
ADAPTING AND HYBRIDISING HARMONY
SEARCH WITH METAHEURISTIC COMPONENTS

FOR UNIVERSITY COURSE TIMETABLING

MOHAMMED AZMI AL-BETAR

UNIVERSITI SAINS MALAYSIA
2010

ADAPTING AND HYBRIDISING HARMONY
SEARCH WITH METAHEURISTIC COMPONENTS

FOR UNIVERSITY COURSE TIMETABLING

by

MOHAMMED AZMI AL-BETAR

Thesis submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy

June 2010

ACKNOWLEDGEMENTS

I am very grateful and thankful to Allah S.W.T for giving me strength to complete my research

study. Although I am solely responsible for the study and its findings, I must acknowledge

many external contributions coming from people who extended a helping hand throughout this

research.

I am much indebted to my academic supervisor, Associated Professor Dr. Ahamad Tajudin

Khader from the School of Computer Sciences at Universiti Sains Malaysia, for his wise coun-

seling, valuable advice, continuous support, help and guidance throughout the duration of my

research. Indeed, without his support and cooperation, I could not have completed this study. I

owe my deepest gratitude to my co-supervisor, Dr. Munir Zaman from the School of Computer

Sciences, Universiti Sains Malaysia, for his support in a number of ways especially in the tech-

nical aspects and presentation of this dissertation. I would also like to thank Dr. Iman Yi Liao

for her reviewing of some mathematical notations. I am grateful to Universiti Sains Malaysia

for financial support under the Fellowship Scheme throughout my Ph.D candidature.

I am also obliged to Mr. Osama Bitar, school supervisor of English at UNRWA, Jordan

for his valuable comments, suggestions, and helping out with the English proof reading. My

thanks go to my beloved parents for their love, patience, encouragement, and continuous sup-

port. Words alone cannot express the thanks I owe to my beloved wife Huda Abdul-Rahman

Habboush, Master of English, who extended a helping hand in writing my dissertation, and

supported me heart and soul all through this tiring research task while at the same time taking

care of our children Ahamad and Amneh.

Last but not least, I thank those who supported me in any respect during my research,

especially my friends Ali Kattan, Osama Alia, Khaid Jaber, Mohammed Abul-Rub and many

others that whose names I can not recall.

