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PENGHASILAN DAN PENGGUNAAN BIOJISIM BUTIRAN AEROBIK 

DALAM RAWATAN KUMBAHAN KILANG KELAPA SAWIT  

 

ABSTRAK 

Kumbahan kilang kelapa sawit (POME) yang dibuang tanpa rawatan yang wajar 

mungkin akan menyebabkan masalah pencemaran di Malaysia. Kaedah rawatan 

biologi lazim yang menggunakan enapcemar teraktif dalam kolam bersiri dianggap 

usang. Oleh sebab itu, biojisim butiran aerobik dihasilkan dan digunakan untuk 

rawatan POME dalam reaktor berkelompok penjujukan (SBR). Purata garis pusat 

butiran aerobik yang dihasilkan adalah 0.9 mm. Butiran aerobik yang dihasilkan 

telah berjaya menyingkirkan 88% daripada influen COD secara purata sepanjang 

operasi reaktor ini. Indeks isipadu enapcemar (SVI) biojisim berkurangan dari 80 ke 

30 ml/g. Manakala, campuran pencairan pepejal terampai (MLSS) SBR telah 

berkurangan daripada 3600 ke 2500 mg/l sebelum proses pembutiran dan MLSS 

telah meningkat ke 3800 mg/l selepas berbutir aerobik terbentuk. Dalam rawatan 

fizik, kajian permulaan telah dijalankan dengan menggunakan sisa enapcemar 

teraktif (WAS) dari SBR untuk menjerap Metelina Biru (MB) secara berkelompok 

dan dalam turus aliran berterusan. Hasil ujikaji menunjukkan penjerapan MB 

meningkat dengan peningkatan kepekatan awal MB dan pH, manakala penjerapan 

menurun apabila suhu meningkat. WAS mempunyai keupayaan penjerapan sebanyak 

66.23 mg/g, penyingkiran MB 84%, mematuhi garis sesuhu Langmuir dan 

Freundlich, dan berpadanan dengan pseudo-tertib kedua. Analisa termodinamik 

menunjukkan bahawa proses penjerapan MB ke atas WAS adalah proses luah haba 

dan spontan. Manakala dalam turus aliran berterusan, penjerapan meningkat pada 

kadar aliran yang perlahan, ketinggian yang besar dan kepekatan pencelup yang 

tinggi. Keupayaan penjerapan dan kecekapan penyingkiran masing-masing adalah 
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20.16 mg/g dan 82.3%. Data ujikaji berpadanan dengan model Thomas dan model 

Yoon-Nelson. Dalam bahagian terakhir dalam kajian ini, efluen SBR (POME yang 

telah dirawat secara biologi) telah dirawat lagi dengan WAS yang dimuatkan dalam 

turus aliran berterusan. Penyingkiran tertinggi yang dicapai untuk COD dan 

kekeruhan masing-masing adalah 20.68% dan 99.21%. Nilai optima penyingkiran 

COD dan kekeruhan (20.68% dan 96.42%, masing-masing) dicapai pada ketinggian 

turus 3.28 cm dan pada kadar aliran 2.13 ml/min. Hasil menunjukkan bahawa butiran 

aerobik yang dihasilkan mampu merawat POME secara biologi dan WAS dapat 

digunakan sebagai penjerap dalam rawatan fizik dengan kecekapan terpuji. 
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DEVELOPMENT AND UTILIZATION OF AEROBIC GRANULAR 

BIOMASS IN PALM OIL MILL EFFLUENT (POME) TREATMENT 

 

ABSTRACT 

Palm oil mill effluent (POME) discharged without proper treatment could cause 

severe environmental problem in Malaysia. The conventional biological treatment 

method using activated sludge in series of ponds is considered obsolete. Hence, in 

this work, aerobic granular biomass was developed and utilized for the treatment of 

POME in the sequencing batch reactor (SBR). The mean diameter of the developed 

aerobic granule was 0.9 mm. The developed aerobic granule managed to remove 

about 88% of the influent COD at average, throughout the operation of SBR. The 

sludge volume index (SVI) of the biomass reduced from 80 to 30 ml/g. Meanwhile, 

the mixed liquor suspended solids (MLSS) of the SBR decreased from 3600 mg/l to 

2500 mg/l prior to the granulation process and the MLSS concentration increased to 

3800 mg/l after the aerobic granule formed. In the physical treatment, preliminary 

studies were done by using waste activated sludge (WAS) from SBR to adsorb 

Methylene Blue (MB) in batch and continuous flow column. Results showed that the 

uptake of MB increased with an increase in both the initial MB concentration and 

pH, and decreased with an increase in temperature. WAS was found to have 

adsorption capacity of 66.23 mg/g, 84% MB removal, obeys both Langmuir and 

Freundlich isotherm and fits pseudo-second-order kinetics. Thermodynamic analysis 

showed that the MB adsorption process onto WAS is an exothermic and spontaneous 

process. Meanwhile in the continuous flow column adsorption, slower flow rate, 

larger bed height and higher inlet dye concentration increases the adsorption. The 

adsorption capacity and removal efficiency was 20.16 mg/g and 82.3%, respectively. 

