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Figure 4.39e The effect of ageing time and temperature on hardness of 
the alloy B5 after ageing at 100, 185 and 300 oC. 
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Figure 4.46 TEM micrographs of alloys aged at 185 oC for 30 hrs. 
Electron beam is in [100] matrix direction. (a) A1, (b) B1, 
(c) A4 and (d) B4. At this stage, ’’ needle-shaped 
precipitates (shown by arrows) predominate in all dilute 
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Figure 4.47 TEM micrographs of alloys (e) A4 and (f) B4 aged at   
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Figure 4.48 TEM micrographs and corresponding SAD pattern of 
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Figure 4.49 TEM micrographs of alloys (c) A4 and (d) B4 aged at    
300 oC for 3 minutes (under-aged). Electron beam is in 
[100] matrix direction. At this stage, ’’ needle-shaped 
precipitates (shown by arrows) predominate in less dilute 
alloys. 
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Figure 4.50 TEM micrographs of alloys aged at 300 oC for 1 hour 
(close to peak-aged). Electron beam is in the [100] matrix 
direction. (a) A1, (b) B1, (c) A4 and (d) B4. At this stage, 
’’ needle-shaped precipitates (shown by arrows) 
predominate in all dilute alloys. 
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Figure 4.51 TEM micrographs of alloys aged at 300 oC for 1000 hour 
(over-aged). Electron beam is in the [100] matrix 
direction. (a) A1, (b) B1, (c) A4 and (d) B4. ’  rod-
shaped precipitates (shown by arrows) were observed in 
alloy A4 meanwhile coarse precipitates predominate in 
other dilute alloys. 
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Figure 4.52 TEM micrographs of alloy A4 after ageing at 300 oC for 
1000 hour (an image at lower magnification). Electron 
beam is in the [100] matrix direction. ’ rod-shaped 
(shown by arrows) and coarse precipitates predominate in 
alloy A4. 
 

 175 

Figure 4.53 (a) TEM dark field micrographs of alloy B4 after ageing 
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Figure 4.55 (a) TEM bright field micrographs of alloy B4 after ageing 
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Figure 4.56 (a) TEM bright field micrographs of alloy B4 after ageing 
at 300 oC for 1000 hours and (b) EDX spectrum from 
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Figure 5.1 The pseudo-binary Al and Mg2Si phase diagram. 
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Figure B-1 Measurements extracted from fringe micrograph and plot 
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Figure B-2 Convergent beam electron diffraction pattern from alloy 
A4, aged for 1 hour at 300 oC. 
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KESAN Mg, Si DAN Cu TERHADAP RESPONS PENUAAN BAGI            

ALOI ALUMINIUM SIRI 6XXX CAIR 

 

 

Kesan magnesium (Mg), silikon (Si) dan kuprum (Cu) serta rawatan haba terhadap 

respons penuaan bagi aloi cair boleh-dirawat haba siri 6xxx telah dikaji. Aloi 

tersebut mengandungi di antara 0.22 dan 0.79 berat% Si dan di antara 0.20 dan 0.51 

berat% Mg.  Dalam kajian ini, sesetengah aloi mengandungi sebanyak 0.1 berat% 

Cu manakala di antara 0.0001 hingga 0.0002 berat% Cu pula dianggap sebagai aloi-

bebas Cu. Untuk mempelajari kesan komposisi terhadap respons penuaannya, 

kesemua sampel aloi telah dirawat larutan pada suhu  530  5 oC selama  5 minit dan 

disempuh lindap ke dalam air sejuk pada suhu 0 oC sebelum dilakukan penuaan 

semulajadi pada suhu bilik dan tiruan pada suhu ternaik. Kesan penuaan semulajadi 

dan tiruan ke atas sifat-sifat mekanik diukur melalui ujian kekerasan Vickers dan 

ujian ketegangan. Perkembangan mikrostruktur yang terbentuk sepanjang penuaan 

tiruan dilihat dengan menggunakan mikroskop electron transmisi (TEM). Hasil 

kajian telah menunjukkan terdapat perkaitan antara respons penuaan dan komposisi,  

kekerasan, kekuatan dan mikrostruktur. Semakin tinggi kandungan Mg2Si dan 

lebihan Si di dalam aloi telah menambah nilai kekerasan dan kekuatan tegangan 

serta menunjukkan respons penuaan yang terkuat. Sedikit penambahan kandungan 

Cu hanya memberi kesan yang sedikit terhadap peningkatan kekerasan, kekuatan 

dan respons penuaan sepanjang penuaan tiruan. Tiada kesan atau perubahan yang 

berlaku terhadap sifat-sifat tersebut pada kes penuaan semula jadi. Hasil dari 

penuaan ini pada suhu 185 oC, butiran mendakan berbentuk jarum terbentuk 

manakala pada suhu 300 oC butiran mendakan berbentuk jarum dan rod dengan 

paksi utamanya selari dengan arah matrik [100] telah dilihat di dalam TEM. Jumlah 

ketumpatan pemendakan telah meningkat dengan peningkatan kandungan Mg2Si 

dan lebihan Si. Tambahan 0.1 berat% Cu telah menghaluskan pemendakan dan 

meningkatkan ketumpatan butiran mendakan tersebut. Dengan memanjangkan masa 

penuaan sehingga 1000 jam pada suhu 300 oC telah menghasilkan mendakan kasar 

di dalam kebanyakan aloi terlebih penuaan. Analisis dengan TEM-EDX terhadap 

mendakan kasar pada aloi Al-0.50wt%Mg-0.76wt%Si menunjukkan mendakan 

tersebut terdiri daripada Mg2Si, AlFeSi, -AlMnSi dan Si telah wujud bersama.  
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EFFECTS OF Mg, Si AND Cu ON AGEING RESPONSE 

OF DILUTE 6XXX SERIES ALUMINIUM ALLOYS 

 

ABSTRACT 

 