ii

TABLE OF CONTENTS

Acknowledgements. ii

Table of Contents . iii

List of Tables . ix

List of Figures . xi

List of Abbreviations . xiii

List of Publications . xvi

Abstrak . xviii

Abstract . xix

CHAPTER 1 – INTRODUCTION

1.1 Background . 1

1.1.1 Timetabling . 1

1.1.2 Datasets . 3

1.1.3 Course Timetabling Methods . 4

1.1.4 Harmony Search Algorithm . 7

1.2 Motivation and Problem Statement . 8

1.3 Research Objectives . 9

1.4 Research Contributions . 9

1.5 Overview of Methodology . 10

1.6 Overview of Dissertation . 12

CHAPTER 2 – FUNDAMENTALS TO HARMONY SEARCH ALGORITHM

2.1 Introduction . 13

2.2 Harmony Search Algorithm . 13

2.3 Analogy between Musical and Optimisation Contexts . 14

2.4 Harmony Search Procedure . 18

iii

2.5 Conclusion . 22

CHAPTER 3 – LITERATURE REVIEW

3.1 Introduction . 23

3.2 Timetabling Problems . 23

3.3 Graph Colouring Model for University Timetabling . 25

3.4 University Course Timetabling Problems. 27

3.4.1 Curriculum-based Course Timetabling. 28

3.4.2 Post-enrollment Course Timetabling. 28

3.5 Previous Methods for University Course Timetabling . 29

3.5.1 Heuristics/Sequential Methods. 30

3.5.2 Local Search-based Methods. 31

3.5.2(a) Local Search/Hill Climbing . 31

3.5.2(b) Simulated Annealing . 32

3.5.2(c) Great Deluge . 33

3.5.2(d) Tabu Search . 34

3.5.2(e) Variable Neighbourhood Search . 35

3.5.3 Population-based Methods . 35

3.5.3(a) Genetic Algorithm . 36

3.5.3(b) Ant Colony Optimisation. 37

3.5.3(c) Artificial Immune System . 38

3.5.4 Hybrid Metaheuristics . 38

3.5.5 Hyper-Heuristic Methods . 40

3.5.6 Other Methods . 42

3.5.6(a) Decomposition/Clustering Methods . 42

3.5.6(b) Constraint-based Methods. 42

3.5.6(c) Multi-objective Methods . 43

3.6 Critical Analysis of the Existing Methods . 43

iv

3.7 Conclusion . 46

CHAPTER 4 – METHODOLOGY

4.1 Introduction . 47

4.2 Schema of the Methodology . 47

4.3 UCTP Modeling and Formalisation . 49

4.3.1 UCTP Description . 49

4.3.2 Problem Formulation . 49

4.3.3 Definitions . 51

4.3.4 Objective Function . 52

4.4 Developing Harmony Search-based Algorithms . 52

4.4.1 UCTP in a Musical Context: Analogies . 53

4.4.2 Harmony Search-based Algorithms . 53

4.4.3 Maintaining Timetable Feasibility . 55

4.5 Experiments and Results . 56

4.5.1 Socha Dataset . 56

4.5.2 Evaluation Procedure . 58

4.5.3 Comparative Evaluation and Analysis . 60

4.6 Conclusion . 61

CHAPTER 5 – A BASIC HARMONY SEARCH ALGORITHM (BHSA) FOR
UCTP

5.1 Introduction . 62

5.2 Representation of the Timetabling Solution . 62

5.3 Basic Harmony Search Algorithm (BHSA) for UCTP. 64

5.3.1 Initialise the BHSA and UCTP Parameters . 64

5.3.2 Initialise the Harmony Memory (HM) with Feasible Timetabling
Solutions . 66

5.3.3 Improvise a New Harmony Solution. 68

v

5.3.3(a) Memory Consideration . 70

5.3.3(b) Random Consideration . 71

5.3.3(c) Pitch Adjustment . 71

5.3.3(d) Repair Process . 73

5.3.4 Update the Harmony Memory. 74

5.3.5 Check the Stop Criterion. 74

5.4 Experiments and Results . 74

5.4.1 Experimental Design . 74

5.4.2 Experimental Results . 76

5.4.3 Discussion. 76

5.5 Conclusion . 85

CHAPTER 6 – A MODIFIED HARMONY SEARCH ALGORITHM (MHSA) FOR
UCTP

6.1 Introduction . 86

6.2 Related Works to the MHSA . 87

6.3 Modified Harmony Search Algorithm (MHSA). 88

6.3.1 Global-best Memory Consideration . 89

6.3.2 Guided Pitch Adjustment Procedures. 91

6.4 Experiments and Results . 92

6.4.1 Experimental Design . 92

6.4.2 Experimental Results . 93

6.4.3 Discussion of MHSA Convergence Scenarios . 94

6.4.4 Comparing Results between BHSA and MHSA . 100

6.5 Conclusion . 105

CHAPTER 7 – A HARMONY SEARCH ALGORITHM WITH MULTI-PITCH
ADJUSTING RATE (HSA-MPAR) FOR UCTP

7.1 Introduction . 107

vi

7.2 Related Works to HSA-MPAR . 108

7.3 Extension to the Guided Pitch Adjustment Procedures . 110

7.4 Experiments and Results . 116

7.4.1 Experimental Design . 116

7.4.2 Experimental Results . 117

7.4.3 Discussion. 117

7.5 Conclusion . 122

CHAPTER 8 – A HYBRID HARMONY SEARCH ALGORITHM (HHSA) FOR
UCTP

8.1 Introduction . 124

8.2 Related Works to HHSA. 125

8.3 Hybrid Harmony Search Algorithm (HHSA) . 128

8.3.1 Hybridisation with the Hill Climbing Optimiser (HCO) 128

8.3.2 Global-best Memory Consideration . 130

8.4 Experiments and Results . 130

8.4.1 Experimental Design . 130

8.4.2 Experimental Results . 131

8.4.2(a) The Effect of HCR on the Performance of HHSA 131

8.4.2(b) The Influence of Global-best Memory Consideration on the
Convergence of HHSA . 131

