PREPARATION AND CHARACTERIZATION OF POROUS CHITOSAN MEMBRANE SOAKED IN AMMONIUM ACETATE ELECTROLYTE FOR PROTON BATTERIES

SITI SALWA BINTI ALIAS

UNIVERSITI SAINS MALAYSIA 2016

PREPARATION AND CHARACTERIZATION OF POROUS CHITOSAN MEMBRANE SOAKED IN AMMONIUM ACETATE ELECTROLYTE FOR PROTON BATTERIES

by

SITI SALWA BINTI ALIAS

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

January 2016

ACKNOWLEDGEMENT

In the name of Allah, the most beneficent and merciful, I offer this project as I thank Him for giving me the strength, effort, time, and opportunity to surmount all the challenges that I went through in accomplishing my research project.

I would like to express my deepest and utmost gratitude to my supervisor, Assoc. Prof. Dr. Ahmad Azmin Mohamad, for believing in my capability to fulfill this project and for encouraging and guiding me throughout the years. I would also like to thank my co-Supervisor, Assoc. Prof. Dr. Zulkifli Mohamad Ariff, who also supported me in this research work.

My sincere appreciation goes to *Mr. Mohd Suhaimi Sulong and Mr. Mohd Azam Bin Rejab*, technicians of the Material Electronic Lab, and *all technicians* from materials and polymers lab, besides Chemical Engineering School labs for their assistance during the testing of materials.

I would like to acknowledge the *School of Materials & Minerals Resources Engineering* and *staff* for providing good facilities and plenty of scientific knowledge to gain. I am also grateful to the *Ministry of High Education (MOHE) for giving the MyBrain15(MyPhD)* for scholarship. This project also funded by *Exploratory Research Grant Scheme* (203/PBAHAN/6730006) of the *MOHE*.

I am glad to express my appreciation to all *Dr. Azmin Research Group* members from 2008-2015 for their support and valuable discussions while I was doing experimental works, writing the scientific papers and thesis. Finally, special thanks to my beloved family for their invaluable love, support, and encouragement.

SITI SALWA BINTI ALIAS

January 2016

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS.	iii
LIST OF TABLES.	viii
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xvii
ABSTRAK	xviii
ABSTRACT	xix
1 CHAPTER 1 INTRODUCTION.	1
1.1 Background.	1
1.2 Problem statement.	2
1.3 Objectives	4
1.4 Thesis outline	4
2 CHAPTER 2 LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Development of Polymer Electrolyte	6
2.2.1 Types and Requirements of Polymer Electrolyte	7
2.2.2 Electroactive Polymers.	9
2.2.3 Types and advantages of biopolymer hosts	10
2.3 Proton conducting polymer electrolyte	11
2.3.1 Chitosan proton-conducting polymer electrolyte and its advantages	13
2.3.2 Acetic acid solvent for chitosan proton-conducting polymer electrolyte	15

	2.3.3 Ammonium acetate salt for chitosan proton-conducting polymer	
	electrolyte	18
	2.3.4 Grotthuss mechanism in chitosan proton-conducting polymer	
	electrolyte	18
	2.3.5 Properties of chitosan proton-conducting polymer electrolyte	20
2.4.	. Porous chitosan membrane for polymer electrolyte	23
	2.4.1 Method of producing porous chitosan membrane	25
	2.4.2 Sonochemical method.	26
	2.4.3 Phase-inversion method using silica as porogen removal	31
	2.4.4 Properties of porous chitosan membrane	34
2.5	Proton batteries based on chitosan polymer electrolyte	45
	2.5.1 Components in proton batteries	46
	2.5.2 Mechanism of proton batteries	49
	2.5.3 Properties of proton batteries based on chitosan polymer electrolyte	50
	2.5.4 Simulation of electrochemical cell using MULTISIM	56
3 C	HAPTER 3 METHODOLOGY	62
3.1	Introduction	62
3.2	Experimental materials	62
3.3	Preparation of porous chitosan membranes	66
3.4	Characterization of porous chitosan membranes	69
	3.4.1 Morphology and pores size characterization	69
	3.4.2 Water uptake characterization	69
	3.4.3 Structural characterization via X-ray diffraction	70

