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PEMBANGUNAN KOMPOSIT BIODEGRADASI Mg-Zn/HA MELALUI 

PENGALOIAN MEKANIKAL 

 

ABSTRAK 

 

Kajian ini bertujuan untuk membangunkan bahan logam biodegradasi menggunakan 

pengaloian mekanikal (MA). Magnesium (Mg) adalah calon yang paling menjadi 

tumpuan bagi aplikasi bioperubatan berdasarkan kelebihan sifat-sifatnya berbanding 

bahan bio yang lain. Tetapi kadar degradasi yang cepat dalam persekitaran fisiologi 

menghadkan prestasinya. Oleh itu, Mg telah dialoikan dengan zink (Zn) bagi 

meningkatkan kerintangan kakisan dan mengekalkan integritimekanikal. Dalam 

mencapai sasaran ini, bahan bio berasaskan Mg telah difabrikasi melalui MA diikuti 

dengan pemadatan di bawah 400 MPa dan pensinteran pada 350°C. Empat parameter 

MA iaitu masa pengisaran, kelajuan pengisaran, nisbah berat bola kepada serbuk 

(BPR) dan kandungan Zn telah disiasat. Ketumpatan 1.80 hingga 1.99 g/cm
3
 yang 

setara dengan tulang manusia dan kekerasan mikro yang lebih baik daripada Mg 

tulen (39.30 HV) iaitu antara 53.76 hingga 94.37 HV telah diperolehi. Berdasarkan 

rekabentuk faktorial pecahan (FFD), keadaan MA optimum dalam menghasilkan aloi 

Mg-Zn dicapai dengan menambah 6.5 wt% Zn yang dikisar selama 5 jam pada 200 

rpm dengan 7: 1 BPR. Kekuatan mampatan yang lebih tinggi (249.28 MPa) dan 

kadar kakisan yang lebih rendah (1.13 x10
-2

 mm/y) daripada Mg tulen (178.04 MPa 

dan 13.77 x10
-2 

mm/y) telah diperolehi. Penambahbaikan sifat-sifat tersebut telah 

dicapai dengan menambah 10 wt% HA ke dalam aloi Mg-6.5wt%Zn. Kekuatan 

mampatan (292.33 MPa) dan kadar degradasi (0.72 x10
-2 

mm/y) yang bagus 

diperolehi. Komposit Mg-Zn/HA memberikan bioaktiviti paling tinggi dengan nisbah 

Ca:P sebanyak 1:1.46 diikuti oleh aloi Mg-Zn 1:1.29 memenuhi keperluan 

pemineralan awal tulang iaitu 1:1 kepada 1:1.67. 
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DEVELOPMENT OF BIODEGRADABLE Mg-Zn/HA COMPOSITE VIA 

MECHANICAL ALLOYING 

 

ABSTRACT 

 

This work aims to develop biodegradable metallic material using mechanical 

alloying (MA). Magnesium (Mg) is the most highlighted candidate for biomedical 

applications because of its advantageous properties as compared with other 

biomaterials. But a rapid degradation rate in physiological environment limits its 

performance. Hence, Mg was alloyed with zinc (Zn) in order to improve its corrosion 

resistance and sustain its mechanical integrity. In achieving the target, Mg based 

biomaterials were fabricated using MA followed by compaction under 400 MPa and 

sintering at 350 °C. Four MA parameters namely milling time, milling speed, ball-to-

powder-weight ratio (BPR) and Zn content were investigated. The density of 1.80 to 

1.99 g/cm
3
 which is comparable to human bone and improved microhardness of 

53.76 to 94.37 HV as compared to pure Mg (39.30 HV) were attained. By fractional 

factorial design (FFD), an optimized MA condition in producing Mg-Zn alloy was 

achieved by adding 6.5 wt% Zn and milled for 5 hours at 200 rpm with 7:1 BPR. A 

higher compressive strength (249.28 MPa) and lower corrosion rate (1.13x10
-2 

mm/y) than pure Mg (178.04 MPa and 13.77 x10
-2 

mm/y) were acquired. A further 

improvement of those properties was attained by incorporating 10 wt% HA into 

optimized Mg-6.5wt%Zn alloy. An enhanced compressive strength (292.33 MPa) 

and degradation rate (0.72 x10
-2 

mm/y) was attained. Mg-Zn/HA composite provided 

the highest bioactivity due to highest Ca:P ratio of 1:1.46 followed by Mg-Zn alloy 

of 1:1.29 which is in agreement with the required Ca:P ratio of 1:1 to 1:1.67 for 

initial bone mineralization. 
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CHAPTER 1 

INTRODUCTION 

 

1.1   Introduction 

The use of metallic materials for medical implants can be traced back to the 

19
th

 century, leading up to the era when the metal industry began to expand during 

the Industrial Revolution (Kraus et al., 2012). The development of metallic implants 

was primarily driven by the demands for approaches to bone repair, typically internal 

fracture fixation of long bones. However, almost no attempts of implanting metallic 

devices, such as spinal wires and bone pins made from iron, gold or silver, were 

successful until Lister's aseptic surgical technique was implemented in the 1860s 

(Xin et al., 2011). Since then, metallic materials have predominated in orthopaedic 

surgery, playing a major role in most orthopaedic devices, including temporary 

devices (e.g. bone plates, pins and screws) and permanent implants (e.g. total joint 

replacements) (Zeng et al., 2008). 