8.4.3 Discussion . 134

8.5 Conclusion . 138

CHAPTER 9 – COMPARATIVE EVALUATION

9.1 Introduction . 140

9.2 Comparing Results amongst Harmony Search-based Algorithms. 140

9.2.1 Analytical Comparison amongst Harmony Search-based Algorithms 140

9.2.2 Test of Hypotheses Amongst Harmony Search-based Algorithms 144

vii

9.3 Comparison with Previous Methods . 147

9.3.1 Comparative Results . 147

9.3.2 Comparative Analysis . 151

9.4 Conclusion . 154

CHAPTER 10 – CONCLUSION AND FUTURE WORK

10.1 Introduction . 155

10.2 Summary of Contributions . 155

10.3 Contributions against Objectives . 157

10.4 Future Research . 157

References . 159

APPENDICES . 174

APPENDIX A – FUNDAMENTALS TO OPTIMISATION. 175

A.1 What is Optimisation? . 175

A.2 Optimisation Methods . 177

A.3 Metaheuristic-based Methods . 179

A.3.1 Local Search-based Methods. 181

A.3.1(a) Hill Climbing.. 182

A.3.1(b) Simulated Annealing (SA) . 183

A.3.1(c) Tabu Search (TS) . 184

A.3.1(d) Other Explorative Local Search-based Methods. 185

A.3.2 Population-based Methods . 186

A.3.2(a) Genetic Algorithm. 187

A.3.2(b) Particle Swarm Optimisation. 188

APPENDIX B – LIST OF APPLICATIONS AND DEVELOPMENTS IN HSA 191

APPENDIX C – POST ENROLLMENT COURSE TIMETABLING DATASETS 194

viii

LIST OF TABLES

Page

Table 2.1 The Optimisation Terms in the Musical Context 15

Table 3.1 Differences and Similarities between Examination and Course
Timetabling 24

Table 3.2 The Timetabling Constraint Classes (Lewis, 2008) 25

Table 3.3 Some Graph Colouring Heuristics Employed for University
Timetabling 30

Table 4.1 The UCTP Constraints 49

Table 4.2 Notations Used to Formalise the University Course Timetabling
Problem 50

Table 4.3 The UCTP and Optimisation Terms in the Musical Context 53

Table 4.4 The Characteristics of each Class of Socha Dataset 57

Table 5.1 Example on how BHSA extracts the timeslot and room index from
each value xi of event i in a feasible timetable,
x = (449,21,102, . . . ,0). 64

Table 5.2 The BHSA Convergence Scenarios 75

Table 5.3 Results of BHSA Convergence Scenarios (Scen.(1) through Scen. (7)) 77

Table 5.3 (Cont...) Results of BHSA Convergence Scenarios (Scen.(8) through
Scen. (13)) 78

Table 6.1 MHSA Convergence Scenarios 93

Table 6.2 MHSA Convergence Scenarios (Scen.(1) through Scen. (7)) 95

Table 6.2 (Cont...) MHSA Convergence Scenarios (Scen.(8) through Scen. (13)) 96

Table 6.3 Comparison Results between BHSA and MHSA 101

Table 7.1 Parameter Used in the HSA-MPAR Experiments on UCTP 117

Table 7.2 The Effect of Varying PAR Values on HSA-MPAR 118

ix

Table 8.1 Parameters Used to Examine the Performance of Varying HCR on
HHSA 131

Table 8.2 The Effect of Varying the HCR Parameter. 132

Table 8.3 The Effect of the Global-best Memory Consideration 135

Table 9.1 Comparison Results between the Harmony Search-based Methods 141

Table 9.2 Mann-Whitney Test Used for every Pair of Harmony Search-based
Methods 145

Table 9.3 Key to the Comparator Methods 150

Table 9.4 Comparative Results 151

Table 9.5 A summary of the rank results obtained by the proposed methods
against a total of 25 methods (21 comparative methods and 4 harmony
search-based algorithms) 152

Table B.1 The Application Disciplines of HSA 191

Table C.1 First International Timetabling Competition (TTComp2002) 194

Table C.2 Socha Datasets 195

Table C.3 Lewis Datasets 195

Table C.4 Post Enrolment-based Course Timetabling in Second International
Timetabling Competition (ICT2007) 195

x

LIST OF FIGURES

Page

Figure 1.1 An Example of a Feasible Course Timetable 3

Figure 1.2 Research Methodology 11

Figure 2.1 Analogy between Music Improvisation and Optimisation Process 16

Figure 2.2 The Harmony Memory Structure 17

Figure 3.1 Example of graph G corresponding to a feasible timetable contains 6
events and 3 timeslots. This model represents a feasible timetable if
and only if the room capacity and features are taken care of for each
event 26

Figure 4.1 Schema of the Methodology 48

Figure 5.1 The position matrix which shows each value and the mapping to its
room-timeslot pair. For example, value 0 denotes the room-timeslot
pair (0, 0); value 1 denotes the room-timeslot pair (0, 1); etc. 63

Figure 5.2 The Steps of HSA with Application to UCTP 65

Figure 5.3 Example on how BHSA extracts the values of PAR1, PAR2, and
PAR3 from PAR. Note that the three pitch adjustment procedures
have equal chance to use. 72

Figure 5.4 The average penalty values of all the HM solutions for a run plotted
for 13 convergence scenarios against the number of iterations for
Small 1 until Medium 1 79