3.4.4 Functional group and chemical interaction characterization70
3.4.5 Thermal stability characterization
3.4.6 Tensile test
3.5 Preparation and characterization of NH ₄ CH ₃ COO electrolyte71
3.6 Preparation of porous chitosan membrane-NH ₄ CH ₃ COO electrolyte73
3.7 Characterization of porous chitosan membrane NH ₄ CH ₃ COO electrolyte73
3.7.1 The NH ₄ CH ₃ COO electrolyte uptake test at different durations74
3.7.2 Electrochemical impedance spectroscopy test
3.7.3 Electrochemical test by linear sweep voltammetry76
3.8 Fabrication of porous chitosan membrane-NH ₄ CH ₃ COO electrolyte
proton battery76
3.9 Characterization of porous chitosan membrane NH ₄ CH ₃ COO electrolyte
proton battery79
proton battery
3.9.1 Open circuit potential characterization79
3.9.1 Open circuit potential characterization

4.7 Thermal stability properties of porous chitosan membranes	112
4.8 Tensile properties of porous chitosan membranes	120
4.9 Summary	125
5 CHAPTER 5 PROPERTIES OF POROUS CHITOSAN	
MEMBRANE-NH ₄ CH ₃ COO ELECTROLYTE	126
5.1 Introduction	126
5.2 Impedance and conductivity of NH ₄ CH ₃ COO electrolyte	127
5.3 Electrolyte uptake of porous chitosan membranes in NH ₄ CH ₃ COO	131
5.4 Impedance and relation between conductivity and electrolyte uptake of	
PC5 membrane-NH ₄ CH ₃ COO electrolyte	134
5.5 Temperature dependence and activation energy of PC5 membrane-	
NH ₄ CH ₃ COO electrolyte	140
5.6 Electrochemical properties of PC5 membrane-NH ₄ CH ₃ COO electrolyte	143
5.7 Functional group of PC5 membrane-NH ₄ CH ₃ COO electrolyte	146
5.8 Morphology, structural, thermal stability, and tensile properties of porous	
chitosan membrane-NH ₄ CH ₃ COO electrolyte	153
5.9 Summary	163
6 CHAPTER 6 PROPERTIES OF POROUS CHITOSAN	
MEMBRANE-NH ₄ CH ₃ COO ELECTROLYTE COIN CELL	
PROTON BATTERIES	165
6.1 Introduction	165
6.2 Open circuit potential of coin cell proton battery	165

6.3 Current-voltage and current density-power density of coin cell proton	
battery	166
6.4 Discharge profile of coin cell proton battery	168
6.5 Mechanism, actual application, and simulation of coin cell proton	
battery	170
6.6 Summary	176
7 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS	177
7.1 Conclusion.	177
7.2 Recommendations for future investigations	179
REFERENCES	181
LIST OF PUBLICATIONS	195
APPENDICES	

LIST OF TABLES

		Page
Table 2.1	Conductivity ranges of various electrolytes at ambient temperature	10
Table 2.2	Types of proton conductors	12
Table 2.3	Summary of previous studies related to literature reviews	58
Table 3.1	Chemical and materials used for porous chitosan membranes and NH ₄ CH ₃ COO electrolyte	65
Table 3.2	Chemical and materials used for proton battery fabrication	65
Table 3.3	Membranes codes based on chitosan, SiO2 and NaOH composition	67
Table 3.4	Details of conductivity test sample for NH ₄ CH ₃ COO electrolyte	72
Table 3.5	Composition and percentage of materials for the anode	77
Table 3.6	Composition and percentage of materials for the cathode	77
Table 4.1	Values of average pores size of all PC membranes	93
Table 4.2	Value of water uptake and pores size of all PC membranes	97
Table 4.3	Functional group of chitosan powder, CA membrane, and SiO ₂	105
Table 4.4	Thermal stability properties of chitosan powder, CA membrane and all PC membranes	119
Table 4.5	Tensile properties of CA and all PC membranes	123
Table 5.1	The NH ₄ CH ₃ COO electrolyte composition and conductivity values	128
Table 5.2	Value of electrolyte uptake and pores size of all PC membranes	133
Table 5.3	The values of bulk resistance, conductivity, and electrolyte uptake of PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	139
Table 5.4	Value of conductivity and activation energy of PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	143
Table 5.5	Breakdown voltage values of PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	145