Data fitted well to Thomas model and Yoon-Nelson model. In the last part of this 
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study, the effluent from the SBR (biologically treated POME) was further polished 

using continuous flow column packed with WAS. The optimum value for the COD 

and turbidity removal (20.68% and 96.42%, respectively) achieved at bed height of 

3.28 cm and flow rate of 2.13 ml/min. The results showed that the developed aerobic 

granule can biologically treat POME in SBR and WAS can be potentially used as the 

adsorbent in the physical treatment of SBR effluent with commendable efficiency. 
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CHAPTER 1 

INTRODUCTION 

1.1 Palm oil in Malaysia 

Malaysia is one of the largest producers of palm oil in the world. The production 

contributes around 39% of the total palm oil production in the world and 44% of 

world‟s export (MPOC, 2009). As per 2009, the cultivation of oil palm tree has 

reached 4.49 million hectares in Malaysia alone. This mass plantation has enabled 

Malaysia to produce 17.73 million tonnes of palm oil and 2.13 million tonnes of 

palm kernel oil (MPOC, 2009).  

However, the mass production of palm oil has significantly contributed 

towards the environmental pollution. It is mainly caused by the abundant of waste 

generated while processing the fresh fruit branch (FFB). The FFB is the source for 

palm oil production. The FFB will undergo several processing stages before the oil 

could be produced from it. The processing stages are sterilization, stripping, oil 

extraction, clarification and oil purification (Ma, 1999). In these processes, many 

types of wastes are produced. Among those wastes are empty fruit brunches (EFB), 

potash, palm kernel, shell, fiber and liquid waste. However, these wastes (except 

liquid waste) can be re-used as boiler fuel and/or fertilizer. Meanwhile, the liquid 

waste is normally channeled into the receiving body after treatment process. 

During the process of extracting oil from the FFB, water will be used 

extensively. Production of 1 tonne of crude palm oil needs about 5-7.5 tonnes of 

water and more than 50% of the water used will end up as liquid waste (Ma, 1999). 

This liquid waste is commonly referred to as palm oil mill effluent (POME). POME 

is highly polluting agent due to its high Chemical Oxygen Demand (COD) value, 
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suspended solids, oil and grease, and other nutrients (Ahmad et al., 2003). This could 

contribute towards the eutrophication, disruption in the food chain and clean water 

scarcity if it is released into receiving body without treatment.  

  Generally, the available methods for POME treatment can be classified into 

three major categories, namely; physical-chemical treatment, biological treatment 

and advanced treatment. Currently, the available techniques for POME treatment are 

tank digestion and mechanical aeration, tank digestion and facultative ponds, 

decanter and facultative ponds physio-chemical and biological treatment (Andreasen, 

1982). Nevertheless, at present, 85% of all POME treatments are based on the 

biological anaerobic digestion, followed by aerobic oxidation in ponds 

(Vijayaraghavan et al., 2007). However, a major drawback of these methods is the 

release of harmful greenhouse gases and the effluent released does not meet limit 

often (Ahmad et al., 2003).  

In addition, the excess generation of waste activated sludge (WAS) in 

biological treatment plant also poses a big threat to the efficiency of the system (Liu 

and Tay, 2001). WAS needs to be removed from the biological system in order to 

maintain a food to microorganism ratio. However, due to its high disposal cost 

(Horan, 1990), the WAS is rarely removed from the pond. As a result, the excess 

amount of sludge causes failure to the biological treatment system due to insufficient 

food as well as limited oxygen level for the complete oxidation.  

Hence, in future, the treatment system must have the ability to treat the 

POME efficiently in order to curb the rising environmental pollution. Though there 

are some breakthroughs in terms of new treatment methods such as adsorption and 

membrane anaerobic system (Ahmad et al., 2005; Fakhru'l-Razi and Noor, 1999), the 
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feasibility on the economic front and applicability at large scale is rather 

questionable. Thus, researches have been carried out extensively in order to find a 

treatment system which could arrest the environmental pollution with economically 

feasible process. Nevertheless, till date, the expected outcomes are yet to achieve. 

 

1.2 Problem Statement 

The current treatment system of POME usually fails to meet the regulations imposed 

by the Department of Environment (Ahmad et al., 2003). As a result, the 

environment has been affected by the improperly treated POME. Apart from that, the 

current open-pond biological system requires large area of land to operate. In 

addition, the residents nearby the palm oil mill suffer from bad odor, pollution of 

clean water supply and infected with deadly tropical diseases such as dengue due to 

this open-pond system. The sociological impact on the residents has to be addressed 

as well before deciding on the most suitable treatment method to treat the POME. At 

the same time, treatment method with lower capital cost has to be figured out without 

compromising the effluent quality.  

 Thus, combination of two or more treatment methods could be a solution for 

such persisting problem. The disadvantage of one treatment method could be 

complemented by the other treatment method. Therefore, the combination of 

biological treatment system and the physical treatment system would be one of the 

possible ways to treat POME efficiently. However, the large land area required for 

the conventional open-pond biological treatment system remains unresolved. Hence, 

in order to overcome this problem, the accumulated POME could be treated using a 

specifically designed sequencing batch reactor (SBR). The footprint of the SBR 

treatment system could be reduced by 80% and the piping system required is 
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minimal compared to the conventional biological treatment plant (de Bruin et al., 

2004).  