Figure 5.4 (Cont...) The average penalty values of all the HM solutions for a run
plotted for 13 convergence scenarios against the number of iterations
for Medium 2 until Medium 5. 80

Figure 6.1 The Timetabling Solutions Stored in HM at kth Iteration 90

Figure 6.2 The average penalty values of all the HM solutions for a run plotted
for 13 convergence scenarios against the number of iterations for
Small 1 through Medium 1 dataset 97

Figure 6.2 (Cont...) The average penalty values of all the HM solutions for a run
plotted for 13 convergence scenarios against the number of iterations
for Medium 2 through Large dataset 98

xi

Figure 6.3 Comparison between MHSA and BHSA using Scen. (4, 7, 12) in
terms of convergence speed for Small 1 until Medium 1 102

Figure 6.3 (Cont...) Comparison between MHSA and BHSA using Scen. (4, 7,
12) in Terms of Convergence Speed for Medium 2 until Medium 5. 103

Figure 7.1 Example on how HSA-MPAR extracts the values of PAR1, PAR2,
through PAR8 from PAR. Note that the eight pitch adjustment
procedures have equal chance to operate. The value of PAR is 0.8 112

Figure 7.2 The Effect of Varying the PAR Parameter of the HSA-MPAR 119

Figure 7.3 Comparing the Average Penalty Values of Varying the PAR Parameter
against 10,000 Iterations for Small 1 through Medium 1 Dataset 120

Figure 7.3 (Cont...) Comparing the Average Penalty Values of Varying the PAR
Parameter against 10,000 Iterations for Medium 2 through Large
dataset 121

Figure 8.1 The Effect of Varying the HCR Parameter of the Hill Climbing
Optimiser 133

Figure 8.2 Influence of global-best memory consideration. The average
penalty value of all the HM solutions for a random run (HCR=30%,
Small 1 through Medium 1 datasets) is plotted against the number of
iterations. The plots show the influence of the global-best memory
consideration on improving the convergence rate. 136

Figure 8.2 (Cont...) Influence of global-best memory consideration. The
average penalty value of all the HM solutions for a random run
(HCR=30%, Medium 2 through Large datasets) is plotted against the
number of iterations. The plots show the influence of the global-best
memory consideration on improving the convergence rate. 137

Figure 9.1 Penalty Values of Harmony Search-based Methods using the Medium
dataset 143

Figure 9.2 Penalty Values of Harmony Search-based Methods using the Large
dataset 143

Figure 9.3 A comparison between the results obtaining best penalty values in the
Harmony Search-based Algorithms 148

Figure 9.4 Penalty Values of Comparative Methods using the Medium and Large
dataset 149

Figure A.1 The Concepts of Local Optima, Global Optima, Current Solution in
the Search Space 177

Figure A.2 Search Methodologies 178

xii

LIST OF ABBREVIATIONS

ACO Ant Colony Optimisation

AIS Artificial Immune System

ANN Artificial Neural Network

bw bandwidth parameter

COP Combinatorial Optimisation Problem

EC Evolutionary Computation

EDA Estimation of Distribution Algorithm

EP Evolutionary Programming

ES Evolutionary Strategies

GA Genetic Algorithm

GD Great Deluge

GLS Guided Local Search

GP Genetic Programming

GRASP Greedy Randomized Adaptive Search Procedure

HCO Hill Climbing Optimiser

HCR Hill Climbing Rate

HHSA Hybrid Harmony Search Algorithm

HM Harmony Memory

xiii

HMCR Harmony Memory Consideration Rate

HMS Harmony Memory Size

HSA Harmony Search Algorithm

HSA-MPAR Harmony Search Algorithm with Multi-Pitch Adjusting Rate

ILS Iterated Local Search

ITC-2007 Second International Timetabling Competition

MA Memetic Algorithm

MHSA Modified Harmony Search Algorithm

MMAS MAX-MIN Ant System

NP Non Polynomial

PAR Pitch adjusting Rate

PSO Particle Swarm Optimisation

PSR Particle Swarm Rate

PV Penalty Value

SA Simulated Annealing

Scen Scenario

SI Swarm Intelligence

SS Scatter Search

TS Tabu Search

TTComp2002 First International Timetabling Competition

xiv

UCTP University Course Timetabling Problem

USM Universiti Sains Malaysia

UTP University Timetabling problem

VNS Variable Neighborhood Search

xv

LIST OF PUBLICATIONS

1. Al-Betar, M.A., Khader, A.T.: A Harmony Search Algorithm for University Course

Timetabling. Annals of Operation Research, DOI: 10.1007/s10479-010-0769-z.

2. Al-Betar, M.A., Khader, A.T.: A MultiSwap Algorithm for University Course Timetabling.

Journal of Operation Research Society, Under revision.