Table 5.6	Functional group of PC5, ammonium acetate, PC5-5A24H, PC5-5A48H, PC5-5A72H, PC5-5A96H, and PC5-5A120H	152
Table 5.7	Thermal stability properties of PC5, PC5-5A48H and PC5-5A120H membranes	160
Table 5.8	Mechanical properties of PC5, PC5-5A48H, and PC5-5A120H membranes	162
Table 6.1	Values of discharge profile voltage, time and specific discharge capacity	170
Table 6.2	Properties of coin cell proton batteries connected to green LED based on real and simulation of coin cell proton batteries	175

LIST OF FIGURES

		Page
Figure 2.1	Structure of chitosan	13
Figure 2.2	Different formations of chitin and chitosan	14
Figure 2.3	Protonation and deprotonation of chitosan's amine group	15
Figure 2.4	Structure of CH ₃ COOH	16
Figure 2.5	FTIR spectra of chitosan film cast from different acid solutions; acetic acid (AA), citric acid (CA), lactic acid (LA), and malic acid (MA)	17
Figure 2.6	The FTIR spectra of (a) pure chitosan and (b) pure CA	17
Figure 2.7	Structure of NH ₄ CH ₃ COO	18
Figure 2.8	The Grotthuss mechanism (a) analogy and (b) in chitosan complexed with P(AA-AMPS)	19
Figure 2.9	(a) Conductivity at room temperature, (b) conductivity at elevated temperature, (c) activation energy, (d) FTIR spectra, and (e) XRD diffraction of CA as a function of NH ₄ CH ₃ COO content at room temperature	21
Figure 2.10	Linear sweep voltammogram of starch-chitosan-NH4Cl-glycerol membrane	22
Figure 2.11	Types of membrane	24
Figure 2.12	Morphologies of porous membrane produced by (a) solvent casting combined with salt-leaching technique, (b) thermally-induced phase separation technique, (c) melt-molding technique and (d) emulsion freeze-drying technique	26
Figure 2.13	The sonication process	27
Figure 2.14	Mechanism of sonication in biphasic systems	28
Figure 2.15	Sonication experimental setup, including (1) sonicator probe, (2) glass reactor, (3) ultrasonic bath, (4) ultrasonic processor, (5) circulating water bath, (6) electrical source, (7) water inlet to circulating water bath, and the (8) water outlet from circulating water bath	29
Figure 2.16	Mechanism pathway for the sonication of chitosan in CH ₃ COOH solution	30

Figure 2.17	ultrasonolytic reactions	30
Figure 2.18	Formation of chitosan macroporous membranes	32
Figure 2.19	Preparation of macroporous asymmetric chitosan (CS) membranes, SiO ₂ particles (full circles), pores (open circles)	33
Figure 2.20	The morphology of chitosan and CH ₃ COOH (a) before sonication and after sonication for various test conditions at (b) 40 °C for 30 min at 0.5% v/v, (c) 40 °C for 120 min at 0.5% v/v, (d) 60 °C for 120 min at 0.5% v/v, and at (e) 60 °C for 120 min at 1% v/v	35
Figure 2.21	Morphologies of (a) surface and (b) cross section of macroporous chitosan membranes	36
Figure 2.22	The SEM micrographs, including bottom surface, top surface, and cross-section for chitosan:SiO ₂ at different ratios	37
Figure 2.23	Water uptake of pure chitosan and porous chitosan- SiO_2 membranes with different ratio	38
Figure 2.24	X-ray diffraction patterns of chitosan- SiO_2 hybrids with different SiO_2 contents	39
Figure 2.25	The FTIR spectra for different functional groups of chitosan-SiO ₂ hybrids	41
Figure 2.26	Hypothetic scheme of interaction between chitosan and SiO_2	42
Figure 2.27	The TGA-DTG curve of chitosan-SiO ₂	43
Figure 2.28	Stress-strain curve of porous chitosan-SiO ₂ membrane with different chitosan-SiO ₂ weight ratios of 2:1 (S1), 1:1 (S2), and 1:2 (S3)	44
Figure 2.29	Basic components of a cell	45
Figure 2.30	Cross section of miniature <i>Eveready</i> alkaline-manganese dioxide battery	46
Figure 2.31	Schematic illustration of the key elements in a battery and b) typical microstructure of a battery separator membrane	49
Figure 2.32	Open circuit potential of proton battery based on (a) chitosan-NH ₄ NO ₃ -EC electrolyte during 24 hours of storage and (b) starch-chitosan-NH ₄ Cl-glycerol electrolyte during 48 hours of storage	52
Figure 2.33	The plot of <i>I-V</i> and <i>J-P</i> for proton battery based on (a) chitosan-NH ₄ NO ₃ -EC electrolyte and (b) starch-chitosan-NH ₄ Cl-glycerol electrolyte	53