The effects of magnesium (Mg), silicon (Si) and copper (Cu) on ageing response of 

heat treatable dilute 6xxx series aluminium alloys have been investigated. The alloys 

contained between 0.22 to 0.79 wt% Si and 0.20 to 0.51 wt% Mg.  In this study, 

some alloys contained 0.1 wt% Cu and others contained 0.001 to 0.002 wt% Cu 

which were considered as Cu-free alloys. In order to study the effect of composition 

on the ageing response, the alloys samples were solution treated at 530  5 oC for 5 

minutes and then water quenched into ice water at 0 oC before naturally aged at 

room temperature and artificially aged at elevated temperature. The effects of 

natural ageing and artificial ageing on the ageing response were investigated using 

Vickers hardness test and tensile test, respectively. The microstructures of 

artificially aged alloys were investigated by transmission electron microscopy 

(TEM). The results showed a correlation between ageing response and composition, 

hardness, strength and microstructure of the alloys. The higher solute contents of 

Mg2Si and Silicon in excess (ExSi) in the alloys produced higher hardness and 

tensile strength and consequently the strongest ageing response. Addition of small 

Cu content (0.1 wt%) gave only a slight increase in hardness, strength and ageing 

response during artificial ageing but not in the case of natural ageing. The TEM 

results revealed that the precipitates formed during artificial ageing at 185 oC were 

needles and at 300 oC were needles and rods with their major axes parallel to [100] 

of the matrix direction. The number density of precipitates increased as their solute 

content of Mg2Si and ExSi increased. Addition of 0.1 wt% Cu refined the 

precipitates and increased slightly the number density of precipitates in the dilute 

alloys. It was found that prolong ageing time for 1000 hours at 300 oC resulted in the 

formation of coarse precipitates in the most of over-aged alloys. Analysis by TEM-

EDX on coarse precipitates of over-aged alloy of alloy Al-0.50wt%Mg-0.76wt%Si 

indicates that Mg2Si, AlFeSi, -AlMnSi and Si precipitates were coexist in this 

alloy.   
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CHAPTER 1 

 

INTRODUCTION 
 

 
 
 
1.1 Aluminium and Its Alloys 

 
 

Aluminium has been identified as the most common metal on earth and it is the third 

most abundant element of the earth’s crust. The atomic number of an aluminium is 

13, with face-centred cubic (FCC) crystal structure and its lattice parameter, a = 

0.4041 nm. Aluminium has useful characteristics such as a low density and the 

specific weight is approximately one third of that of steel (2.7 gcm-3 compared to 

steel 7.9 gcm-3).  

 

Pure aluminium is undesirable in most engineering design because it is very 

soft and has a comparatively low strength (yield strength: 7-11 MPa). Pure 

aluminium does not have good casting or mechanical properties. The mechanical 

and physical properties of pure aluminium can be improved by deliberate additions 

of alloying elements, heat treatment and mechanical working. The most common 

alloying elements in aluminium alloys are magnesium (Mg), silicon (Si), copper 

(Cu), zinc (Zn) and manganese (Mn). 

 

Figure 1.1 shows the markets of aluminium consumption in United State and 

China in the year 2002 (Hunt, 2004). It can be seen that the Chinese market is more 

heavily toward building and construction and substantially less toward packaging. 

However, the market in United State is more toward transportation and packaging. 

Another prospect demand for aluminium applications is found in the automotive 

industries (Hunt, 2004). 

 

The useful characteristics of aluminium alloys are high reflectivity, high 

electrical and thermal conductivity, good machining properties, excellent ductility 

and malleability and the material is completely recyclable. Aluminium alloys are 
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easy to be shaped and they have a very good resistance to corrosion.  The aluminium 

alloys protect themselves naturally from corrosion by forming instantaneously a 

very thin coherent oxide film on the surface. This acts as a protective coating and 

prevents further corrosion attack by the environment.  A very good corrosion 

resistant, surface properties and good weldability are factors that together with a low 

price make them commercially very attractive (Marioara et al., 2003). The unique 

combinations of properties provided by aluminium alloys make the variety of 

applications of the material continues to increase. The largest uses of aluminium 

alloys are in transportation, containers, packaging, building and construction.  

 
Figure 1.1: The markets of aluminium consumption in United State and China in the 
year 2002 (Hunt, 2004). 

  

The aluminium alloys can be strengthened by three ways: (i) the elements 

remain within the aluminium matrix as substitutional solute atoms and strengthening 

occurs by solid solution strengthening, (ii) the elements dissolved and then 

precipitated out by suitable heat treatment to form fine precipitates that can give 

significant strength increase and this is also called precipitation hardening process 

and (iii) deformation of the alloys during cold working increase the number density 

of dislocation resulting in modest strength increase.   
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One of the important types of aluminium alloys is aluminium-magnesium-

silicon alloys (Al-Mg-Si) or 6xxx series alloys. Basically they contain Mg and Si as 

the main alloying elements, but there are significant differences in wt% ratio among 

them. High strength 6xxx series alloys are characterised by the presence of high 

content of Mg, Si and Cu. Dilute 6xxx series alloys have been recognised from the 

low level composition of Mg and Si and other alloying elements. The addition of 

Mg and Si to aluminium increases the aluminium response to heat treatment due to 

the formation of Mg2Si, an intermetallic compound. This improves corrosion 

resistance as well as the strength of the alloy (Flower, 1995; Gaffar, 2007). 

 

The applications of 6xxx series alloy depend very much on the alloying 

elements they contain and heat treatments that are given. These alloys have found 

their greatest use in applications requiring medium to high strength material (Zhen et 

al., 1997b). Nowadays, the 6xxx series alloys are the most common aluminium 

alloys that widely used in automotive and aerospace industries, structural 

applications, engineering sections for building, architecture and construction 

industries (Ratcliffe, 1993; Ramachandran, 2006; Zuo & Jing, 2008; Abid, 2010). In 

aluminium related industries, it is very important to enhance the properties of the 

alloys by applying suitable heat treatment and alteration of alloy composition in 

order to make them more suitable for fabrication wide range of useful products. 
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1.2 Problem Statement 

 

Research has focused on 6xxx series alloys since they are being increasingly used in 

automotive applications such as for panel body car. It is well known that the 6xxx 

series alloys were chosen due to its ability to form a complex shapes. For car 

components application, good formability and strength are very important properties 

that must be focused. It has been found that the paint bake process plays a key role 

in optimising formability and strength properties (Yassar & Field, 2005).  Therefore, 

the precipitation sequence of the alloys during paint bake process needs to be 

studied and understood in order to optimise this process.  