The conventional metallic implant materials namely titanium (Ti) alloys, 

stainless steels and (Co-Cr) alloys possess excellent mechanical capabilities and 

highly resistance to corrosion (Hermawan et al., 2010; Castellani et al., 2011; 

Anghelina et al., 2013). However, when these conventional alloys are used as 

temporary implant devices, a second surgical procedure is required for the implant 

removal after the traumatized tissues have healed which markedly increases the 

health care cost. Besides, there is an increased risk of local inflammation due to 

potential release of cytotoxic ions as well as the physical irritation due to the rigidity 

of these conventional implants (Li et al., 2012). 
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Currently, the development of new biodegradable metallic biomaterials 

combining excellent strength retention properties and improved biocompatibility for 

several applications such as stents for blood vessels and screws and plates for fixing 

hard tissues are highly desirable (Hort et al., 2010). The main driving force to 

develop biodegradable implants is an elimination of secondary surgical procedure as 

they have ability to biodegrade in the bioenvironment during the implantation 

duration. Hence, the paradigm of metallic implants must be highly inert and 

corrosion resistance has now been challenged by advent of the new class of 

degradable biomaterials (Lei et al., 2012).  

Magnesium (Mg) and its alloys have attracted increasing attention as 

innovative biodegradable materials for temporary orthopaedic implants due to their 

excellent biological performance and biodegradability in bioenvironment. In terms of 

mechanical properties, Mg is well compatible with natural bone. Its density (1.74 

g/cm
3
) and Young‟s modulus (40 - 48 GPa) are closer to those of bone (1.8 - 2.1 

g/cm
3
 and 40 - 57 GPa) than in the case of other currently used biomaterials for 

fixation of fractured bone, like Ti alloys, stainless steels or Co-Cr alloys at 

approximately 100, 180 and 210 GPa respectively (Li et al., 2004; Sudhakar, 2005; 

Gupta and Sharon, 2011). In term of biocompatibility, Mg ions are present in a large 

amount in the human body and they are involved in many metabolic reactions and 

biological mechanisms. The human body usually contains Mg at approximately 35 g 

per 70 kg body weight and the daily demand for Mg is about 375 mg (Gill et al., 

2011). 

An attractive characteristic of Mg due to its corrodibility makes it as a 

potential biodegradable metallic implant. However, the fast degradation rate of Mg in 

human bioenvironment containing chloride anions (Cl
-
) about 100 mmol/l 



3 
 

concentration limited its clinical application (Wang et al., 2012). A rapid degradation 

rate during implantation results in a deterioration of its mechanical performance 

which then causes a worst injury to a traumatized hard tissue. Elemental alloying is 

one of the most effective way to improve corrosion resistance as well as mechanical 

properties of Mg. Mg alloys containing aluminium (Al) and rare earth (RE) elements 

showed relatively high strength and good corrosion resistance against sodium 

chloride (NaCl) solution such as AZ61 (Mg-6wt%Al-1wt%Zn) and WE43 (Mg-(3.7-

4.4wt%) Y-(2.4-4.4 wt%) E-0.42wt%Zr) alloys (Gupta and Sharon, 2011). However 

it has been reported that the Al release from Mg alloy into human body could induce 

Alzheimer‟s disease, allergic reaction and neurological disorder (Silva et al., 2004; 

Zhang et al., 2010b). 

The exploration of high strength biodegradable Mg alloys without Al for 

medical implants has gained great attention in the past years and it is still ongoing. In 

certainty, there are only a small number of elements that can be tolerated in human 

body and can also retard the biodegradation of Mg alloys including calcium (Ca), 

manganese (Mn), zinc (Zn) and perhaps very small amount of low toxicity rare earth 

including niobium (Nb) and tantalum (Ta). Zn has been found to be next to Al in 

strengthening effectiveness as an alloying element in Mg. Adding Zn to Mg may 

improve both tensile strength and the corrosion resistance (Yin et al., 2008). 

Biologically, Zn is a necessary microelement and component of many amino acids 

and nucleic acids syntheses of human body. Moreover, Zn is an inexpensive alloying 

element with a potential of accelerating the metabolism of cells and bone healing 

(Jang et al., 2013). Therefore, it is a contributing approach to develop Mg-Zn alloy 

with good corrosion resistance for a temporary bioimplant in biomedical 

applications.  
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Typically, metallic materials including Mg based alloy have been produced 

using conventional liquid state processing such as casting (Zeng et al., 2011; Lei et 

al., 2011; Kubok et al., 2013). However due to some defects that are usually found in 

cast Mg alloy causing poor final properties, further treatments may be required to 

improve the situation. Recently, powder metallurgy (PM) process coupled with 

mechanical alloying (MA) to synthesize Mg based alloys is of growing interest 

(Gonzalez et al., 2012; Patel and Morsi, 2012). This technique is a solid state powder 

metallurgical process in which elemental powders are being alloyed by repeated 

deformation mechanism under frequent mechanical impacts (Suryanarayana, 2001). 

MA is one of the simplest and most economical routes for the fabrication of 

nanocrystalline materials. In addition, MA offers the possibility to scale up the 

quantity of processed material to tonnage amount and be employed for the 

processing of nearly all types of materials (Yadav et al., 2012). This makes MA the 

ideal processing route for small as well as for large scale production of 

nanocrystalline materials.  

Another important point for a biomaterial is the ability of the implant to 

establish bonding with the surrounding bone tissue which is the bioactivity of the 

implant (Khanra et al., 2010). Therefore, it seems necessary to increase the 

bioactivity of Mg based alloys by introducing bioactive materials into the matrix 

(Khalil, 2012). Bioactive ceramic such as hydroxyapatite (HA; C10(PO4)6(OH)2) has 

been widely used as an implant material for hard tissues owing to its excellent 

biocompatibility to human tissues because it has similar structure with the mineral 

part of bone. HA has calcium (Ca) and phosphorus (P) elements in its hexagonal 

structure (Veljovic et al., 2009). These elements present the inorganic of the bone. 

Therefore, strong bonds are spontaneously generated to living bone via an apatite 
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