Another major drawback of the conventional biological treatment system is 

the poor separation between biomass and the treated effluent (Liu et al., 2003). In 

order to solve the presence of sludge in the effluent, a better separation between 

effluent and the sludge is needed. One of the possible ways to overcome this problem 

is by transforming activated sludge into aerobic granule. The aerobic granule 

possesses excellent settling ability, subsequently achieving better separation between 

effluent and biomass (Arrojo et al., 2004; Liu et al., 2010). In addition, the aerobic 

granule is able to withstand shock loadings, survive in toxic conditions and robust 

(Pijuan et al., 2009). Nowadays, aerobic granulation is getting more attention 

particularly in the wastewater treatment (Liu et al., 2010). However, till date, no 

investigation has been attempted on developing aerobic granule in POME.  

Meanwhile, the adsorption treatment system (physical treatment) could be a 

good option to be combined with the SBR (biological treatment) system. Currently, 

the commercial adsorbents available in the market are made from coal which is a 

non-sustainable raw material. Hence, possibility of utilizing alternative raw material 

to produce adsorbent has to be addressed. In this study, the waste activated sludge 

(WAS) from the SBR was used as the adsorbent. Besides being sustainable, the un-

controlled generation of WAS made it abundantly available at lowest possible cost.    

 

1.3 Objectives 

The primary aim of this research is to develop a combined biological and physical 

treatments system for POME. The specific objectives are: 

1. To develop and utilize aerobic granule in POME treatment using lab scale SBR. 



5 
 

2. To study the feasibility of using WAS from SBR for adsorption of Methylene 

Blue (MB) in batch process. 

3. To study the dynamic adsorption equilibrium of MB adsorption onto WAS in a 

continuous flow column.  

4. To optimize the combined biological and physical systems to achieve the 

maximum treatment efficiency. 

 

1.4 Scope of Study 

There are two major parts, which involved in this study, namely; biological and 

physical treatments. In the biological treatment, the aerobic granule was developed in 

the SBR system. The system was fed with POME at a constant organic loading rate 

(OLR) and activated sludge from a facultative pond of the biological POME 

treatment plant was used as the seed sludge. It was aerated with compressed air from 

the bottom of the reactor. The COD, mixed liquor suspended solids (MLSS), sludge 

volume index (SVI) and morphology of the sludge were recorded on a pre-

determined interval. Once the aerobic granule was formed in the SBR, the effect of 

OLR on the granule and the granule performance in treating POME were determined.  

 Meanwhile, for the physical treatment of POME via adsorption method, the 

waste activated sludge (WAS) collected from SBR was used. Prior to the treatment 

of POME, the WAS was quantified for its adsorption capacity, removal efficiency, 

adsorption mechanism and adsorption kinetics. In order to quantify the WAS, MB 

dye was used as the adsorbate. The WAS was evaluated in both batch and continuous 

flow column systems. Both of these studies give a hindsight of the ability of WAS as 

an adsorbent. From there, the WAS was used to treat the effluent within the SBR 

(biologically treated POME) in a continuous flow column. The adsorption process of 
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treated POME was optimized based on the two variables (bed height and flow rate of 

treated POME into the column), using the Response Surface Methodology (RSM).  

 

1.5 Organization of Thesis 

There are 5 major chapters in this thesis. In Chapter 1 (Introduction), a brief 

introduction about the palm oil in Malaysia, POME generation and current POME 

treatment methods are given. In addition, the need for this research to be done 

(Problem statement), the objectives of this research, scope of this study as well as the 

arrangement of this thesis has been explained in this chapter.  

 Next, in Chapter 2 (Literature Review), the technical aspects of this research 

have been discussed thoroughly. The biological treatment of POME, the application 

of SBR in wastewater treatment, development of aerobic granule in POME and 

adsorption studies on POME treatment are discussed in this chapter. 

 Chapter 3 (Methodology) provides the information about the materials and 

methods used in this research. The raw material, analyzing procedure and 

optimization process are discussed in detail in this chapter.  

 Meanwhile, in Chapter 4 (Results and Discussion), the results obtained in this 

research are elaborately explained. Firstly, the development of aerobic granule in the 

POME has been explained with the help of experimental data. Next, the performance 

of the developed aerobic granule in treating POME has been reported in detail. 

Following that, the effects on the OLR on the aerobic granule and POME treatment 

has been discussed as well. Apart from the biological treatment, the physical 

treatment of POME has been reported as well. The performance of chemically 

activated WAS in treating MB in batch and continuous flow column studies are 
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reported here. The optimization process in treating biologically treated POME by 

using WAS has been discussed in the last part of this chapter.  

 In Chapter 5 (Conclusion), the conclusion drawn from this study has been 

reported. The conclusion was made based on the discussion made in Chapter 4. 