3. Al-Betar, M.A., Khader A.T., and Liao I.Y.: A Harmony Search Algorithm with Multi-

Pitch Adjusting Rate for University Course Timetabling. In Z.W. Geem, editor, Recent

Advances in Harmony Search Algorithm, volume 270 of Studies in Computational In-

telligence (SCI), pages 147–162. Springer-Verlag, Berlin, Heidelberg (2010).

4. Al-Betar, M.A., Khader, A.T., Gani, T.A.: A Harmony Search Algorithm for University

Course Timetabling. In: 7th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2008), Montreal, Canada, August 18–22 (2008).

5. Gani, T.A., Khader, A.T., Al-Betar, M.A.: Assessing examination timetabling problems

using fuzzy Pareto optimality. In: 7th International Conference on the Practice and The-

ory of Automated Timetabling (PATAT 2008), Montreal, Canada, August 18–22 (2008).

6. Al-Betar, M.A., Khader A.T., Nadi, F.: Selection Mechanisms in Memory Consideration

for Examination Timetabling with Harmony Search. In Proceedings of Genetic and Evo-

lutionary Computation Conference (GECCO-2010). Portland, Oregon, USA, 7-11 July

(2010).

7. Nadi, F., Khader A.T., Al-Betar, M.A: Adaptive Genetic Algorithm Using Harmony

Search. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO-

2010). Portland, Oregon, USA, 7-11 July (2010).

xvi

8. Al-Betar, M.A., Khader, A.T., Thomas, J. J.: A Combination of Metaheuristic Compo-

nents based on Harmony Search for the Uncapacitated Examination Timetabling. In: 8th

International Conference on the Practice and Theory of Automated Timetabling (PATAT

2010), Belfast, Northern Ireland, August 10–13 (2010).

9. Thomas, J. J., Khader, A.T., Al-Betar, M.A. : The Perception of Interaction on the Uni-

versity Examination Timetabling Problem. In: 8th International Conference on the Prac-

tice and Theory of Automated Timetabling (PATAT 2010), Belfast, Northern Ireland,

August 10–13 (2010).

10. Al-Betar, M.A., Khader A.T.: A hybrid harmony search algorithm for university course

timetabling. In Proceedings 4nd Multidisciplinary Conference on Scheduling: Theory

and Applications (MISTA2009). Dublin, Ireland, 10-12 August (2009).

xvii

PENYESUAIAN DAN PENGHIBRIDAN
GELINTARAN HARMONI DENGAN KOMPONEN

METAHEURISTIK UNTUK PENJADUALAN
KURSUS UNIVERSITI

ABSTRAK

Masalah Penjadualan Waktu Kursus Universiti (MPWKU) merupakan suatu masalah penjad-

ualan kombinatorik yang rumit. Algoritma Gelintaran Harmoni (AGH) ialah suatu kaedah

metaheuristik berdasarkan populasi. Kelebihan utama algoritma ini terletak pada keupayaan-

nya dalam mengintegrasikan komponen-komponen utama bagi kaedah berdasarkan populasi

dan kaedah berdasarkan gelintaran setempat dalam satu model pengoptimuman yang sama.

Disertasi ini mencadangkan suatu AGH yang telah disesuaikan untuk MPWKU. Penyesuaian

ini melibatkan pengubahsuaian terhadap operator AGH. Hasil yang diperoleh adalah dalam

lingkungan keputusan terdahulu. Tetapi beberapa kelemahan dalam kadar penumpuan dan ek-

sploitasi setempat telah dikesan dan telah diberikan tumpuan menerusi penghibridan dengan

komponen metaheuristik yang diketahui. Tiga versi terhibrid dicadangkan, di mana, setiap

hibrid merupakan peningkatan daripada yang sebelumnya: (i) Algoritma Gelintaran Harmoni

yang Diubah suai; (ii) Algoritma Gelintaran Harmoni dengan Kadar Penyesuaian Berbagai

Nada, dan (iii) Algoritma Gelintaran Harmoni Hibrid. Semua hasil yang diperoleh diband-

ingkan dengan 21 kaedah lain menggunakan sebelas dataset piawai de facto yang mempunyai

saiz dan kekompleksan yang berbeza-beza. Versi terhibrid yang dicadangkan ini berjaya mem-

berikan penyelesaian optimal bagi dataset kecil, dengan dua hasil keseluruhan terbaik bagi

dataset sederhana. Seterusnya, dalam dataset yang besar dan paling kompleks kaedah hibrid

yang dicadangkan ini telah menghasilkan keputusan terbaik.

xviii

ADAPTING AND HYBRIDISING HARMONY
SEARCH WITH METAHEURISTIC COMPONENTS

FOR UNIVERSITY COURSE TIMETABLING

ABSTRACT

University Course Timetabling Problem (UCTP) is a hard combinatorial scheduling prob-

lem. Harmony Search Algorithm (HSA) is a recent metaheuristic population-based method.

