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KESAN TANGGA DI SALURAN KELUAR ALUR LIMPAH 
SIFON KE ATAS PRESTASI ALUR LIMPAH  

8 ABSTRAK 

Limpahan sifon adalah sejenis alur limpah saluran tertutup yang dibina di 

dalam empangan kecil dan rangkaian pengairan untuk menyalurkan limpahan dengan 

cepat dari takungan. Aliran keluar dari limpahan sifon memasuki kolam-kolam 

empang di hilirnya supaya tenaga dapat diserakkan. Kolam empang yang bertempat 

di hilir alur limpah akan menenggelamkan salur keluar sifon lalu memberikan kesan 

yang negatif terhadap operasi sifon. Kajian ini bertumpu pada kesan penenggelaman 

ini terhadap operasi sifon dan cara menambahkan serakan tenaga dengan 

menggantikan kolam empang dengan pelongsor bertangga. Pelongsor bertangga 

adalah sejenis binaan penyerak tenaga yang bercirikan rintangan aliran dan 

penyerakan tenaga yang nyata dengan penggunaan tangga. Dalam kajian ini, 

beberapa susunan pelongsor bertangga yang sederhana cerun digunakan pada salur 

keluar limpahan sifon. Aliran air diukur bagi setiap susunan dan hasilnya 

dibentangkan dalam bentuk aturan aliran, ketinggian permukaan air, halaju huluan 

dan salur keluar, serakan tenaga, dan rintangan aliran. Simulasi berangka, 

termasuklah pembinaan model ciri-ciri aliran di dalam, di hulu dan di hilir alur 

limpah, aturan aliran pada pelongsor bertangga, dan ketinggian permukaan air di hilir 

pelongsor bertangga, dilakukan untuk menentukan kecerunan, lebar pelongsor, dan 

bilangan tangga yang optimum. Berdasarkan hasil ujian eksperimen dan model 

berangka ini, pelongsor bertangga yang berkecerunan 14°, mempunyai 4 anak 

tangga, dan berukuran 0.14 m lebar didapati mencapai kadar penyerakan tenaga yang 

tertinggi, iaitu sehingga 92%, tanpa kesan yang negatif terhadap operasi limpahan 

sifon. Berdasarkan ujian pengesahan pada model-model berangka, model golakan k-ε 
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didapati lebih memuaskan berbanding dengan model RNG apabila mensimulasikan 

operasi sifon. 
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EFFECTS OF STEPPED CHUTE IN SIPHON SPILLWAY OUTLET ON THE 

PERFORMANCE OF SPILLWAY  

9 ABSTRACT 

A siphon spillway is a type of spillways with a closed conduit that is 

constructed in small dams and irrigation networks for rapid evacuation of overflow 

in a reservoir. The outflow from siphon spillways enters to pool sills at downstream 

for energy dissipation. Using pool sills at downstream of spillways will cause 

submergence of siphon outlet, and this has a negative effect on siphon operations. 

The present study focuses on the effect of submergence on the siphon operation and 

increases energy dissipation by replacement of the pool sill with the stepped chutes. 

The stepped chute is a type of energy dissipation structure, which is characterized by 

significant flow resistance and energy dissipation via the steps. In this study, several 

stepped chute configurations with moderate slopes were applied to the siphon 

spillway outlet. Water flow measurements were carried out for each configuration 

and results were presented in terms of flow regimes, water surface elevation, 

upstream and outlet velocity, energy dissipation, and flow resistance. Numerical 

simulations, including the modeling of the flow characteristics inside, upstream and 

downstream of the spillway, the flow regimes on the stepped chutes, and water 

surface elevation at downstream of stepped chutes were performed to determine the 

optimum slope, width of stepped chute, and number of steps. Based on the results of 

experimental tests and numerical models, the stepped chute with a slope of 14°, 4 

step numbers, and width of 0.14 m achieves the highest energy dissipation up to 

92%, and had no negative effect on the operation of the siphon spillway. Based on 

the verification tests in numerical models, the k-ε turbulence model is more 

satisfactory than the RNG model to simulate siphon operation.  
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1 CHAPTER  1- 

INTRODUCTION 

 

1.1  Background 

Standard siphon spillway with rectangular cross sections is used when a large 

flow rate is required in a very small changing in water head without the use of acting 

gates.  