These conclusions would be able to determine whether the objectives are met or not. 

The recommendations are also given for the future work, based on the current study. 

The shortages found in this research could be addressed in the upcoming works to 

further enhance the treatment method used in this study.  



8 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Palm oil mill effluent (POME) 

Palm oil mill effluent (POME) is one of the abundantly produced wastes from the 

palm oil mill. In the processing stages of palm oil, liquid waste will be produced 

from the sterilization unit (60%), hydrocyclone unit (4%) and clarification unit 

(36%) (Borja and Banks, 1994). In POME, though water is the major component 

(95-96%), but there are also fibers, free organic acids, traces of oil, and suspended 

solids in it (Ugoji, 1997). On top of that, POME is highly polluted with organic 

compounds. This resulted in high value of COD and BOD value. The pH value of 

POME is normally in the acidic region and temperature of POME at the discharge 

point is normally around 50°C. However, the amount of nitrogen compounds in 

POME can be classified as negligible.  

The compilations of characteristics of POME from several previous works 

are given in Table 2.1. From the Table 2.1, it is exhibited that POME is a highly 

polluting agent due to its COD value and other constituents. The treatment of POME 

is mainly aimed at reducing the COD value to the allowable limit to environment. 

The effluent Standards (set by Department of Environment) that the palm oil 

producing company has to meet are listed in Table 2.2. In order to meet the 

regulations (or Standards), many types of treatment system have been undertaken to 

treat the POME. However, due to low cost and less maintenance, the biological 

treatment system has been widely used at industrial level (Vijayaraghavan et al., 

2007).  

 



9 
 

Table 2.1 Characteristics of POME from various works 

 

pH Temperature BOD (mg/L) COD (mg/L) 
Oil and 

grease (mg/L) 

Suspended 

solids (mg/L) 

Nitrogen 

Content (mg/L) 
Reference 

3.5-4.5 - 11000-30000 30000-70000 5000-13000 9000-25000 500-900 Borja et al., (1996) 

5 - 11000 246000 - - - Oswal et al., (2002) 

4.7 - 25000 50000 4000 18000 750 Ahmad et al., (2003) 

4.52 - - 70900 - 25800 - Wu et al., (2007) 

4.0-4.8 75°-90°C - 30000-50400 1300-4700 11500-22000 660-890 Bhatia et al., (2007) 

3.5-4.2 80°-90°C 10000–44000 16000-100000 - 5000-54000 - Zhang et al., (2008) 

4.15-4.45 - 21500-28500 45500-65000 1077-7582 15660-23560 300-410 Wong et al., (2009) 

5.6 - - 46000 - 42800 - Damayanti et al., (2010) 

 

Table 2.2 Environmental Quality (Sewage and Industrial Effluents) Regulations, 1979. Maximum Effluent Parameter Limits Standards A 

and B (Federal Subsidiary Legislation, 2011). 

Parameters Standard A Standard B 

pH 6.0 - 9.0 5.5 - 9.0 

Temperature 40 °C 40 °C 

Chemical Oxygen Demand (COD) 50 mg/L 100 mg/L 

Biological Oxygen Demand (BOD) 20 mg/L 50 mg/L 

Oil and grease Not detectable 10 mg/L 

Suspended solids 50 mg/L 100 mg/L 
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2.2 Biological treatment of POME 

Biological treatment has been the preferred choice for treating POME due to its low 

cost, high organic loading capability, simple and low energy demand (Najafpour et 

al., 2006). The presence of microorganisms in the biological treatment system will 

facilitate the oxidation of substrate (pollutants) present in the POME.  

In recent years, the 85% of the POME treatment is based on the anaerobic 

and facultative ponding system, which is followed by another system consisting of an 

open tank digester coupled with extended aeration in a pond (Ma, 1999). The aerobic 

ponds are necessary to reduce the COD and BOD further (Poh and Chong, 2009). 

However, the major drawback of this ponding system is the long hydraulic retention 

time (HRT) (20-200 days) (Chan and Chooi, 1984). Moreover, the aeration ponds 

cannot be very deep, thus, large reaction volumes are obtained by increasing the 

surface area. This is mainly due to difficulty in oxygen penetration to the bottom of 

the pond, if the pond is deep. Therefore, large land area and long HRT are required 

for the series of aeration pond to effectively treat the POME. Besides, the 

degradation of POME in the ponding system releases obnoxious gases such as 

hydrogen sulphide and methane, which makes the surrounding environmentally 

polluted.  

Due to these problems, the researchers came out with alternatives to treat the 

POME. Borja and Banks (1994) have treated the POME with upflow anaerobic 

sludge blanket reactor (UASB). The results from the treatment showed that the COD 

was removed up to 96%. Besides that, the UASB reactor has a noteworthy advantage 

over the ponding system as the hydraulic retention time is much shorter and the area 

required for the reactor is small. One of the salient features of the UASB is the 
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formation of granular sludge (Najafpour et al., 2006). Following the success of the 

upflow reactor, modification was carried out on the reactor to replace the sludge 

blanket with filtration unit (UASB to UAF) for POME treatment (Borja and Banks, 

1994). In this method, almost 90% of the COD was oxidized and it was reported that 

the operation of the reactor showed good stability in acidic and alkaline condition 

(Borja and Banks, 1994). As discussed earlier, the ponding system could not prevent 

the harmful gases (methane and hydrogen sulphide) from being released to the 

environment. However, through the UASB and/or UAF, the methane gas could be 

captured in the reactor itself for the use of biomass energy production. For every 1 g 

of COD removed anaerobically, 0.69-0.79 dm
3
 of methane gas was produced in the 

UAF (Borja and Banks, 1994).  

