus is received, it causes the opening of sodium 

channels, allowing the ions to enter the cellular membrane and causing the 
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membrane potential to be more positive resulting in the depolarization phase 

(1). Action potential is triggered when the depolarization overshoots and 

reaches the peak (2 and 3). 

 

Overshooting also triggered the activation of potassium ion channels, which 

will allow the efflux of K+ across cellular membrane into the extracellular 

environment. However, when the membrane potential reaches the peak (3), it 

signals the closing of the sodium ion channels. Continuous efflux of K+ and 

blocking of Na+ influx results in decreasing membrane potential (4) which will 

lead to repolarization. Repolarization is important in inhibiting the neuronal 

firing and initiating membrane permeability restoration. During this phase, the 

potassium ion channels start to become inactivated, causing the non-conduction 

of K+. Prolonged inactivation and delayed closing of the potassium ion channel 

eventually lead to undershooting where the membrane potential becomes too 

low. This is the hyperpolarization stage (5). Ultimately the potassium ion 

channel will close and the movement of K+ is blocked signaling for the 

restoration of resting membrane potential. In general, whilst Na+ is mainly 

responsible in bringing the intracellular membrane potential towards positivity 

(or increasing the potential), Cl- and K+ are of the opposite (lowering 

membrane potential) (Purves, et al. 2012).  
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Figure 2.1: The changes of the membrane potential (mV) due to the movement of the 
ions across cellular membrane. Where 0 = resting membrane potential, 1 = 
depolarization, 2 = overshooting, 3 = peak, 4 = repolarization and 5 = undershooting 
or hyperpolarization. From: ‘Neuronal Action Potential’, Physiology Web, Accessed 
6th June 2016 
http://www.physiologyweb.com/lecture_notes/neuronal_action_potential/neuronal_act
ion_potential.html 
 
 

The regulation of membrane potential and the ion channels are extremely 

important in sustaining normal functioning cells and physiological systems. 

Abnormal and irregular control of the membrane potential has been revealed to 

be the main cause of many disorders and diseases such as convulsive, epilepsy, 

dizziness, depression and even stroke (Wulff, et al. 2009). These disorders 

occur due to abnormalities and mutations of the ionic channels and are usually 

referred as ‘channelopathies’.  
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2.2  Voltage-Gated Potassium Channel 

Since the past decades, researches have been targeting ion channels as 

treatment for many diseases and clinical abnormalities (Camargos, et al. 2011). 

One of these channels is potassium channels which can be classified into 3 

structural families according to its amino acid sequence and pore-containing 

subunit; i) six transmembrane voltage-gated one-pore with S1 – S6 ii) two-

transmembrane one-pore inward rectifier K+ and iii) four transmembrane two-

pore (Shieh, et al. 2000). Figure 2.2 shows the structural difference between 

these 3 potassium channels.   

 

Figure 2.2: Representation of the 3 structural differences of K+ channels based on the 
amino acids and pore subunits arrangements. The 6 transmembrane voltage-gated one 
pore channel (A) is the most abundant K+ channels in the human body mostly found 
around active cells such as cardiac, skeletal and neurons. From: “Potassium Channels: 
Molecular Defects, Diseases and Therapeutic Opportunities” by Shieh, et al. (2000), 
Pharmacological Reviews, 52: 557 – 593.  
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Voltage dependant or voltage-gated potassium channels are vital in 

determining the resting membrane potential and membrane excitability of the 

neurons (Jugloff, et al. 2000). It also plays important roles in inhibiting action 

potential, potassium channel, neurotransmitter-mediated signaling, regulating 

Ca2+ homeostasis and cell survival (D’Adamo, et al. 2013).  

 

More than 40 voltage-gated potassium channels have been identified and 

classified into 12 sub-families so far (Kv1 – Kv12). Most of these channels are 

found in almost every cells of the human body encoded by more than 70 genes 

which makes voltage-gated potassium channels as the most diverse ion 

channels. Kv channels appear as either homomeric or heteromeric within 

groups Kv1 (delayed-rectifier and A-current), Kv2 (delayed rectifier), Kv3 

(high-voltage-activated, fast kinetics), Kv4 (somatodendritic A-current) and 

Kv7 (M-current). Kv1 – 4 was discovered in Drosophila and cloning 

identification of Kv1 Shaker (Sh) was followed by Kv2 Shab (Sb), Kv3 Shaw 

(Sw) and Kv4 Shal (Sl) (Judge and Bever, 2006). Figure 2.3 shows the subunits 

of the Kv family with its IUPAC names and structural component.  
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Figure 2.3: Structure of the 6 transmembrane of voltage-gated K+ channels and its 
subunits according to International Union of Pharmacology. From: “Neuronal and 
Cardiovascular Potassium Channels as Therapeutic Drug Targets: Promise and 
Pitfalls” by Humphries and Dart (2015), Journal of Biomolecular Screening, 1 – 19, 
DOI: 10.1177/1087057115601677.  