Figure 2.34	The discharge curves of proton battery based on chitosan- NH ₄ NO ₃ -EC electrolyte using constant current at 1.0 mA	54
Figure 2.35	Discharge profiles of proton battery based on starch-chitosan-NH ₄ Cl-glycerol electrolyte at constant current of (a) 0.10, (b) 0.25, (c) 0.40, and (d) 0.60 mA	55
Figure 2.36	The PEMFC (a) setup for the controlled test, (b) base model of the equivalent circuit, and (c) experimental and simulated polarization curves at 40 and 70 $^{\circ}$ C	57
Figure 3.1	Preparation and characterization of PC membranes for objective 1 (Part A)	63
Figure 3.2	Preparation and characterization of PC membrane-NH ₄ CH ₃ COO electrolyte for objective 2 (Part B) and fabrication of proton battery for objective 3 (Part C)	64
Figure 3.3	Sonication of CA-SiO ₂ solution	67
Figure 3.4	Schematic diagram preparation of PC membrane	68
Figure 3.5	PC membrane dumbbell specimen	71
Figure 3.6	Schematic illustration of NH ₄ CH ₃ COO electrolyte solution during EIS test	73
Figure 3.7	Anode pellet after pressing process	76
Figure 3.8	Cathode pellet after pressing process	77
Figure 3.9	Schematic diagram of coin cell proton battery components	78
Figure 3.10	Coin cell proton battery after completion of fabrication process	79
Figure 4.1	Surface morphology of (a) chitosan powder and (b) SiO_2 at a magnification of $500x$	83
Figure 4.2	Top, bottom, cross-section micrograph of CA membrane, PC1, PC2, PC3, PC4, PC5, PC6, PC7, and PC8 at a magnification of 500x	85
Figure 4.3	Distribution of pores size for (a) PC1, (b) PC2, (c) PC3, (d) PC4 (e) PC5, (f) PC6, (g) PC7, and (h) PC8 membranes	92
Figure 4.4	Average pores size of CA membrane and all PC membranes	94
Figure 4.5	Formation of pores for all PC membranes	94
Figure 4.6	Relation between average water uptake and pores size	97