Despite that, the common problem associated with the UASB is the non-

operational at the high organic loading rate due to the presence of suspended solids 

in the POME (Najafpour et al., 2006). In order to overcome this shortcoming, the 

integration of UASB and Upflow Fixed Film (UFF) reactor was proposed and 

successfully used to treat the POME (Najafpour et al., 2006). This integrated reactor 

is called the upflow anaerobic sludge fixed film (UASFF). The schematic diagram of 

the UASFF is shown in Figure 2.1. Through the integration of UASB and UFF, the 

solid retention would be higher and improves the solid/liquid/gas separation in the 

reactor. COD removal about 97% was achieved with this reactor (Najafpour et al., 

2006). Nevertheless, this integrated reactor faces problem in terms of scaling-up to 

the industrial usage and the high cost involved for each cycle of operation.  
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Figure 2.1 Schematic diagram of UASFF (Najafpour et al., 2006) 

 

Meanwhile, Vijayaraghavan et al. (2007) have investigated the aerobic 

treatment of POME using activated sludge reactor. They reported that the COD 

removal achieved for aerobic treatment was 98% for HRT of 60 hours. They proved 

that the COD and BOD removal was higher when the HRT is extended regardless of 

the source of POME (Vijayaraghavan et al., 2007). The experimental set-up is shown 

in Figure 2.2. Besides reducing the carbon content, the use of aerobic treatment also 

decreases the inorganic nitrogen whilst changes the pH from acidic region into 

alkaline region (Agamuthu et al., 1986).  

In this work, the SBR was used to treat the POME. Although SBR is 

frequently used to treat the industrial wastewater (Liu et al., 2004; Muda et al., 2010; 
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Schwarzenbeck et al., 2005) and also domestic wastewater (Ni et al., 2009) in bench 

and pilot plant scales, but the technology is still new to POME treatment. The SBR 

has many advantages over other methods and it will be further discussed in the next 

section. 

 

Figure 2.2  Schematic diagram of activated sludge reactor (Vijayaraghavan et al., 

  2007) 

 

2.2.1 Sequencing batch reactor (SBR) 

Sequencing batch reactor (SBR) is a growing technology for the treatment of 

wastewater in recent times. The system has been utilized to treat various sources of 

wastewater (Muda et al., 2010; Ni et al., 2009; Schwarzenbeck et al., 2005). It has 

gained interest due to its advantages in terms of land requirement, pipeworks, energy 

utilization and capability to be used at industrial scale (de Bruin et al., 2004). The 

SBR works on the time sequence basis, as the name suggests. The SBR operation 

consists of filling, reacting, settling, decanting and idle phases in a single cycle. This 

indeed reduces the space needed for various stages of treatment (de Kreuk et al., 

2004), where in SBR, all could be done in one single reactor. During filling, the 
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wastewater will be fed into the reactor. In the reaction phase, the microorganism will 

oxidize the organic content of the wastewater fed into it with the aid of aeration 

supplied. Next, in the settling phase, the sludge is allowed to settle for the separation 

of sludge and the supernatant. In the decanting phase, certain volume of the 

supernatant will be decanted from the reactor. The last phase of a cycle is the idle 

phase. In this phase, the reactor will be left rest before proceeding to the next cycle. 

A typical SBR operation is shown in Figure 2.3. 

 Among the industrial wastewater treated in SBR was POME. However, this 

treatment was carried out using a lab-scale system (Chan et al., 2010). The BOD and 

COD removal achieved were in the ranges of 91-96% and 92-99%, respectively. 

Besides high COD and BOD removal, the SBR operates with short HRT. In the 

POME treated using SBR, the maximum HRT was 3 days instead of 40 days in 

anaerobic digestion system (Chan et al., 2010; Fun et al., 2007). Besides that, bad 

odor from the anaerobic digestion system could be prevented by the aerobic 

treatment in SBR.  

 Though the POME has been successfully treated in the SBR, there are some 

problems which are yet to be resolved. The floccular sludge used in the SBR 

treatment of POME resulted in a very poor settling ability. Hence, longer time is 

needed for the settling of the biomass and yet the effluent would not be completely 

free of unsettled biomass. This problem could only be solved by using an aerobic 

granular sludge.  

In SBR, granulation technology could be easily developed and operated. The 

granule has settling ability and can offer good solid-liquid separation (Jang et al., 

2003). The granulation is possible in this reactor due to the height over diameter 
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(H/D) ratio which reported to provide better selection pressure for settling granule 

(Kong et al., 2009). In the granulation technology, two major kinds of granulations 

are available, namely anaerobic and aerobic. The aerobic granulation technology 

utilized at industrial level is still scarce. Moreover, the aerobic granulation 

technology is yet to be applied in POME treatment.  