The major thrust of this algorithm lies in its ability to integrate the key components of population-

based methods and local search-based methods in the same optimisation model. This disserta-

tion presents a HSA adapted for UCTP. The adaptation involved modifying the HSA operators.

The results were within the range of state of the art. However, some shortcomings in the con-

vergence rate and local exploitation were identified and addressed through hybridisation with

known metaheuristic components. Three hybridized versions are proposed which are incre-

mental improvements over the preceding version: (i) Modified Harmony Search Algorithm

(MHSA); (ii) Harmony Search Algorithm with Multi-Pitch Adjusting Rate (HSA-MPAR), and

(iii) Hybrid Harmony Search Algorithm (HHSA). The results were compared against 21 other

methods using eleven de facto standard dataset of different sizes and complexity. The proposed

hybridized versions achieved the optimal solution for the small datasets, with two best over-

all results for the medium datasets. Furthermore, in the large and most complex dataset the

proposed hybrid methods achieved the best result.

xix

CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Timetabling

Timetabling is a process observed by administrators in different disciplines for the purpose of

assigning events to be carried out at an appointed time. The overall aim is to organise peo-

ple’s lives, work and activities that are desired to be performed timely and without disruption.

Transportation sectors, hospitals, companies, and academic institutions are but a few examples

of the bodies that have to run business within a framework of timetabling to ensure smooth

transactions.

For those working in the administrative divisions and the registration departments at uni-

versities and academic institutions, the timetabling task may seem monumental, overtiring,

and even baffling. So much so that some of them have to spend nights and weeks in an attempt

to overcome certain intricacies arising from the need to deal with huge data to be organized

neatly and systematically. This is so because they have to ensure that students attend their

classes smoothly without conflict or confusion taking into consideration student and/or lec-

turer preferences.

The university administrators who are in charge of the process of drawing up a timetable

need to assess what resources they have and the requirements that they need to satisfy. The

resources may include thousands of students who attend a limited number of courses, a limited

number of time periods, and a limited number of lecture halls (or rooms). The main activity is

1

to assign these courses to time periods and rooms according to predefined requirements. Some

of these requirements have to be satisfied. For example, you cannot schedule two courses in

the same period if they have the same students (i.e., a hard constraint). In addition, there are

preferences which are not mandatory but rather desired to be satisfied. For example, students

may not like to have three courses scheduled in a row (i.e., a soft constraint). In the university

context, two types of timetables are generated in each semester: exam timetable and course

timetable. This dissertation addresses course timetabling.

In technical terms, course timetabling is the process of allocating given events, each with

given features, to given resources and times with respect to given constraints (Burke et al.,

2004). The timetabling process varies in difficulty according to the problem size and demand-

ing constraints which vary among academic institutions. The timetabling solution is typically

evaluated against satisfying constraints which are usually categorized into two types: hard and

soft. Hard constraints must be satisfied for the timetabling solution to be feasible, whereas soft

constraints are desired but not absolutely essential. Soft constraints may be violated, yet the

more they are met, the better the quality of the solution will be.

To clarify further, Figure 1.1 shows a real-world course timetable for the School of Com-

puter Sciences at the University Sains Malaysia for the second semester of the academic year

2009/2010. Each row represents a day, each column represents a time period and each cell con-

tains a value representing a scheduled course. The value in a cell consists of a course code with

its required lecture hall size (e.g., Course CPT103 with 70 students for the cell "(CPT103)(70)")

and the lecture hall name with its capacity (e.g., "DK R (110)", represents lecture room DK R

with capacity of 110 students).

If the timetable is feasible, each course is allocated in a suitable room in terms of capacity

and features (overhead projector, video Conferencing, etc.). Furthermore, the courses taken by

2

Figure 1.1: An Example of a Feasible Course Timetable

the same students are allocated in different day-periods. For example, on Monday (Isnin), for

the time period 9:00 to 9:50 (Period 2); two courses are scheduled (i.e., CMT325 and CPT314).

Therefore, no students can attend both of these courses and the same lecturer cannot teach both

either. However, if a student were enrolled in CMT325 and CPT314, then the timetable would

not be feasible, as a hard constraint would be violated. The lecturer for CMT325 may have

difficulties coming on Monday morning (e.g., this lecturer may live faraway off-campus) and

may not prefer to be scheduled in Period 2 – this is an example on a soft constraint which was

not met. However, there is a possibility for another feasible timetable to be generated where the

above preference might be satisfied (with no other constraints violated) – this will be evaluated

as a higher quality solution.