In this study, efforts to prevent the siphon spillway outlet from submergence 

and increase the energy dissipation at the downstream by using various stepped chute 

configurations has been model. The investigation was conducted via experimental 

tests and numerical modelling. The experimental tests and numerical models were 

evaluated for two outlet conditions, submerged and free outlets. In the submerged 

outlet condition, the pool sill was considered at the siphon spillway outlet. In the free 

outlet condition, the siphon spillway was tested with stepped chute and without 

stepped chute at the outlet. In the numerical modeling, Flow-3D was used to simulate 

the experimental results. 

1.2 Problem statement 

The outflow from a siphon spillway generally enters a pool sill in the 

downstream. The pool sill prevents the re-entry of air into the conduit with 

submerging of the siphon outlet. In addition, the outflow of a siphon spillway has 

high energy, which the pool sill must dissipate before the discharge returns to the 

downstream channel (Aisenbrey et al., 1983).  

The discharge in a siphon spillway is governed by the relationship for a closed 

conduit 
1/2
eQ H∝ , where eH  is the effective head from the upstream to the tail water 

level. Therefore, tail-water depth has a significant effect on the spillway operation. 
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Outlet submergence at the pool sill causes a reduction of the actual head and, 

consequently, discharge of the spillway. In addition, the water level in the upstream 

of the spillway rises with constant discharge during outlet submergence, which may 

cause the reservoir to overflow and damage the dam and hydraulic structure 

downstream (Vischer et al., 1998). 

Although Babaeyan-Koopaei et al. (2002) and Musavi-Jahromi (2011) have 

mentioned the negative effects of a submerged outlet on a siphon spillway as 

increase of total head in reservoir and reduce of maximum discharge. Moreover, the 

results indicate that there is a lack of information about the effect of a submerged 

outlet on the outflow velocity, the flow velocity in the upstream, and the rate of 

energy dissipation in the downstream of the spillway.  

1.3 Research Goal 

The main goal of this research is to prevent the siphon spillway outlet from 

submerging and increase siphon operation by removing the pool sill. Two problems 

occur with this removal: first, air may re-enter the conduit and prevent priming 

action; second, outflow with high energy enters the downstream. The first problem is 

solved by using a deflector inside the conduit. A deflector is one of the various 

devices used to obtain rapid priming of the siphon spillway (Khatsuria, 2004). This 

study focuses on the second problem and applies a dissipation structure at the outlet 

of the siphon spillway. 

The stepped chute is a type of energy dissipation structure, which is 

characterized by significant flow resistance and energy dissipation via the steps. The 

previous studies only focus on the stepped chute separately. The novelty of this study 

is using the stepped chute as an energy dissipation structure in the siphon spillway 

outlet. In addition, the outlet of siphon spillway with stepped chute will be free. 
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1.4   Research Objective 

The present study is the first of its kind in terms of using stepped chute in the 

siphon spillway outlet to prevent the siphon outlet from submergence, increase flow 

efficiency and the rate of energy dissipation in downstream of siphon spillway. 

To objectives of the present study are as follows: 

1) To investigate the effect of using a stepped chute in the siphon outlet 

during the siphon operation, priming and depriming action;  

2) To determine the rate of energy dissipation in the siphon spillway with 

a stepped chute outlet and compare it with the pool sill outlet; 

3) To determine the effect of various stepped chute configurations on the 

rate of energy dissipation and obtain the optimum configuration (i.e. 

slope of chute, number of steps, and chute width); 

4) To simulate the siphon operation using the Flow-3D solver and evaluate 

the numerical modelling results by comparing them with experimental 

data. 

1.5 Scope of Research 

As previously mentioned, the aim of this study are to improve siphon spillway 

operation, increase the rate of energy dissipation, and flow efficiency using different 

stepped chute configurations. Experimental tests and numerical modelling were 

performed for several stepped chute configurations. The effect of stepped chute 

slope, number of steps, and stepped chute width were investigated to find the 

optimum configuration. 

In the experimental section, two main outlet cases were tested and compared: 

the pool sill outlet and a stepped chute outlet. In the stepped chute outlet, the effect 
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