 

Figure 2.3 SBR operation (adapted from (Metcalf and Eddy, 2003)) 

 

2.2.2 Aerobic granule 

Aerobic granule is the aggregation of microorganism into compact and spherical 

shape with clear boundaries under the influence of air (Liu et al., 2010). The aerobic 

granule have been successfully developed and used in the treatment of wastewater in 

the SBR by several researchers (Li et al., 2010; Muda et al., 2010; Ni et al., 2009; 
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Song et al., 2009). Some of the granule were developed using synthetic wastewater 

such as glucose, sodium acetate, phenol and tert-butyl alcohol are shown in Figure 

2.4. According to Liu et al., (2010) the cultivation in various sources of wastewater 

proves that the aerobic granulation is independent of the substrate.  

 

 

Figure 2.4 Aerobic granule developed by (a) (Tay et al., 2004) (b) (Li et al.,  

   2010) (c) (Li et al., 2010) and (d) (Muda et al., 2010) 

 Aerobic granule has many advantages such as excellent settling ability with 

minimum biomass in the effluent (Arrojo et al., 2004; Liu et al., 2010). Besides, 

aerobic granule are also robust, stable and capable to withstand any shock loading of 

organic content (Adav et al., 2008; Tay et al., 2002) and  maintain their 

characteristics even after long starvation periods which can occur due to seasonal 

closure of the industries (Pijuan et al., 2009). Aerobic granulation forms due to the 
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aggregation of self-immobilized microorganisms present in the reactor (Shi et al., 

2010) and has been shown to be influenced by several factors such as hydrodynamic 

shear force, settling time, feeding strategy and dissolved oxygen (Kong et al., 2009). 

Once it has formed, the aerobic granule would not remain at the same size. The rate 

of detachment and attachment of biomass on the aerobic granule determines the size 

of them (Liu and Tay, 2002).  

The hydrodynamic shear force has a major contribution in the formation of 

aerobic granule. The flow rate of the supplied air is manipulated to provide a desired 

hydrodynamic shear force. An increase in hydrodynamic shear force will enhance the 

production of extracellular polymeric substances (EPS) (Tay et al., 2001). The EPS 

functions to aggregate the microorganism in a cluster and subsequently forming 

aerobic granule. The secretion of EPS by the microorganism at a high aeration rate 

also facilitates the increase in diameter of the aerobic granule.  

Meanwhile, the settling time also plays a crucial role in the formation of 

aerobic granule. In order to promote granulation, the settling time has to be low. 

Adav et al. (2009) investigated the settling time effects by working at the three 

different settling times (10, 7 and 5 minutes) and reported that the species of 

microbial community present in the reactor changes with settling times. A low 

settling time will allow only the denser particle to remain in the reactor, while the 

lighter and poor settling biomass will be removed from the reactor (Liu and Tay, 

2004). The desired morphology of aerobic granule is free of filamentous growth 

around the edges. The aerobic granule with filamentous growth generally has a poor 

settling ability. The low settling time will remove the filamentous aerobic granule 

and enhance the population of compact aerobic granule in the reactor. Such a low 

settling time also contributes to faster appearance of aerobic granule (Adav et al., 
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2009). Furthermore, the low settling time was also found to enhance the EPS 

secretion and cell hydrophobicity (Liu and Tay, 2004).  

Cell hydrophobicity is another important factor in the formation of aerobic 

granule. Hydrophobicity of the biomass will assist the aggregation process (Tay et 

al., 2001) and subsequently leads to aerobic granulation. Cell hydrophobicity would 

mainly occur when there is a starvation period within an operational cycle of SBR. 

Once the substrate in the SBR has been consumed, the biomass will be under 

starvation. It was reported that the aggregation of the biomass is one of the 

techniques to overcome the effect of starvation (Liu and Tay, 2004).  

Meanwhile, organic loading rate (OLR) has an impact on the size of the 

aerobic granule. Generally, for aerobic granulation purpose, a wide range of OLR 

(2.5 to 15 kg COD/m
3
.day) was used (Liu et al., 2003). The work undertaken by 

Adav et al. (2009) reveals that when the OLR was increased, the mean diameter of 

the aerobic granule increased from 2.7 to 5.1 mm. Nevertheless, an increase of OLR 

does not affect the COD removal. The work carried out by Thanh, (2005) exhibited 

the efficiency of the developed aerobic granule in various OLR which remained 

close to 100% even when the OLR was increased gradually. This further proves that 

the aerobic granule is feasible to be used in the highly fluctuating wastewater quality.   

 

2.3 Physical treatment of POME 

The previous studies have proven that POME can be treated by physical treatment as 

well. Physical treatment is inclusive of coagulation-flocculation, membrane 

treatment and adsorption. Physical treatment is easier to be handled compared to the 

biological treatment (Bhatia et al., 2007). However, the cost of operating physical 

treatment is relatively high compared to biological treatment plant. Several 
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researchers have studied on POME treatment using adsorption method (Ahmad et al., 

2005), membrane technology (Ahmad et al., 2006) and coagulation-flocculation 

(Bhatia et al., 2007). 