1.1.2 Datasets

Evaluating a method for solving the course timetabling problem is conducted by instantiation

with a dataset. A number of such datasets are publicly available including those provided

3

by the First International Timetabling Competition (TTComp2002)1, the Second International

Timetabling Competition (ITC-2007) (McCollum et al., 2010); and researchers Lewis and

Paechter (2005) and Socha et al. (2002). These datasets provide a common framework for

meaningful comparative evaluations of their methods. The datasets vary in terms of size (e.g.,

number of rooms, courses, room types) and constraints. For more details about these datasets,

please refer to Appendix C.

This dissertation uses a de facto dataset defined by Socha et al. (2002). The Socha dataset

has been used for evaluating a number of optimisation methods over the last several years.

Although other datasets exist, the Socha dataset provides a suitable and wide range of compar-

ative methods, numbering 21, against which the proposed methods have been comprehensively

evaluated.

1.1.3 Course Timetabling Methods

The course timetabling problem has been given particular attention by operational research

and artificial intelligence researchers for some time (Burke and Petrovic, 2002). Many meth-

ods have been introduced in the literature to tackle such problems. Interestingly, the basic

timetabling problem can be modeled as a graph coloring problem. Therefore, the earliest meth-

ods employed graph coloring heuristics as an essential part to construct the course timetabling

solution (Burke et al., 2004). These heuristics assign courses to rooms and timeslots, indi-

vidually, according to a particular order. Although these heuristics show great efficiency in

constructing a timetabling solution quickly, the quality of the solution is often inferior to that

produced by metaheuristic or hyper-heuristic methods. Nowadays, graph coloring heuristics

tend to be used in the construction of initial solution for metaheuristic methods (Abdullah

et al., 2007b; Chiarandini et al., 2006).

1http://www.idsia.ch/Files/ttcomp2002/

4

The emergence of metaheuristics for solving difficult timetabling problems has been one of

the most notable accomplishments over almost the last two decades (Lewis, 2008). Metaheuristic-

based method is an iterative improvement process that uses its operators and combines intelli-

gently the problem specific knowledge for exploring and exploiting the search space in order

to reach a good-quality solution (Osman and Laporte, 1996). The search space is a bounded

domain which contains all possible solutions.

The key research issue in applying metaheuristic-based methods to any combinatorial opti-

misation problem is to strike a balance between exploration and exploitation during the search

(Qu et al., 2009). Note that, during the exploration stage, the search is encouraged to explore

the not-yet-visited search space regions if need be. During the exploitation stage, however, the

search concentrates on the the already-visited search space regions (Blum and Roli, 2003).

In general, metaheuristics are divided into two categories, local search-based and population-

based methods. Local search-based methods consider one solution at a time (Blum and Roli,

2003). The solution undergoes changes iteratively until a static point near the initial solution

is reached. Local search-based methods often use neighborhood structures guided by a given

acceptance rule to improve the solution. Although the main merit of using these methods is

their strength of fine-tuning the solution more structurally and more quickly than population-

based methods (Blum and Roli, 2003), the main drawback of those local search-based methods

is that they may easily get stuck in local optima. The main cause for the local optimal problem

is that local search-based methods focus on exploitation rather than exploration which means

that they move in one direction without performing a wider scan of the entire search space.

The local search-based methods applied to the course timetabling problem include iterative lo-

cal search (Socha et al., 2002), simulated annealing (Chiarandini et al., 2006; Kostuch, 2005),

very large neighborhood search (Abdullah et al., 2007b, 2005), great deluge (McMullan, 2007;

Landa-Silva and Obit, 2008, 2009; Obit et al., 2009; Turabieh et al., 2009).

5

Population-based methods, which consider many solutions at a time, have also been ap-

plied to the course timetabling problem. During the search, they recombine current solutions

to obtain new ones. Unfortunately, the quality of timetabling solutions produced by population-

based methods are inferior to local search-based methods because they are poorer at finding the

precise optimal solution in the search space region to which the algorithm converges (Fesang-

hary et al., 2008). The common cause of this problem is that the population-based methods are

more concerned with exploration rather than exploitation. It should be emphasized that popula-

tion based methods scan the solutions in the entire search space without rigorous concentration

on current solutions. The population-based methods applied to the course timetabling problem

include Genetic Algorithm (GA) (Lewis and Paechter, 2004, 2005), Ant Colony Optimisa-

tion (ACO)(Socha et al., 2002), and Artificial Immune System (AIS) (Malim et al., 2006).