 

As mentioned by Shieh, et al. (2000), the ability of the channels to transport K+ 

across the cellular membrane is dependent on 3 factors i) permeation pathway 

which allows K+ to cross the cellular membrane ii) selectivity filter that 

recognize K+ and iii) gating mechanism that changes between open and closed 

state. Hence, even a small structural difference between the channels can 

influence the regulation of ionic movement and transport.  
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According to Ping Li et al. (2013), there are 6 transmembrane segments of 

voltage-gated potassium or Kv channels that are grouped into voltage-sensor 

domain or VSD (S1 – S4), a pore domain (S5 – P – S6) and a re-entrant P loop 

region (Chanda and Bezanilla, 2008). Pore domain or the selectivity filter is 

responsible in gating or opening and closing the channels. These changes will 

be detected by VSD in response to membrane potential changes or K+ 

permeability (Lee, J.H. et al. 2009). S4 is called the ‘voltage sensor’ which 

possesses positively charged arginine residues and is able to influence 

membrane voltage to exert forces on the gating of the pore (Mann, 2011).  

Thus, the opening of the pore is regulated by the movement of the voltage 

sensor by monitoring the ionic current flow (Rodriguez-Menchaca, et al. 2012). 

It has been reported in a few studies, X-ray structures of S1 – S4 voltage-

sensing domains interact with lipids when embedded in the membrane and this 

helps to reset the sensor to its activated state after depolarization (Long, S.B., 

et al. 2007; Jiang, Y. et al. 2003; Milescu, M. et al. 2009; Ramu, Y. et al. 2006 

and Xu, Y. et al. 2008). Abnormality within the regulation of activation and 

inactivation of voltage-gated potassium channel due to factors such as 

mutations could manifest into neuronal disorders.  

 

As shown in Figure 2.4, increased action potential frequency can theoretically 

be corrected by enhancing K channels so that the positive peak amplitudes can 

be lowered through efflux of K+. Prolonged depolarization or delayed 

repolarization phase causes higher membrane potential which can results in 

CNS hyperexcitability and also epilepsy. However, CNS depression and 
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cognition disorders could develop if the membrane potential is too low or 

prolonged repolarization occurs. This abnormality can be reduced by inhibiting 

the activation of K channels so that the efflux of K+ can be prevented and the 

membrane potential can be increased.  

 

Figure 2.4: The comparison of normal neuronal action potential with depression and 
epileptic brain waves. These abnormalities are reversed by the action of K channel 
inhibitors and activators which help to stabilize the membrane potential suited to the 
disorders. From “Theoretical Effects of Kv Channel Inhibitors and Activators on 
Pathologically Altered Neuronal Activity” byWulff et al., (2009), Nature Reviews 
Drug Discovery, 8, 982 – 1001, doi: 10.1038/nrd2983.  
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2.3  Kv1.4 Channel 

There are currently a total of 12 Kv families with different anatomical 

distribution and roles. Each family has its own subfamilies which follows the 

abbreviations Kvx.y for easier identifications (D’Adamo, et al. 2013). 

According to Gutman, et al. (2005), Kv1 family is mostly distributed around 

brain, heart, pancreas and kidney. Even though Kv1.2 is the most abundant 

Kv1 channels around brain structures and anatomy, Kv1.4 exhibits more 

significant roles in repolarization and hyperpolarization. Table 2.1 explains the 

details and anatomical importance of Kv1.4.  

Channel name Kv1.4 
Description Voltage-gated potassium channel, A-type, fast-inactivating 
Other names HuK (II), hPCN2, HK1, RCK4, RHK1, RK4, RK8, MK4 
Molecular 
information 

Human: 653aa, NM_002233, chr. 11p14.3-15.2, KCNA4, 
GeneID:3739, PMID: 2263489 
Mouse: 654aa, NM_021275, chr.2 

Associated subunits Kvβ, PSD95, synapse-associated protein 97 (SAP97), 
SAP90, α-actinin-2, KChaP, σ receptor 

Functional assays Voltage-clamp 
Current Kv1.4/Kv1.2 heteromultimers may underlie the presynaptic 