 Various levels of treatment efficiencies have been achieved by using those 

physical treatment methods. The most effective treatment system was the membrane 

system. Almost 99% of the COD has been removed from the influent (Ahmad et al., 

2003). Despite the excellent performance of the membrane system, the cost of 

operating at industrial level and the membrane fouling has prevented it to be up-

scaled into industrial level. However, the work on adsorption process to remove 

COD and turbidity has not been fully explored till date. In this work, the feasibility 

of adsorption system was studied, which aim is to remove COD and turbidity of the 

biologically treated POME. 

  

2.3.1 Adsorption 

Adsorption process is mainly used in water/wastewater treatment system, trapping 

volatile organic component (VOC) and removing heavy metal ions. According to 

Slejko, (1985), adsorption is a process of separating a substance from a solution with 

the accumulation of the solute on the surface of other materials. The adsorbing agent 

is termed as adsorbent, while the material concentrated at the surface of that agent is 

termed adsorbate. There are two main types of adsorption process. They are chemical 

adsorption (chemisorption) and physical adsorption (physisorption) (Slejko, 1985). 

The adsorbent has pores on its surface. During an adsorption process, adsorbate will 

accumulate on the surface of the pores of the adsorbent. This process will continue 

until the adsorbent becomes saturated. Once it becomes saturated, the rate of 
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adsorption and desorption will reach an equilibrium state which can be regenerated 

by using heat. The adsorption mechanism is shown in the Figure 2.5. 

 

Figure 2.5 Adsorption mechanism (Wu, 2008) 

According to Slejko (1985), the physical adsorption process is a result from the 

action of van der Waals forces which consist of electrostatic forces and London 

dispersion forces. It exhibits a weak bonding between the liquid and solid (adsorbent) 

in the liquid-solid adsorption process. The force of attraction between the adsorbate 

and substrate is contributed by the instantaneous fluctuating electric dipole moments. 

These dipole-dipole forces are called the „van der Waals‟ forces.  

Besides that, physical adsorption is an exothermic process. It releases 

approximately 0.1 kcal/mole of energy at each time reaction taking place (Wu, 

2008). Physisorption process is a reversible process. Hence, it is easy to regenerate 

the adsorbent used as it is aided by the properties of physisorption. The chemical 

identity of the adsorbate remains intact as there is no breakage of covalent bonding 

of the adsorbate. In physisorption, the layers of absorbate that can be formed on the 



21 
 

adsorbent could be multilayer or single layer. Stoltenberg et al., (2005) reported that 

the binding energy of the physisorption is between 50-500 meV per atom or 

molecule. The operating range of temperature for the physisorption process is 

normally near or below temperature at which the adsorbate will condense from gas to 

liquid phase.  

 Meanwhile, chemical adsorption is based on chemical bond between the 

adsorbent and the substrate. The strength of this reaction is stronger than the 

physisorption. Drago et al., (1998) reported that dissociation of the adsorbate after 

the adsorption process occasionally happens due to the chemisorption which can be 

stronger than the internal bonds of the free adsorbate. Generally, the chemisorption 

process is endothermic in nature. Moreover, the chemisorption process is an 

irreversible process. Hence, the regeneration of the adsorbent is quite impossible. In 

addition, the chemisorption only forms a single layer of adsorbate on the adsorbent in 

comparison to the physisorption. The chemisorption can usually occur over a wide 

range of temperature and not limited as that of the physisorption.  

 

2.3.2 Adsorbent 

Currently, activated carbon is used as adsorbent in wastewater treatment (Thinakaran 

et al., 2008; Wu and Tseng, 2008). The high operating and regeneration costs of the 

process, as well as the high price of activated carbon, make it unsuitable for large 

scale operation (Crini, 2006). Hence, the researchers began to switch the starting 

material (raw material) to alternatives available for them.  

The agro based activated carbon garnered attention due to reliability in 

getting the raw material. Bamboo has been used as the adsorbent to remove MB via 

adsorption (Hameed et al., 2007). The maximum monolayer adsorption capacity 
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documented was 454.2 mg/g. Coconut shell also has been utilized as the adsorbent in 

removing Basic Green 4 dye (Nuithitikul et al., 2010). The maximum monolayer 

adsorption capacity recorded was 322.6 mg/g. The adsorption process is not just 

limited to synthetic dye removal. It has been reported that the COD of a wastewater 

can be reduced by adsorption. Date pit (more than 80% removal), rice husk (around 

70% removal) and avocado peel (about 99.18% removal) have been successfully 

used to remove the COD from the wastewater (Devi et al., 2008; El-Naas et al., 

2010; Mohan et al., 2008).    

In addition to the agro based activated carbon, waste products such as waste 

activated sludge (WAS) also has shown capability to be an adsorbent. Various 

pollutants, such as metal ions, synthetic dye and organic compounds have been 

removed from the wastewater (Luo et al., 2006; Tsai et al., 2008; Wang et al., 2008). 