Figure 4.7	Photograph of CA membrane and all PC membranes before and after water uptake analysis	98
Figure 4.8	XRD of chitosan powder, CA membrane, all PC membranes and SiO_2	101
Figure 4.9	Figure 4.9: FTIR spectra of chitosan powder and CA membrane at different range of (a) 3800-2800 cm ⁻¹ , (b) 1800-1500 cm ⁻¹ , (c) 1450-1050 cm ⁻¹ , and, (d) 1200-600 cm ⁻¹	103
Figure 4.10	FTIR spectra of SiO_2 at different range of (a) 4000-2800 cm ⁻¹ and (b) 2000-500 cm ⁻¹	104
Figure 4.11	FTIR spectra of CA membrane, SiO ₂ , with (a) PC1, (b) PC2, (c) PC3, (d) PC4, (e) PC5, (f) PC6, (g) PC7, and (h) PC8 in the region of 1250-500 cm ⁻¹	106
Figure 4.12	The CA solution (a) at the beginning of sonication, (b) during sonication, (c) proposed reaction, and (d) after completion of sonication process	109
Figure 4.13	The CA-SiO ₂ solution (a) at the beginning of sonication, (b) during sonication, (c) after completion of sonication process, and (d) after dried and membrane was formed	110
Figure 4.14	The PC membrane (a) soaked in NaOH solution, (b) during porogen removal process, (c) after completion of porogen removal process, and (d) after plasticized with glycerol	111
Figure 4.15	TGA-DTG curve of (a) chitosan powder and (b) CA membrane	113
Figure 4.16	TGA-DTG curve of (a) SiO ₂ , (b) PC1, (c) PC2, (d) PC3, (e) PC4, (f) PC5, (g) PC6, (h) PC7, and (i) PC8 membranes	115
Figure 4.17	The selected samples including chitosan powder, CA membrane, PC1, PC5 and PC8 porous membranes (a) TGA curve and (b) DTG curve	118
Figure 4.18	Tensile properties, including (a) stress-strain relation, (b) tensile strength (c) modulus of elasticity, and (d) elongation at break of CA and all PC membranes	124
Figure 5.1	Impedance plot of (a) deionized water and ammonium acetate at different concentrations of (b) 0.5 M, (c) 1.0 M, (d) 1.5 M, (e) 2.0 M, (f) 2.5 M, and (g) 3.0 M, (h) 3.5 M, (i) 4.0 M, (j) 4.5 M, (k) 5.0 M, (l) 5.5 M, (m) 6.0 M, (n) 6.5 M, and (o) 7.0 M	129
Figure 5.2	Conductivity of ammonium acetate electrolyte at various concentrations	131
Figure 5.3	Relation between average of 5.0 M ammonium acetate electrolyte	133

Figure 5.4	Impedance plot of (a) dry PC5 membrane and PC5 membrane after soaked in 5.0 M ammonium acetate at different duration (b) 24 hour (c) 48 hour, (d) 72 hour, (e) 96 hour, and (f) 120 hour	135
Figure 5.5	Relation between conductivity and electrolyte uptake of PC5 membrane before and after soaked in 5.0 M ammonium acetate for 24 to 120 hours	136
Figure 5.6	The proposed conduction mechanism of PC5 (a) before and (b) after soaking in 5.0 M ammonium acetate	138
Figure 5.7	Temperature dependence PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	141
Figure 5.8	Activation energy and conductivity of PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	142
Figure 5.9	LSV curves of PC5 membrane before and after soaking in 5.0 M ammonium acetate for 24 to 120 hours	145
Figure 5.10	FTIR spectra of PC5-5A24H in different region of (a) 3800-2200 cm ⁻¹ , (b) 1800-1200 cm ⁻¹ , (c) 1200-900 cm ⁻¹ , and (d) 900-550 cm ⁻¹	149
Figure 5.11	FTIR spectra of PC5-5A48H in different region of (a) 3800-2200 cm ⁻¹ , (b) 1800-1200 cm ⁻¹ , (c) 1200-900 cm ⁻¹ , and (d) 900-550 cm ⁻¹	149
Figure 5.12	FTIR spectra of PC5-5A72H in different region of (a) 3800-2200 cm ⁻¹ , (b) 1800-1200 cm ⁻¹ , (c) 1200-900 cm ⁻¹ , and (d) 900-550 cm ⁻¹	150
Figure 5.13	FTIR spectra of PC5-5A96H in different region of (a) 3800-2200 cm ⁻¹ , (b) 1800-1200 cm ⁻¹ , (c) 1200-900 cm ⁻¹ , and (d) 900-550 cm ⁻¹	150
Figure 5.14	FTIR spectra of PC5-5A120H in different region of (a) 3800-2200 cm ⁻¹ , (b) 1800-1200 cm ⁻¹ , (c) 1200-900 cm ⁻¹ , and (d) 900-550 cm ⁻¹	151
Figure 5.15	Cross-section and schematic model of (a) PC5, (b) PC5-5A48H and (c) PC5-5A120H membranes	154
Figure 5.16	XRD of NH ₄ CH ₃ COO, PC5, PC5-5A48H, and PC5-5A120H membranes	156
Figure 5.17	TGA-DTG curves of (a) PC5, (b) PC5-5A48H and (c) PC5-5A120H membranes	158
Figure 5.18	The (a) TGA and (b) DTG curves of PC5, PC5-5A48H and PC5-5A120H membranes	159
Figure 5.19	Stress-strain relation of PC5, PC5-5A48H, and PC5-5A120H membranes	163
Figure 6.1	Open circuit voltage of coin cell proton battery	166