A-type K+ channel 
Conductance 5pS 
Ion selectivity K+ selective (50 times more selective for K+ than Na) 
Activation Voltage, Va = -22mV, -34mV, Ka = 5 
Inactivation N-type inactivation, Vh = -62 mV, τh = 47ms (0 mV) 
Activators CaMKII/calcineurin regulation through 

phosphorylation/dephosphorylation makes inactivation Ca2+ 
- dependent 

Gating inhibitors None 
Blockers  4-Aminopyridine (13µM), tetraethylammonium ( > 100mM), 

UK78282 (170 nM), riluzole (70µM), quinidine (10µM – 
1mM), nicardipine (0.8µM) 

Radioligands None 
Channel distribution Brain (olfactory bulb, corpus striatum > hippocampus, 

superior and inferior colliculus > cerebral cortex, midbrain 
basal ganglia > pons/medulla), lung-carcinoid, skeletal 
muscle, heart, pancreatic islet 

Physiological 
functions 

Neuronal afterhyperpolarization  

Mutations and KV1.4 expression increases in rat ventricular myocytes after 
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pathophysiology  myocardial infarction and induction of diabetes 
Pharmacological 
significance 

Not established 

Comments Can coassemble with other KV1 family members in 
heteromultimers but not with members of other KV families; 
intronless coding region; mouse KV1.4 mRNA contains an 
internal ribosome entry site in its 5’-noncoding region and 
may be translated by cap-independent mechanisms, 
mammalian Shaker-related family.  

 
Table 2.1: The nomenclature, molecular relationship and details of Kv1.4 channel as 
of 2005. From: Table 5 of ‘International Union of Pharmacology. LIII. Nomenclature 
and Molecular Relationships of Voltage-Gated Potassium Channels’ by Gutman, et al. 
(2005), Pharmacological Reviews, 57: 473 – 508. 

 

Current produced by potassium channel is the IA which allows action potential 

to reach dendrites (Jefferys, J.G.R. 2010). Generally there are two classes 

generated by Kv currents, the dominant sustained K-current (IK,V) and the fast 

inactivating transient A-current (IK,A) which is elicited by Kv1.4 (Chen, H. et 

al. 2013). It is estimated that the molecular weight of Kv1.4 is 73 211 and it 

shares similar membrane topology along with moderate amino acid sequences 

as Kv1.1. Its rapid inactivating characteristic influence the lowering of 

membrane potential after action potential and helps to halt the neuronal 

excitability faster compared to other channels (Figure 2.5). This channel also 

plays a crucial role in repolarization of cardiac myocytes along with Kv4.2 and 

Kv4.3 as the molecular bases (Rasmusson, et al. 1998).  
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Figure 2.5: Shaker-related family of Kv1 channels. The phylogenetic tree of the gene 
family with IUPHAR and HGNC names shown with localization of the chromomes. 
Currents produced by each Kv1 families showing comparison of the rapid inactivation 
rate of Kv1.4 with others. Currents amplitudes in µA. Adapted from Heinemann, et al. 
1996; Tian, et al. 2002; Finol-Urdaneta, et al. 2006. From: “Distinctive Role of Kv1.1 
Subunit in the Biology and Functions of Low Threshold K+ Channels with 
Implications for Neurological Disease” by Ovsepian, et al. (2016), Pharmacology and 
Therapeutics, 159, 93 – 101.  
 

Kv1.4 plays major roles in many physiological processes including the quantal 

release of neurotransmitters, neuronal excitation, cardiac action potential, 

muscle contraction, hormonal secretion, transporting electrolytes for epithelial, 

cell volume and cell proliferation in neuronal and non-neuronal cells (Lee, J.H. 

et al. 2009). Shaker K channels are structurally designed with two types of 

inactivation; the fast N-type and slow C-type inactivation mechanisms (Oliva, 

et al. 2005; Gonzales-Perez, et al. 2008).  
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The N-type inactivation is rapid and characterized by the NH2 terminal that 

blocks the current flow of the channel intracelullarly by the ‘ball’ linked to a 

‘chain’ domain structure as proposed by Armstrong and Bezanilla in 1972 

(Lee, J.H. et al. 2009). The exact molecular composition of the ball is roughly 

composed of 20 amino acids in the amino-terminal followed by 40 more 

residues which constitutes the chain (Cai, et al. 2007). The ball is made of 

hydrophobic residues and positive charges which is vital to push the ball 

towards the pore during depolarization thus, initiating inactivation. Binding of 

the ‘ball and chain’ to the pore is voltage insensitive and initiates occlusion of 

the permeation pathway (Figure 2.6A) and conformational changes (allosteric 

mechanism) (Figure 2.6B) (Bett and Rasmusson, 2004).  