The already existing functional groups on the surface of the WAS have aided the 

adsorption process. 

 

2.3.3 Waste activated sludge 

Despite many advantages of biological treatment system (as explained in section 

2.1), one of the major drawbacks of the system is the continuous generation of WAS. 

The excess production of WAS from biological wastewater treatment (BWT) plants 

poses a serious problem because the handling and disposal of it often represents the 

largest operational cost (Horan, 1990). Usually, removed WAS was disposed off in 

landfills or occasionally used as fertilizer (Otero et al., 2003).  

 Hence, researchers have explored the potential of WAS as a color adsorbent 

in the attempt to increase its economical value (Caner et al., 2009; Ju et al., 2008; 

Smith et al., 2009; Sun et al., 2008). The presence of various functional groups in the 
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WAS aids the color adsorption (Aksu, 2001). The functional groups that exist on 

WAS include -OH, -NH, -NH2, -C=O, C=C, CH3-, and CH2- (Luo et al., 2006). 

Previous researchers mainly studied the WAS produced from municipal sewage 

treatment plants to remove Rhodamine-B (Ju et al., 2008), Burazol Blue ED (Caner 

et al., 2009) and Malachite Green (Sun et al., 2008). 

 In this work, the WAS from POME treatment plant was used to remove the 

COD and turbidity of POME. 

 

2.3.4 Batch equilibrium isotherm 

Generally, the equilibrium isotherm is used to show the interaction between 

adsorbate and adsorbent in equilibrium phase (El Qada et al., 2006). Marina et al., 

(2007) suggested that among the common models used are the Langmuir and 

Freundlich as these models are relatively simple and widely used. The validity of the 

isotherm models are chosen based on the correlation coefficients (R
2
). 

 

2.3.4 a) Langmuir isotherm model 

Langmuir isotherm was developed with three major assumptions (Slejko, 1985). The 

assumptions are i) Adsorption energy is constant and independent of surface 

coverage, ii) Adsorption occurs at localized sites with no interaction between 

adsorbate molecules, iii) Maximum adsorption occurs when the surface is covered by 

a monolayer of adsorbate. The Langmuir equation is represented by equation (2.1). 
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where, qe is the amount of adsorbate uptake at equilibrium (mg/g), Qo is the 

maximum monolayer adsorption capacity (mg/g), Kc is equilibrium constant (l/mg), 

and Ce is the equilibrium concentration of adsorbate (mg/l). 

This equilibrium isotherm has been used by many researchers. Hameed et al., (2007) 

fitted the Langmuir isotherm for MB adsorption process onto bamboo based 

activated carbon. In addition, Weng et al., (2009) have used the Langmuir isotherm 

model to determine the distribution of MB on pineapple leaf powder at equilibrium 

state.  

 

2.3.4 b) Freundlich isotherm 

Freundlich isotherm assumes that the adsorption occurs on a heterogeneous energy 

surface and the adsorption capacity depends on the MB concentration at equilibrium 

(Caner et al., 2009). The Freundlich equation is given in equation (2.2). 

CKq
n

efe

/1
          (2.2) 

where, qe is the amount of adsorbate uptake at equilibrium (mg/g), Ce is the 

equilibrium concentration of the adsorbate (mg/l), Kf and n are the Freundlich 

constants. 

Vadivelan and Kumar, (2005) have applied the Freundlich isotherm in the adsorption 

of MB onto rice husk and found this isotherm fitted their data well. Besides, Nasuha 

and Hameed, (2011) also utilized this model for the adsorption of MB onto rejected 

tea and R
2
 value was found to be 0.934, which is highly acceptable.  
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2.3.5 Batch adsorption kinetic models 

Adsorption occurs by a multistep mechanism comprising: (i) diffusion across the 

liquid film surrounding the solid particles (external mass transfer coefficient as 

limitation), (ii) diffusion within the particle itself assuming a pore diffusion 

mechanism (intraparticle diffusion) and (iii) physical or chemical adsorption at a site 

(Kumar et al., 2005). Hence, in order to identify the rate-limiting step, the kinetic 

models were fitted to the data. There are two common adsorption kinetic models 

used frequently. One is being pseudo-first order model, while the other is pseudo-

second order model.  

 

2.3.5 a) Pseudo-first order model 

This model was first proposed by Lagergren with the equation (2.3). 
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Where, k1 is the rate constant (1/min), qe is the amount of solute adsorbed on the 

surface at equilibrium (mg/g), qt is the amount of solute adsorbed at any time (mg/g) 

and t is the time (s). 

Arzu and Kalayci, (2005) have used this kinetic model in the adsorption of phenol 

onto chitin. In addition, Hameed et al., (2009) also modeled the adsorption of MB 

onto pineapple waste by using this kinetic model.  

 

2.3.5 b) Pseudo-second order model 

The pseudo first order kinetics has limitation as it cannot fit well for whole range of 

contact time. According to Ho and McKay, (1999), it is applicable only for the initial 

stage of adsorption process. Hence, Ho and McKay, (1999) proposed a pseudo-