 

Although the precipitation hardening process of 6xxx series alloys has been 

extensively studied by many workers (Miao & Laughlin, 1999 & 2000; Murayama 

et al., 2001; Yassar & Field, 2005), the understanding of the precipitation hardening 

process and its sequence is very complex and difficult to optimise since the 

hardening process is governed by many parameters such as in addition to alloys 

composition, solution treatment temperature, time between quenching and ageing, 

ageing time and temperature, which could affect the precipitation hardening 

behaviours (Miao & Laughlin, 1999; Marioara et al., 2006).  

 

The precipitation hardening process in dilute 6xxx series alloys is still new 

and not many works has been reported (Aiza et al., 2010). The current study is 

therefore focused on some dilute 6xxx series alloys and how the heat treatment 

procedure and their composition can affect the ageing response, microstructure and 

mechanical properties of the alloys. This alloy has a potential to be used in the 

automotive industry because it is economical due to less amount of alloying addition 

used. In this research, hardness measurement, tensile testing and TEM have been 

used to clarify the complex precipitation hardening processes in 6xxx series dilute 

alloys. 
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1.3 Objectives of the Project  

 

The objectives of this work are: 

 

 To investigate the effect of Mg, Si and small addition of Cu on the ageing 

response during thermal treatment (natural and artificial ageing) of the dilute 

6xxx series aluminium alloys.  

 

 To explain the effect of composition on the mechanical properties of the dilute 

6xxx series aluminium alloys. 

 

 To study the effect of composition on the microstructural development of some 

artificially aged dilute 6xxx series aluminium alloys.  

 

 To find out the correlation between the mechanical properties and microstructure 

of the dilute 6xxx series aluminium alloys.  
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1.4 Organisation of the Thesis 

 

This thesis consists of six chapters. Chapter 1 introduces the general information on 

aluminum and its alloys. It is followed by the prospect demand for aluminium 

application. This chapter also introduces aluminium alloys and the general idea of 

several ways to strengthen the aluminium alloys. It also briefs the types of 6xxx 

series alloy and general application of these alloys in various industries including 

automotive industry. 

 

Chapter 2 provides detail information on designation and the properties of 

aluminium alloys. This chapter also discusses the topic of heat treatment and 

strengthening in aluminium alloys. The mechanical properties of aluminium alloys 

followed by the strengthening mechanism and the effect of precipitates on the 

strength of alloys are outlined in details. The theory of precipitation hardening and 

overview of the 6xxx series alloys including the addition to 6xxx series alloys and 

its applications are also described in this chapter. The end of this chapter explains 

about precipitation sequences in 6xxx series alloys and reviews the studies by 

previous researchers chronologically.  

 

Chapter 3 presents the experimental procedure that has been carried out 

throughout this project. In this chapter, detail information on the materials used that 

is divided into two groups of alloys i.e Cu-containing and Cu-free alloys are 

discussed. The details procedure of heat treatment cycle is also discussed in this 

chapter. This chapter also briefs the JMatPro calculations and Differential Scanning 

Calorimetry (DSC) procedure. The method of microstructure characterization and 

mechanical testing (hardness and tensile) are explained. The end of this chapter 

discusses the TEM procedure and samples preparation. 

 

In chapter 4, the experimental results obtained from Cu-containing and Cu-

free 6xxx series alloys are presented. The results are divided into five sections. It 

begins with studies of JMatPro calculations. The second and third sections are 

focussed on the characterisation of alloys in the as-received and solution treated 

conditions. The analyses of some second phase particles using energy dispersive x-

ray microanalyses in SEM and TEM-EDX and also extrapolation technique are also 
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presented. The fourth section deals with the results of hardness and tensile of Cu-

containing and Cu-free alloys in the naturally aged condition. The fifth section 

describes the results of hardness and tensile of Cu-containing and Cu-free alloys in 

artificially aged alloys conditions. The last in this section presents the 

microstructural developments of artificially aged alloys. 

 

Chapter 5 is the core of this thesis. This chapter discusses the results 

obtained from investigations of Cu-containing and Cu-free 6xxx series alloys after 

various heat treatments. The discussion chapter is separated into four sections. 

Initially, there is explanation on the JMatPro Calculations results. This is followed 

by the discussion of the alloys characterization results. In sections two and three, the 

results of as-received and solution treated alloys obtained from the various 

techniques are compared and discussed. The final section deals with the ageing 

response. In this section, precipitation and dissolution of the precipitates during DSC 

heating of as-quenched alloys are explained. Additionally, the effect of the 

compositions on the ageing response and mechanical properties during natural and 

artificial ageing are discussed in details. The effect of compositions on the 

microstructural developments during ageing treatment of the most and less dilute 

alloys are compared and discussed. Finally, summary of overall results and 

discussion are presented in the end of this chapter. 

 

Finally, chapter 6 lists the main conclusion remarks of the entire finding 

found in the results and discussion. Recommendation for future work is proposed in 

this project. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

 
 

 

2.1 Heat Treatment 

 

The principal purpose for the heat treatment is to develop desired mechanical 

properties required for optimum service performance. The heat-treatment modifies 

the mechanical properties of the alloys by developing a uniform sub-microscopic 

structure, thereby increasing the strength and hardness of the alloys. It involves a 

carefully controlled heating and cooling cycle. The heat treatment is normally based 

on the following stages (Polmear, 2006): 

 

 Solution treatment: this is where the alloy is held at a relatively high temperature 

within a single-phase region to bring all alloying elements into solid solution. 

  Quenching: this is when the alloy is rapidly cooled from solution treatment 

temperature to room temperature to obtain a Super Saturated Solid Solution 

(SSSS) of the elements in the alloy.  