Figure 6.2	Current-voltage and current density-power density of coin cell proton battery	167
Figure 6.3	Discharge profile of coin cell proton battery at 0.1, 0.5, 1.0, and 5.0 mA	169
Figure 6.4	Chemical reaction that occurred inside the coin cell proton battery	171
Figure 6.5	The actual application of coin cell proton batteries connected in series	172
Figure 6.6	Simulation of coin cell proton batteries using MULTISIM (a) before, (b) during, and (c) after completion of testing	173
Figure 6.7	Output voltage of coin cell proton batteries connected to series with green LED (a) real and (b) simulation	174

LIST OF ABBREVIATIONS

Abbreviation/Symbol Materials/Compound

CA Chitosan acetate

DBP Dibutyl phthalate

DI water Deionized water

EIS Electrochemical impedance spectroscopy

EC Ethylene carbonate

FESEM Field emission scanning electron microscopy

FTIR Fourier transform infrared spectroscopy

I-V Current-voltage

J-P Current density-power density

KOH Potassium hydroxide

LED Light emitting diode

LSV Linear sweep voltammetry

OCP Open circuit potential

PEMFC Polymer electrolyte membrane fuel cell

PTFE Polytetrafluoroethylene

PVdF-HFP poly(vinylidene fluoride-co-hexafluoropropylene)

Poly(acrylic acid) PAA

SEM Scanning electron microscopy

SS Stainless steel

SHNTs Sulfonate polyelectrolyte brushes

TGA-DTG Thermogravimetric-derivative thermogravimetric analysis

XRD X-ray diffraction

LIST OF SYMBOLS

Symbol Description

°C Degree Celsius

 σ Conductivity

 E_a Activation energy

H⁺ Proton ion

K Kelvin

M Molar

mA miliAmpere

mA cm⁻² miliAmpere per centimeter squared

mA h miliAmpere hour

mA h g⁻¹ miliAmpere hour per gram

mW cm⁻² miliWatt per centimeter squared

n Number of free mobile

q Electronic charge

 R_b Bulk resistance

r Internal resistance

 μ H⁺ ions mobility

S cm⁻¹ Siemens per centimeter

T Temperature

V Voltage

PENYEDIAAN DAN PENCIRIAN MEMBRAN KITOSAN BERLIANG DIRENDAM DALAM ELEKTROLIT AMMONIUM ASETAT UNTUK BATERI PROTON

ABSTRAK

Membran berliang mendapat banyak perhatian untuk aplikasi bateri kerana keupayaan untuk mengekalkan elektrolit dalam membran. Kesan nisbah berat kitosan:SiO₂ dalam penyediaan membran kitosan berliang telah dikaji dalam kajian ini. Membran kitosan berliang disediakan melalui gabungan ultrasonik dan pengacuan larutan diikuti kaedah fasa balikan dengan nisbah berat SiO₂ penyingkir porogen 0.4-4.0. Membran kitosan berliang dengan nisbah berat kitosan-SiO₂ 1:2.0 (PC5) menghasilkan saiz liang optimum 8.5 ± 0.4 µm dengan struktur amorfus, penyerapan air tertinggi 146.4 ± 7.3%, interaksi kimia, kestabilan haba dan sifat tegangan yang baik. Proses rendaman lanjutan membran dalam 5.0 M larutan elektrolit NH₄CH₃COO selama 48 jam (PC5-5A48H) menghasilkan kekonduksian tertinggi $(4.5 \pm 1.7) \times 10^{-3}$, penyerapan elektrolit tertinggi $308.6 \pm 15.4\%$, tenaga pengaktifan terendah 0.04 ± 0.002 eV, voltan pecahan optimum 1.8 V, interaksi kimia, morfologi, struktur amorfus, kestabilan haba dan sifat tegangan yang baik. Fabrikasi sel syiling bateri proton menggunakan PC5-5A48H menunjukkan voltan litar terbuka 1.5 V selama 7 hari, ketumpatan kuasa maksimum 6.7 mW cm⁻² dan rintangan dalaman yang kecil 0.03 Ω. Kapasiti nyahcas tertentu yang diperolehi dari profil nyahcas meningkat (23.4, 41.0 44.6 and 47.7 mA h g⁻¹) berkadar terus dengan arus nyahcas (0.1, 0.5, 1.0 and 5.0 mA). Voltan keluaran eksperimen dan simulasi dua sel syiling bateri proton yang digabungkan secara sesiri dengan diod pemancar cahaya warna hijau adalah antara 2.0-2.6 V.