 

The permeation pathway occurs by blocking of the pore by the ‘ball’ during N-

type inactivation and prevents the movement of K+ across the cellular 

membrane (Figure 2.6A). Hence, direct effects of the fast inactivation can be 

seen immediately. The exact mechanisms of conformational changes are the 

focus of many ongoing studies involving K channels. It occurs due to the 

coupling of N-type to C-type. Unlike the N-type, the molecular and structural 

basis of C-type is still debatable. Yet, it is stipulated to involve the selectivity 

filter, extracellular conformational changes and permeant ions and intracellular 

pore closure (Bett and Rasmusson, 2004), intracellular quinidine binding 

(Wang, et al. 2003), intracellular osmotic pressure (Jiang, et al. 2003), 

mutations on the extracellular face of the mouth of the pore and mutations on 

the intracellular side of the pore (Figure2.6B). The inactivation of N-type also 
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contributes to the development of C-type inactivation. Even though N and C –

types collaborate together during inactivation, the recovery from the slow C-

type inactivation governs the availability of the channel for initiation of the 

next action potential (Chen, H. et al. 2013).  

 

 

Figure 2.6: The inactivation mechanism of A-type K channels as hypothesized by two 
mechanism; the permeation and allosteric. A; the permeation mechanism allows the 
efflux of K+, increasing the [K]o and occupying the selectivity filter. N-type 
inactivation prevents the outflow of K+ decreasing [K]o resulting in collapse of the 
selectivity filter which develops the C-type inactivation. [Adapted from Baukrowitz 
and Yellen (1995)]. B; allosteric mechanism involves stabilization or immobilization 
conformation by binding of the N-terminal which is postulated to be associated with 
the S4 and S6 transmembrane domains and which helps to develop C-type 
inactivation. From: ‘Inactivation of Voltage-gated Cardiac K+ Channels’ by 
Rasmusson, et al. (1998). American Heart Association, Inc. 
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The activation, inactivation and closing of K+ channels are influenced and 

regulated by many factors. Activation of the channels allows conductance of 

K+ across the cellular membrane, whether inward or outwardly rectifying 

(depending on the type of K+ channels) and is mostly involved during 

subthreshold depolarization, whilst inactivation mostly occurs during 

depolarization and results in a state of opened channels but with no 

conductance of the K+. Inactivation contributes to repolarization and 

hyperpolarization which also help in channels recovery (Bahring, et al. 2012). 

Closed channels blocked the channel gating preventing total flow of K+ and 

initiates the restoration of resting membrane potential (Antz and Fakler, 1998).  

 

In 1966, McAllister and Noble proved that extracellular K+ concentration can 

activates potassium channel and increases the inwardly rectifying cardiac K+ 

current. This effect has since been discovered to be applicable to almost all 

potassium channels (both inward and outward rectifying currents) (Baukrowitz 

and Yellen, 1995). Increased efflux of K+ through the open channel results in 

accumulation of extracellular [K]o in the selectivity filter through a modulatory 

site, which enhances the activation of K channels and increasing the K current 

(Figure 2.7A). Rapid N-type inactivation causes the occlusion of the pore 

through the ‘ball and chain’ permeation mechanism preventing efflux of K+ 

and empties the selectivity filter. The selectivity filter has been proven to 

collapse with low extracellular [K] which will signal the C-type inactivation. 

Thus, the inactivation of C-type is also modulated and initiated by the 

inactivation of N-type (Hoshi and Armstrong, 2013; Claydon, et al. 2004; 
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Lopez-Barneo, et al. 1993).  The exact modulation of independent C-type 

inactivation is also hypothesized to involve S4 and S6 residue which will help 

in signaling the pore occlusion. The occurrence of double inactivations (N-type 

and C-type) result in prolonged repolarization and lowering of the membrane 

potential.  

 

In a study carried by Claydon, et al. (2004) on the activation of Kv1.4 channels 

by extracellular charges, found that the channel activation and inactivation are 

also influenced by pH changes. It is postulated that acidic environment releases 

H+ with positive charges which may interfere and compete with occupancy of 

K+ on the selectivity filter. As the filter is low of K+, it will collapse and thus 

signaling the development of C-type inactivation. Therefore, a lower pH or 

acidic environment enhances Kv1.4 inactivation and could also contribute to 

prolong repolarization (Figure2.7B). Similar study by Li, et al. (2002) also 

showed the same conclusions.  
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Figure 2.7: A; current reading by lower [K]o 3mM is much lower as compared with 
higher 9mM [K]o showing the inactivation of Kv1.4 channels is enhanced at lower K+ 
concentration as the selectivity filter is emptied and collapsed. B; a lower pH of 6.5 
(acidic) results in much lower current reading compared to higher pH 7.4. Thus, the 
inactivation of Kv1.4 can also be influenced by an acidic environment. From: ‘K+ 
Activation of Kir3.1/3.4 and Kv1.4 K+ Channels is Regulated by Extracellular 
Charges’ by Claydon, et al. (2004). Biophysical Journal, 2407 – 2418.  
 