 Ageing: age hardening is the process where solute atoms precipitated either at 

room temperature (natural ageing) or at an elevated temperature (artificial 

ageing) after quenching. 

 

The age hardenability of alloys is definitely high due to the development of 

precipitate in the heat treatment. Example of a simplified, pseudo binary phase-

diagram of Al-Mg2Si is shown in Figure 2.1. There are four conditions for an alloy 

system to have an age-hardening or precipitation hardening response via heat 

treatment (Askeland, 1984):  

 

 The phase diagram must show a decreasing solid solubility with decreasing 

temperature.  
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 The matrix should be relatively soft and ductile but the precipitate should be 

hard. 

 The alloy must be quenchable. 

 The precipitates that form must be coherent with the matrix structure in order to 

develop the maximum strength and hardness. 

 
Figure 2.1: The pseudo-binary Al and Mg2Si phase diagram (Polmear, 2006). 

 
 
Precipitation hardening provides one of the most widely used mechanisms 

for the strengthening of metal alloys. There are several general features observed in 

precipitation hardening reaction (Shewmon, 1969): 

 

 The hardness goes through a broad maximum with time. 

 The maximum hardness is reached sooner at higher temperatures. 

 The maximum hardness reached decreases as the ageing temperature is 

increased. 

 The fine precipitate of metastable transition phase is initially formed and then it 

is followed by the formation of equilibrium phase.  

 

The general requirement for precipitation strengthening of supersaturated 

solid solution (SSSS) involves the formation of finely dispersed precipitates during 

the ageing. In the case of 6xxx series alloys, the age hardening is used to promote 

the formation of needle-shaped precipitates (ageing precipitates) from the 
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supersaturated solid solution of Mg and Si in aluminium matrix. The presence of the 

ageing precipitates can improve the mechanical properties of the alloys. 

 

2.1.1 Solution Treatment 

 

There are two roles of solution treatment: (i) to dissolve precipitates remaining after 

extrusion or formed during extrusion process and (ii) to relieve stress resulting from 

the combination of deformation and quenching (Yao et al., 2001). The process 

consists of heating the aluminium alloys up to an appropriate temperature (between 

450 and 550 oC) and soaking them for a period long enough to achieve a nearly 

homogeneous solid solution. Time and temperature are important parameters to be 

controlled during solution treatment. 

 

2.1.2 Quenching 

 

Quenching or cooling is the most critical step in the sequence of heat treatment 

process. After solution treatment, the alloy rapidly quenched or cooled to room 

temperature to retain maximum amounts of the alloying elements in solid solution 

and with minimum precipitates formation. The quenched alloy is a metastable state 

of supersaturated solid solution. The microstructure formed is thermodynamically 

unstable and its metallurgical driving force is to move towards the equilibrium 

structure. In this state, the alloys will have low strength and easy to be formed.  

 

There are two types of cooling: (i) slow cooling (ii) rapid cooling. Slow 

cooling (e.g air quenching) allows the solute atoms to precipitate out as coarse 

particles, which reduces the level of supersaturation and hence reducing the 

effectiveness for the age hardening response. In 6xxx series alloys, slow cooling 

rates will allow coarse Mg2Si to precipitate out during the cooling. Therefore, there 

will be fewer Mg and Si solute atoms to precipitate out during artificial ageing, 

giving a very small contribution to the strength of the alloys (Reiso, 1984; Birol, 

2004).  

 

Rapid cooling (e.g water quenching) will affect the alloys to become stronger 

as the hardness is increased. Rapid cooling is a fast cooling rate that holds all or 



 

 
11 

 
 
 

nearly all of the solute atoms in solution (Birol, 2004). Since it does not allow 

sufficient time for solute atoms to precipitate during rapid cooling, therefore, solute 

atoms in solid solution are available to precipitate out into matrix during ageing. 

This circumstance produces the maximum ageing response due to high density of 

ageing precipitates formed.  

 

However, the rapid cooling may leads to residual stresses and cracking. 

Rapid cooling distorts thinner products and introduces internal (residual) stresses 

into thicker products (Polmear, 2006). The alloy therefore needs to be aged after 

quenching to gain the optimum conditions for precipitation during ageing. In this 

way, the detrimental effects to the mechanical properties and/or corrosion resistance 

can be avoided. 

 

2.1.3 Ageing 

 

Age hardening is the final stage in the development of properties in the heat-

treatable aluminium alloys. The ageing process can be classified into two categories: 

(a) natural ageing or ageing at room temperature and (b) artificial ageing. These two 

effects are illustrated diagrammatically in Figure 2.2. 

 

 

Figure 2.2: Natural and artificial ageing response. 
 

Natural ageing is the process when the precipitation is allowed to complete at 

room temperature over the necessary period of time. Some aluminium alloys begin 

the ageing process almost immediately after the alloys are quenched. After a few 
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days, the alloys become considerably stronger. The 6xxx or 7xxx series alloys 

continue to age hardens over a long period of time at room temperature. For some 

7xxx series alloys, this hardening is very marked and typically maximum strength is 

reached after a month at room temperature (Polmear, 2006). 

 

Many studies have been carried out on the effect of natural ageing on 

hardness of the 6xxx series alloys. Pashley et al., (1966), Miao & Laughlin (2000), 

Gupta et al., (2001a) and Cuniberti et al., (2010) reported that the hardening of 6xxx 

series alloys during natural ageing at room temperature has been related to the 

formation of very small vacancy-rich cluster and zones. It was found that the 

formation of Mg and Si clusters increases the hardness of alloys by hindrance of 

dislocation motion (Muruyama & Hono, 1999). Zhen & Kang (1997), Zhen et al., 

(1997b), Cabibbo et al., (2003) and Cuniberti et al., (2010) reported that different 

alloys show different initial hardness level which was dependent upon their amount 

of solute content present in the alloys. Zhen et al., (1997b) also stated that the longer 

the natural age, the more clusters are formed and the stability of the clusters 

increases. Zhen & Kang (1998b) reported that the values of hardness in 6xxx series 

alloys during natural ageing depend on number density of clusters formed. The 

number density of clusters is related to the amount of solute atoms of Mg and Si in 

the matrix. Therefore the higher the Mg and Si content in the alloys, the greater the 

ageing response and hardness values.  