PREPARATION AND CHARACTERIZATION OF POROUS CHITOSAN MEMBRANE SOAKED IN AMMONIUM ACETATE ELECTROLYTE FOR PROTON BATTERIES

ABSTRACT

Porous membrane received much attention for batteries application due to the ability to retain electrolyte inside membrane. The effects of chitosan:SiO₂ weight ratio in preparation of porous chitosan-SiO₂ membranes were investigated in this study. Porous chitosan membranes were prepared via ultrasonic mix solution-cast and phase inversion method using different SiO₂ porogen removal weight ratio from 0.4-4.0. Porous chitosan membrane with chitosan:SiO₂ weight ratio 1:2.0 (PC5) produced optimum pores with size of 8.5 ± 0.4 µm, as well as with an amorphous structure, the highest water uptake of (146.4 ± 7.3) %, good chemical interaction, thermal stability and tensile properties. Further soaking this membrane in 5.0 M NH₄CH₃COO electrolyte solution for 48 hours (PC5-5A48H) produced the highest conductivity $((4.5 \pm 1.7) \times 10^{-3})$, highest electrolyte uptake $(308.6 \pm 15.4 \%)$, lowest activation energy (0.04 ± 0.002 eV), optimum breakdown voltage (1.8 V), good chemical interaction, morphology, amorphicity, thermal stability and tensile properties. Fabrication of coin cell proton battery using PC5-5A48H displayed an open circuit potential of 1.5 V for 7 days, maximum power density (6.7 mW cm⁻²), and small current resistance (0.03 Ω). Specific discharge capacities were obtained from discharge profile increment (23.4, 41.0, 44.6, and 47.7 mA h g⁻¹) as the discharge currents increased (0.1, 0.5, 1.0, and 5.0 mA). The output voltage of experimental and simulation of the two coin cell proton batteries combined in series connected with green light emitting diode was between 2.0-2.6 V.

CHAPTER 1

INTRODUCTION

1.1 Background

Chitosan is a linear polysaccharide that is composed of randomly distributed β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine derived from deacetylation of chitin [1]. It has high hydrophilicity and good for proton conducting application attributed by the hydroxyl (–OH), ether (C–O–C), and primary amine (NH₂) group on its backbone that can attach with oxygen from the water molecule to produce hydrogen bond (CH₂OH–OH₂, OH–OH₂ and NH₂–H₂O) [2,3]. Hence, modification of proton-conducting membrane based on chitosan has received much attention by many researchers aiming for environmental-friendly materials as green materials for electrochemical application [1,4-8].

Inert ceramic oxides fillers, such as silica (SiO₂), alumina (Al₂O₃), copper oxide (CuO), or titanium oxide (TiO₂) have been used to produce porous membrane [9-12]. This porous membrane has been widely utilized in various applications, such as dehumidification processes [13], medical purposes [14], and electrochemical sensors [15]. Among these inert ceramic oxides, SiO₂ has excellent properties as a porogen agent to produce porous membrane via phase inversion technique [14,16-18]. In this method, SiO₂ particles are soluble in alkaline sodium hydroxide (NaOH) solutions [14,16,19]. The dissolution of SiO₂ particles in NaOH can generate porous chitosan membrane.