 
 

2.4  4-Hydroxybenzoic acid (4-Hba) 

In light of the increasing demands of natural products constituents, more 

compounds and extraction of plants and herbs have been carried out. Some of 

the herbs are well-known and are still used and practiced especially among 

Asian and African communities. They are reported to have antiepileptic effects 

and proven to be effective to treat convulsions by direct or indirect 

pharmacological mechanisms (Zhu, et al. 2014; Ekstein and Schachter, 2010).  

 

4-hba can be found in many plants and fruits such as Dendrocalamus asper 

(bamboo), Veronica peregrina (flower) strawberries, apples, mulberries 

(Juurlink, et al. 2014), Daucus carota (carrots), Elaeis guineensis (oil palm), 

B 
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Vitis vinifera (grapes), Fagara macrophylla (east african satinwood), 

Xanthophyllum rubescens (yellow leaf tree), and many more (Manuja, et al. 

2013). Due to the abundance of hydroxybenzoic acids in many famously 

consumed foods, further studies on its effective mechanism has been carried on 

such as on cardiovascular system (Juurlink, et al. 2014), root membrane 

potential of tobacco plants (Mucciarelli, et al. 2000), mediated lifespan 

extension on Caenorhabditis elegans (Kim, et al. 2013), cucumber seed 

germination (Crisan, et al. 2007) and cucumber root membrane potential 

(Camusso, et al. 2008). However, there are not much researches that has been 

carried out on the effects of 4-hba on the membrane potential of animal models 

or even terrestrial organisms.  

 

In the extraction of Dendrocalamus asper shoots by Universiti Malaysia 

Terengganu (UMT) in 2014 found 5 major compounds namely 4-

hydroxybenzaldehyde, palmitic acid, lauric acid and another two impure major 

palmitic acid with minor fatty acid attached. However, 4-hydroxybenzaldehyde 

is easily oxidized into 4-hydroxybenzoic acid due to its excess valence 

electrons and is less stable (Dobhal, et al. 2010), making it less suitable for 

further test. Preliminary electrophysiological studies on the enhancement effect 

of these compounds (synthetic) on GABA (A) receptor found that 4-

hydroxybenzoic acid can positively modulates GABA (A) current unlike 

palmitic and lauric acids which fail to increase the current amplitude of GABA 

(A). As GABA (A) is inhibiting, its enhancement could potentially reduce the 

irregularly high membrane potential spikes seen in neuronal disorders such as 
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epilepsy (Bilal, 2015). Nevertheless, there are no studies carried out on the 

action of synthetic 4-hba on potassium channels, which also help in lowering 

the membrane potential.  

 

According to Japan’s report (by Ishikawa Kazuhide) for SIDS Initial 

Assessment for 9th SIAM (France, 1999) on 4-hba, this compound is mostly 

used as intermediate for pesticide, antiseptics and pharmaceuticals. However, 

recent studies show that 4-hba is currently being added as potential food 

additives, as paints and coatings and for personal care products (National 

Center for Biotechnology Information, 2016). It is also reported to have 

antifungal, antialgal, antimutagenic, antisickling, extrogenic activity and used 

as trapping agent on hydroxyl radical generation using cerebral ischemia and 

reperfusion (Manuja, et al. 2013). With molecular weigh 138.12074 g/mol, it is 

able to pass through blood vessels, blood brain barriers and also cerebrospinal 

fluid (CSF). It has a pKa of 4.58 which is a low acid as compared to 

hydrochloric acid with pKa of -10 (acidity increases with more negative value) 

but it is more acidic than amines such as lysine with pKa more than +10. 

 

4-Hba is a phenolic compound from benzoic acid derivatives (BADs) along 

with salicylic acid, gallic acid and vanilic acid (Camusso, et al. 2007). 

Phenolics compounds exist mostly as secondary metabolites in plant tissues 

that play important roles as antioxidants that can decrease oxidative stress 

induced tissue damage from chronic diseases and possess anticancer activities 

(Khadem and Marles, 2010). 4-Hba is part of the non-flavonoids group of 
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