 

Artificial ageing is the process when precipitation occurs at an elevated or 

intermediate temperature. It is also called as ‘precipitation hardening, ‘age 

hardening’ or just ‘ageing’. It involves heating the alloy uniformly usually in the 

range of 160-190 oC (Polmear, 2006). After solution treatment and artificial ageing, 

the alloy is stated to be in the T6 temper. Time and temperature of precipitation 

hardening affect the final structure as well as the resulting mechanical properties. In 

practice, the ageing time should be long enough to give control of the heat treatment 

process (Ashby & Jones, 1980). 

 

During ageing at a particular temperature, the mechanical strength of the 

alloy increases up to a maximum level at a specific ageing time. Beyond this time, 

the hardness and the strength of the alloy start to decrease. This phenomenon is 
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termed ‘overaging’. It results the particles loosing coherency with the aluminium 

lattice as they begin to grow larger or coarsen. The larger particles are fewer in 

number and with greater distances between them. The higher the ageing 

temperature, the sooner the peak properties are reached and the sooner the 

overageing begins (Reed-Hill, 1992). 

 

Ageing at much lower temperatures (less than 100 oC), longer times are 

needed to complete the precipitation (Reed-Hill, 1992). Whether the ageing process 

is performed naturally or artificially, the structure of the alloys goes through similar 

changes where submiscroscopic precipitates are formed throughout the grain 

structure. Both natural and artificial ageing results in the decomposition of the SSSS 

to produce a series of precipitated particles, which may form heterogeneously at 

preferential sites (e.g. sub-grain boundaries and dislocations) or homogeneously 

throughout the matrix. The decomposition of the SSSS usually occurs by the 

following sequence: 

 

ssss  solute atoms clusters or GP zones   intermediate precipitate (s) 

           equilibirium precipitate 

 

Studies by X-ray technique and electron microscopy technique show that the 

ageing process proceeds initially by the formation of solute atom clusters or Guinier-

Preston zones (GP zones). GP zones are ordered, solute-rich cluster of atoms, which 

may be only one or two atom planes in thickness. They have the same crystal 

structure as the matrix and fully coherent (Weidmann et al., 1990). The presence of 

GP zones gives rise to changes in the physical and mechanical properties of the 

alloys. As they form, the alloy becomes harder. 

 

The diameter of GP zones is about 20 to 40 Å (Shewmon, 1969). The shape 

of the GP zones dependent on the relative diameters of the solute and solvent atoms. 

The solutes such as silver and zinc, which have atomic diameters very similar to 

aluminium, give rise to spherical zones, whereas a solute like Cu, which has a 

diameter 10% smaller than that of aluminium, forms plate-like zones (Nicholson et 
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al., 1958-1959; Martin, 1998). GP zones can act as nucleation sites for other 

metastable precipitates (Martin & Doherty, 1976). 

 

With prolonged ageing time, the GP zones (clusters) coarsen. The smaller 

clusters dissolve and their solute atoms join the larger clusters. This decreases the 

total number of zones and increases the mean diameter of those zones that remain. If 

the alloy is held at the ageing temperature for a longer time, a new precipitate called 

intermediate precipitates nucleates and grows. Since the free energy of the alloy can 

decrease with time, this new precipitate must be more stable than GP zones. The 

intermediate precipitate(s) are normally much larger than the GP zones; it often 

makes the alloy harder than when only GP zones are present. The intermediate 

precipitate has a crystal structure that is different from that of the matrix. It may be 

partially coherent or coherent with the lattice planes of the matrix in which case a 

further increase of hardness occurs (Shewmon, 1969; Flower, 1995; Polmear, 2006). 

The precipitation process will thus continue until the most stable state of precipitate 

is formed. The final equilibrium precipitates are usually incoherent with the 

aluminium lattice (Flower, 1995). They normally form at the highest ageing 

temperatures and their formation produces little hardening because of the coarse 

dispersion of these precipitates. The formation of the equilibrium incoherent 

precipitate always leads to softening (Siddiqui & Al-Belushi, 2000; Eivani & Taheri, 

2008).  

 

Semi-coherent transition phases nucleate primarily at dislocations and the 

equilibrium precipitates tend to nucleate and grow at grain boundaries (Martin & 

Doherty, 1976). All types of precipitates may give hardening but GP zones and 

intermediate precipitates with some degree of coherency give greater hardening. The 

presence of GP zones or intermediate precipitates (or both) with their high densities 

produces the maximum hardening in commercial alloys (Polmear, 2006). They 

introduce an elastic distortion in the lattice of aluminium matrix and promote a 

considerable strengthening effect (Anderson et al., 1985; Cabibbo et al., 2003). 

 

The effect of natural ageing is difficult to avoid during common commercial 

processing in automotive industry (Miao & Laughlin, 2000). For an example in 6xxx 

series alloys, inferior properties are obtained when some natural ageing is allowed to 
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take place between quenching and artificial ageing (Fortin, 1963; Miao & Laughlin, 

1999). During natural ageing, some Mg and Si atoms have been consumed to form 

clusters therefore the amount of Mg and Si atoms required to form Mg2Si 

precipitates during artificial ageing is reduced and this may result in a decrease in 

final hardness (Miao & Laughlin, 2000).   

 

2.2 Strengthening in Aluminium Alloys  

 

2.2.1 Mechanical Properties of Aluminium Alloys 

 

The precipitation of small particles is important in controlling the microstructure and 

mechanical properties. Precipitates that form during age hardening have a major 

effect on the strengthening of aluminium alloys. The main microstructural 

characteristics that influence the mechanical properties of the alloys are intermetallic 

compound particles, dispersoid particles and fine precipitates (Flower, 1995). Most 

of these are explained as follows. 