The proton batteries consist of three major components, which are zinc (Zn) anode; electrolyte that can be in liquid, gel, or solid form; as well as manganese (IV) oxide (MnO₂) cathode. Normally, the proton-conducting electrolyte based on chitosan mixed with salt, such as ammonium acetate (NH₄CH₃COO) [4], ammonium nitrate (NH₄NO₃) [20], and ammonium chloride (NH₄Cl) [21], is involved in the transportation of proton charge carriers, such as H⁺ and NH₄⁺, as a source of electric energy via direct conversion of chemical energy. Besides, the existence of uniform pores inside the membrane can be enhanced in charge carriers transportation through the pores and increase conductivity values together with segmental motion of polymer [22].

1.2 Problem statement

Most of prior studies have used chitosan proton conducting polymer electrolyte in solid form. The drawback is the ability of solid chitosan electrolyte to absorb water lower (~ 95 %) compared with porous chitosan (~173 %) [14]. This is due to the dense and rough surface morphology of solid chitosan electrolyte since the salt was complexed with chitosan during preparation process [6,23-27]. In contrast, the porous chitosan membrane has pores on surface and cross-section. Santos et al. [14] found the size of pores inside the porous chitosan membrane was in a range between 4 to 20 μm, while Clasen et al. [16] obtained the size of pores in a range of 40 to 63 μm. The existence of pores inside the membrane shows the potential of porous membrane to soak in electrolyte compared with solid polymer electrolyte. However, the analyses of porous chitosan membrane in prior studies still lack on several characterization techniques such as chemical interaction, structural and thermal stability and tensile properties.

Various types of ammonium salts were used to increase the conductivity of chitosan [28-33]. The NH₄CH₃COO is one of type of salt that has been mixed with chitosan and achieved the conductivity up to 10⁻⁴ S cm⁻¹ [34]. However, in previous study, NH₄CH₃COO was complexed with chitosan solid polymer electrolyte during sample preparation. The using of porous chitosan membrane has potential to absorb extra H⁺ ions during soaking in electrolyte and increase conductivity. This is due to the existence of pores inside membrane compared with solid polymer electrolyte. However, the effect of soaking chitosan membrane in NH₄CH₃COO electrolyte to improve conductivity values and electrolyte uptake still has not been looked into.

Prior studies on proton batteries based on chitosan solid polymer electrolyte have shown that the discharge capacity was in the range of 9.0 to 17.0 mA h by using discharge current between 0.6 and 1.0 mA [26,35]. In these studies, the solid polymer electrolytes have been chosen based on the highest conductivity and good electrochemical properties. Since the porous chitosan membrane have the ability to absorb extra H⁺ ions during soaking in electrolyte, hence, it has potential in improving the electrochemical properties and increase the discharge capacity of proton batteries. However, the previous studies on porous chitosan membrane were mainly focused on fuel cell application and performance [36-38].

Moreover, there was no previous studies had been done in comparing the real circuit and simulation of proton batteries performance. The value of proton batteries performance obtained from simulation result is important in comparing with the real performance after being connected with load. For instance, Wu et al. [39] simulated the discharge behaviors of batteries in series and parallel-connected battery pack.

However, this simulation was focused on lithium-ion batteries. Meanwhile, Mohamad et al. [40] connected three cells in series to turn on a digital watch, but it was not supported by numerical analysis.

1.3 Objectives

This work mainly focused on the following objectives:

- i. To characterize the morphology, pores size, structural, water uptake, chemical interaction, thermal stability and tensile properties of porous chitosan membranes prepared via phase inversion method and as SiO_2 porogen agent.
- ii. To improve the conductivity of porous chitosan membrane-NH₄CH₃COO electrolyte with optimum electrolyte uptake, high breakdown voltage, good chemical interaction, morphological, structural, thermal stability, and tensile properties.
- iii. To fabricate and characterize the properties of $Zn+ZnSO_4\cdot 7H_2O\parallel$ porous chitosan membrane-NH₄CH₃COO electrolyte \parallel MnO₂ coin cell proton battery, and simulate using MULTISIM.

1.4 Thesis outline

This chapter presents an introduction to the thesis with a brief explanation on the problems and the objectives of the present study. Meanwhile, Chapter 2 reviews the fundamental principle of polymer electrolyte, recent progress, and improvement of the proton-conducting membrane properties based on chitosan, as well as the use of SiO₂ as a porogen agent to produce porous membrane. The basic mechanism and the performance of proton batteries are also discussed. Next, Chapter 3 explains all