 

2.2.1.1      Intermetallic Compounds 

 

In aluminium alloys, a different type of intermetallic compound phases is possible to 

form during cast ingot or billet solidification (Polmear, 2006). The type, size, 

morphology and distribution of the intermetallic compound particles are very 

important in determining the subsequent materials properties. The number of the 

intermetallic compound particles in the final product is determined not only by the 

casting conditions, but also by subsequent ingot homogenisation and 

thermomechanical processing (Hsu et al., 2001). The types of intermetallic 

compound particles that present can be classified into 2 groups: (i) insoluble and (ii) 

soluble compounds. The size of these particles is greater than 1 m (Dunwoody et 

al., 1973; Edward & Martin, 1983). However, Polmear (2006) reported that the size 

of coarse intermetallic compound within the range of 0.5 to 10 m. 

 

The first group normally contains impurity elements such as iron (Fe) and Si. 

The solubility of iron is low in pure aluminium and the degree of its solubility will 
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further decrease with the addition of other alloying elements, so the compound 

containing iron is insoluble. The brittle and hard intermetallic compound such as -

(Al8Fe2Si) and β-(Al5FeSi) may act as stress raiser and become points of weakness 

that reduce the strength and ductility of the alloys (Liu et al., 1999). In 7xxx series 

alloys, the coarse intermetallic compound particles tend to reduce toughness 

(resistance to crack propagation) but the improvement in these properties can be 

achieved by reducing the iron impurity content in the alloys (Dunwoody et al., 

1973).  

 

The predominant intermetallic compounds in 6xxx series alloys are from the 

type of AlFeSi (Claves et al., 2002). The AlFeSi phases constitute an important part 

of the microstructure and they may influence the materials properties during 

subsequent fabrication steps and play a crucial role for the material quality. The 

common intermetallic compound particles, exist during the solidification of the 6xxx 

series alloys are β-(Al5FeSi). These particles are stable compounds and they are not 

sensitive to thermal cycles, therefore they are very difficult to dissolve during 

homogenisation and thus give detrimental effect on mechanical properties of the 

alloys (Dunwoody et al., 1973; Narayanan et al., 1995; Liu et al., 1999; Claves et 

al., 2002). Typical other  and β-AlFeSi intermetallics compounds as reported in 

literature are β-Al9Fe2Si2, -Al12Fe3Si2, -Al8Fe2Si and -Al8FeSi (Liu et al., 1999; 

Claves et al., 2002; Sha et al., 2006).  

 

In 6xxx series alloys, after casting, irregular bulky shaped of β-AlFeSi phase 

dominate the microstructure at the grain boundaries and forming an almost 

continuous network, which reduce the extrusion speed and deteriorate surface 

quality. During homogenisation process bulky β-AlFeSi phase transform to -

AlFeSi phase, which is shorter, thicker, chunky and round-shaped morphology 

(Langerweger, 1986; Tanihata et al., 1999; Claves et al., 2002). The -AlFeSi phase 

is believed to be less harmful than β-AlFeSi phase form since the presence of this 

phase is favorable for workability and ductility of the alloys (Kuijpers et al., 2005).  

 

Lamb (1976) reported that the transformation of the  to the -AlFeSi phase 

occurred quite rapidly with the presence of Mn but normally the change of shape 
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from bulky -phase to the more rounded -phase is less rapid. The initial 

transformation normally occurs without any shape change and followed by gradual 

rounding of the particles. 

 

The second group of intermetallic compound particles is soluble compounds 

that consist of equilibrium intermetallic compounds of the major alloying elements. 

Examples of the soluble intermetallic compounds are Mg2Si, Al2Cu and Al2CuMg 

(Polmear, 2006). These compounds form lacy networks around the cast grains.  

They also can act as sites for crack initiation in the alloys. By homogenisation 

process, the large intermetallic compound particles can be dissolved and 

redistributed; therefore the cracking occurs in the alloys can be avoided.  

 

2.2.1.2    Dispersoids 

 

Dispersoids are compounds that are formed during homogenisation of the ingots and 

they always remain in the microstructure of alloys even after extrusion (Dunwoody 

et al., 1973; Polmear, 2006). The compounds usually contain the transition elements 

such as Cr, Mn or Zr, which have a low solubility and diffusivity in aluminium at all 

temperature. The typical size of dispersoids is within 0.1 to 1 m (Dunwoody et al., 

1973; Martin 1980).  Polmear (2006) however, reported that the size of dispersoids 

varied from 0.05 to 0.5 m. The transition elements are typically added in small 

quantities normally less than 1 wt%. Dispersoids are very stable, so they are retained 

in solution during casting but precipitate during homogenisation which normally 

occurred at relatively high temperature between 450 to 600 oC (Dunwoody et al., 

1973). Because of low solubility and diffusivity of the dispersoids, they are slow to 

coarsen and remain as a fine dispersion during processing such as solution treatment 

and rolling. Examples of dispersoid particles are Al20Mn3Cu2, Al12Mg2Cr and Al3Zr 

(Polmear, 2006). 

 

The volume fraction of dispersoids is too small to strengthen the alloys 

directly such as by hindering dislocation motion.  Dispersoids occur in different 

forms depending on the alloying elements and heat treatment conditions. The 
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presence of dispersoids in the alloys gives several effects such as (Dunwoody et al., 

1973; Martin, 1980; Livak, 1982; Busby et al., 1986): 

 

 They control grain growth and prevent recrystallization during fabrication, 

rolling and solution treatment cause increasing in ductility and strength. 

 They improve particular properties such as stress-corrosion resistance and 

toughness.  

 The movement of dislocations is impeded and so the end product is harder 

and stronger.  

 They are able to reduce the tendency for intergranular embrittlement in the 

fully aged condition as well as suppressing the nucleation of fatigue cracks 

and reducing crack growth. 

 

Dunwoody et al., (1973) studied the effect of incoherent particles on 

toughness of Al-Mg-Si alloys. They concluded that the toughness of this alloy is 

increased by the formation of incoherent particles from Fe and Mn elements added. 

The effectiveness of the particles in promoting toughness is related to their size, 

where the most effective fine particles size is in the range 0.05 to 0.25 m.  

 

 Edward & Martin (1983) investigated the effect of dispersoids on fatigue 

crack propagation in Al-Mg-Si alloys. It was found that the addition of Mn to the 

alloy improved resistance to fatigue crack propagation. The decrease in fatique crack 

growth rate is shown to be a result of a decrease in the degree of intergranular 

fracture due to the homogenization of slip by the dispersoid particle.  

 

Zhuang et al., (1996) reported that Cr and Zr can retard grain growth during 

recrystallisation. The effectiveness of these elements on the grain refinement is 

dependent on the volume fraction and size of particles formed during processes 

before solution treatment. In the alloy with the same concentrations of the dispersoid 

forming elements, the most effective is Zr, followed by Cr and then Mn. 

 

An investigation by Lodgaard & Ryum (2000), the addition of small amount 

of Mn and/or Cr has modified the microstructure and improved the properties of the 
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Al-Mg-Si alloys. Due to high density and thermal stability, dispersoids have a strong 

effect on the recovery, recrystallisation and grain growth. They also act as 

nucleation sites for the precipitation of the strengthening precipitates. 

 

2.2.1.3   Fine Precipitates 

 

The precipitates formed during age hardening treatments are usually small in size 

(less than 0.05 µm) (Blind & Martin, 1983). Polmear (2006) reported that the size of 

fine precipitates is up to 0.1 m. This kind of precipitates is a high density of fine 

coherent and semi-coherent particles that are the major source of strengthening 

(Dunwoody et al., 1973; Blind & Martin, 1983). 

 

2.2.2 Strengthening Mechanisms 

 

Hindering the motion of dislocations within the material can strengthen commercial 

alloys. There are several ways to strengthen the metal or alloys such as work 

hardening (strain hardening), grain size reduction, solid solution strengthening and 

particle hardening.  

 

2.2.2.1     Work Hardening (Strain Hardening) 

 

Work hardening is a plastic deformation process whereby a ductile metal or alloys 

becomes harder and stronger (Callister, 1997). During plastic deformation or cold 

working, the number of dislocations in the alloys increases dramatically due to 

dislocation multiplication or the formation of new dislocations. This leads to an 

increase in the yield strength and a decrease in ductility of the material. The increase 

in yield strength (Y ) can be calculated using the relationship:   

pGboy       (2.1) 

  

where o  is the yield strength of the matrix, b is Burgers vectors, G is the shear 

modulus and  p is the dislocation density and   is a constant (Callister, 1997). 
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The increased dislocation density in cold work results in increasing difficulty 

to dislocations to move through the lattice and cause strengthening effect. Hence, the 

stress required to deform the material increases with increasing the cold work. 

However, if the stress required for dislocation motion exceeds that required for 

crack initiation, the material will fail by cracking.  

 

Dislocation may be removed by heating the cold worked metal or alloys to a 

moderately high temperature which is called annealing process. This process causes 

the material to soften and ductility to increase. The changes in the microstructure 

that occur during annealing are referred to as recovery and recrystallisation. 

 

2.2.2.2 Grain Size Strengthening  

 

Grain size has a very significant influence on the mechanical properties of metal or 

alloys. This is because neighbouring grains usually have different orientations at the 

common grain boundary. The hardness of material is observed to increase as the 

grain size decreases (Verhoeven, 1975). An expression has been developed to 

describe the relationship between yield strength and the grain size. For many 

materials, the yield strength varies with grain size, d according to the Hall-Petch 

equation: 

 

  
d

k
od          (2.2) 

 

where d is the mean grain diameter (m), k is a constant which measures the relative 

hardening contribution of the grain boundaries and o is the friction stress that must 

be overcome for dislocations to continue moving. According to the above equation, 

the grain size should be made as small as possible in order to promote strength of the 

material. 

 

Grain boundaries act as obstacles to dislocation movement because they 

interrupt the continuity of the slip planes in a crystal (Newey & Weaver, 1990). 

During plastic deformation, slip or dislocation motion must take place across the 
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grain boundary. The grain boundary acts as a barrier to dislocation motion for two 

reasons (Callister, 1997); Firstly, the dislocation will have to change its directions; 

this becomes more difficult as the misorientation between the grains increases. 

Secondly, a grain boundary is a localised region of atomic disorder, this may results 

in a discontinuity of the slip planes from one grain to another and a dislocation 

cannot pass through it. 

 

Since each grain in a polycrystalline is surrounded by a grain boundary, a 

dislocation can move only within the grain in which it was created. The more grain 

boundaries i.e the smaller grain size, the more difficult to plastically deform the 

material (Newey & Weaver, 1990). This means that a larger applied stress is 

required to cause slip to pass through a grain boundary in a fine-grained material. 

Therefore a material with a fine-grained size will be harder and stronger than the 

same material with a coarse grain size. The fine-grained material will have a greater 

total grain boundary surface area to stop dislocation movement. It is well known that 

the grain size reduction improves not only strength but also the toughness of the 

alloy (Callister, 1997).  

 

2.2.2.3  Solid Solution Strengthening  

 

This form of hardening is present in the early stage of the ageing process. When the 

solute atoms dissolve in the metal, a solid solution is formed which hardens the 

metal or alloys. Solid solution strengthening occurs wherever solute atoms are 

present in the solvent lattice with different atomic size. The presence of solute 

atoms, since they are of different sizes to the solvents atoms, will distort the crystal 

lattice; hence they produce a strain field in the lattice.  

 

This mechanism arises from the interactions between strain fields associated 

with the solute atom and dislocation interaction. The interactions that occur between 

a dislocation and these distortions (lattice strain field) retard the movement of the 

dislocation which affects the increase in the shear stress required to move the 

dislocation. Hence the metal is strengthened. 
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The magnitude of the solid solution strengthening effect is dependant on the 

atomic misfit between the solute and the solvent atom () and the bonding energy 

between the solute and the matrix (Gb). The increase in strength due to solute 

atoms in solid solutions (s.s ) is given by (Apps, 2001):  

  

fb
f
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4.
       (2.3) 

 

where o  is the yield strength of the matrix, G is the shear modulus and f is the 

atomic fraction of solute. According to the above equation, a large difference of size 

between the solvent atoms and solutes atom increases the strengthening effect.  

 

The degree of solute solution strengthening also depends on the amount of 

alloying elements added. The greater the amount of alloying elements added, the 

greater the strengthening effect. If too much of a large or small atom is added, the 

solubility limit may be exceeded, thus a dispersion strengthening is produced. 

 

2.2.2.4    Particle Hardening 

 

The hard particles of second phase embedded in the matrix and this lead to 

resistance to dislocation movement. These particles will interact with the 

dislocations causing the dislocations to either loop the particles or cut through them. 

There are three types of particle hardening mechanisms: (i) chemical hardening, (ii) 

internal strain hardening and (iii) dispersion hardening (Nicholson et al., 1958-1959; 

Verhoeven, 1975; Smallman, 1985). Details of particle hardening and consequent 

effects upon strength are dealt with in section 2.2.3. 

 

2.2.3 The Effect of Precipitates on the Strength of Alloys 

 

The strength of an age-hardening alloy is controlled by the interaction of dislocation 

and precipitates. The strength of the alloys increases as the ageing time increase due 

to the formation of the precipitates (Eivani & Taheri, 2008). The increase in the 

strength is dependent on the structure, spacing, size, shape and distribution of the 
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precipitates, the particle-matrix interface and the nature of the dislocations 

(Hammad et al., 1991).  

 

It is known that GP zones, metastable and stable phases are obstacles to the 

movement of dislocations. Since the fine precipitates are coherent with the matrix, 

the dislocations cut or shear through the precipitate as shown in Figure 2.3. This 

mechanism is produced by chemical hardening or internal strain hardening. The 

force is required to shear coherent precipitate increases with the number and size of 

the precipitate. There are three basic processes involved in the cutting mechanism 

(Peckner, 1964): 

 

 Strengthening by elastic misfit stress. This exists between the precipitate and the 

matrix since the particles occupy a different volume than the parent phase it 

replaced. 

 Strengthening resulting from the increase in particle surface area due to the 

cutting and slipping the two halves of the precipitate. 

 Strengthening due to shear stress difference, the stress for moving a dislocation 

inside the precipitate is greater than in the matrix. 

 

  
 

Figure 2.3: Cutting of a fine precipitate by a dislocation (Shewmon, 1969). 
 

The combination of above cutting mechanisms leads to the increase in 

strength with increasing size and volume fraction of precipitate (Flower, 1995). As 

ageing time increases, the precipitates will increase in size and slip becomes 

progressively more difficult. The maximum hardening is generally achieved when 

the dispersion of precipitates are in the critical size (Smallman, 1985). The effective 

barrier to dislocation motion causes the resistance to the cutting process. The alloys 

then reach peak hardness in the optimum ageing time (reasonable time) and the 

dominant precipitates in this stage are coherent GP zones or intermediate 
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precipitates. The formation of a very fine precipitates is critical in developing a high 

strength alloy.  

For longer ageing time, precipitate coarsening has occurred leading to an 

increase in precipitate size and inter-precipitate spacing. If precipitate particles are 

coarse, widely spaced and incoherent with the matrix, the dislocation has difficulty 

in passing through the material of the precipitate. Thus, dislocations do not cut 

through precipitates but bend around them, leaving a loop of dislocation as 

illustrated in Figure 2.4. 

.  

 
 

Figure 2.4: Schematic representation of interaction of dislocation with particles 
(Orowan looping) (Smallman, 1985). 

 

The material’s yield stress is inversely proportional to precipitate spacing 

(Hains, 1977). The yield stress of an alloy will increase as the distance between the 

precipitates decreases. The more easily dislocation bowing the precipitates making 

the hardness and yield stress decrease, thus alloys become soften. This circumstance 

normally occurs when the specimens aged beyond peak hardness, thus it is referred 

as ‘overaged’ (Dieter, 1988). The looping mechanism was first proposed by Orowan 

in 1948 and is referred as the Orowan mechanism (Verhoeven, 1975). The strength 

due to the hardening given by the Orowan mechanism (or) is as below: 

     

b
rln

bG f
or 

       (2.4) 

 

where Gf is an activation free energy, b is a Burger vector of the dislocation, r is a 

radius of precipitate and  is an inter-particle spacing of precipitate (Flower, 1995). 
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The strengthening due to looping mechanism depends strongly on -1 and decreases 

with increasing r. This will lead to fewer obstacles to the movement of dislocation 

and hence the mechanical properties will start to decrease. Orowan bowing is also a 

process that occurs in hardening dispersion (Smallman, 1985). 

 

 The typical age hardening curve is one in which strength increases then 

decreases with ageing time. This situation is associated by transition from shearing 

(curve A) to by passing or bowing (curve B) of precipitates. A schematic illustration 

of the relationship between strength and particle size for a typical age-hardening 

alloy is given in Figure 2.5. The intersection point P represents the maximum 

strength, which can be developed in the alloy. Large amount of strengthening can be 

created by obtaining the microstructure containing precipitates that are resistant to 

shearing or cutting and are not too widely spaced to allow the bowing of dislocation.  

 
Figure 2.5: Schematic representation of relationship between strength and precipitate 
particles size for a typical age-hardening alloys: (A) particles sheared or cut by 
dislocations: (B) particles passed or bowed by dislocation (Polmear, 2006). 
 

 

2.3 Precipitation Hardening  

 

Precipitation hardening or age hardening provides one of the most widely used 

mechanisms for the strengthening of aluminium alloys (Meyveci et al., 2010). As 

mentioned in section 2.2.3, the size and shape of the precipitates and the nature of 

the interface between a precipitate and its matrix have an influence on the 

mechanical properties of the aged alloys. The influence was determined by the 

interactions between dislocations and precipitates. 
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