Overviews of previous methods for the course timetabling problem are available in the follow-

ing surveys (Burke et al., 1997; Carter and Laporte, 1997; Burke and Petrovic, 2002; Burke

et al., 2004; Lewis, 2008).

The key component (or operator) among local search-based methods has been the neigh-

borhood structures (i.e., move, swap, Kempe chain) which are able to explore the search space

using one or more local changes in the current solution. On the other hand, the common com-

ponent among population-based methods has been the recombination (i.e., crossover in GA,

global-best operator in Particle Swarm Optimisation (PSO), etc.). Recombination exploits the

characteristics of the current population in the process of producing a new population. Both

local search-based and population-based methods may have a randomness (i.e., mutation in

GA, cooling schedule in SA) component to diversify the search when and if necessary.

In a recent comprehensive survey of timetabling, Qu et al. (2009) conclude: “There are

many research directions generated by considering the hybridisation of meta-heuristic meth-

ods particularly between population based methods and other approaches”. In general, there

6

are many research trends highlighting the efficiency of using local search-based methods within

population-based methods. For example, Blum and Roli (2003) in an influential article on

metaheuristics conclude that “In summary, population-based methods are better in identifying

promising areas in the search space, whereas trajectory methods are better in exploring promis-

ing areas in the search space. Thus, metaheuristic hybrids that in some way manage to combine

the advantage of population-based methods with the strength of trajectory methods are often

very successful”.

1.1.4 Harmony Search Algorithm

The Harmony Search Algorithm (HSA) is a new metaheuristic developed by Geem et al.

(2001). It mimics the musical improvisation process in which a group of musicians play the

pitches of their musical instruments together seeking a pleasing harmony as determined by an

audio-aesthetic standard. HSA is a stochastic search mechanism that requires no derivation

information in the initial search (Lee et al., 2005). Such method has been successfully applied

to a wide variety of optimisation problems (Ingram and Zhang, 2009).

HSA is an iterative improvement method initiated with a number of provisional solutions

stored in the ‘Harmony Memory (HM)’. At each iteration, a new solution called ‘new har-

mony’ is generated based on three operators: (i) ‘Memory Consideration’, which makes use

of accumulative search; (ii) ‘Random Consideration’, used to diversify the new harmony, and

(iii) ‘Pitch Adjustment’, analogous to local search. A new harmony is then evaluated against

an objective function and substituted with the worst harmony stored in HM. This process is

repeated until an acceptable solution is obtained.

HSA has an interesting feature that differentiates it from the other metaheuristics: through

the Memory consideration and Random consideration, HSA iteratively recombines the charac-

7

teristics of many solutions in order to generate one solution. It is able to fine tune this solution

to which the algorithm converges using pitch adjustment. As such, the HSA has the advan-

tage of combining key components of population-based and local search-based methods in an

optimisation model.

1.2 Motivation and Problem Statement

For those with little or no experience in the field, generating a course timetable might be thought

of as being trivial. But for the administrator it may be considered a very challenging task

because there are a limited number of resources to be assigned to meet a considerable number of

requirements. In computing terms, course timetabling is a combinatorial optimisation problem

which belongs to the NP-complete class in almost all its variations (Lewis, 2008). Technically,

course timetabling is the problem of assigning given courses, each with given features, to given

rooms and timeslots according to predefined constraints.

The most successful methods for difficult timetabling problems have been based on meta-

heuristics (i.e., population-based and local search-based methods)(Lewis, 2008). Population-

based methods are able to explore multiple search space regions at a time. However, they are

often poorer at finding a precise local optimal solution in each search space region to which

they converge (Fesanghary et al., 2008). In contrast, Local search-based methods are able to

fine-tune the search space region to which they converge and find a precise local optimal so-

lution. However, they go through a trajectory in the search space without doing a wider scan

of the entire search space. A possible way to tackle the timetabling problem is to strike a

balance between global exploration using the strength of population-based methods, and local

exploitation using the strength of local search-based methods.

HSA is considered a population-based algorithm with local search-based characteristics

8

(Lee et al., 2005). However, existing works have not investigated harmony search algorithm in

the context of timetabling in general. The focus of the research of this dissertation is to adapt

HSA for course timetabling for purposes of unveiling advantages or disadvantages and then

enhancing its efficiency by means of combining components from metaheuristics.

1.3 Research Objectives

The aim of this dissertation is not only to develop efficient harmony search-based algorithms

for course timetabling problems but also to show that these algorithms can outperform other

algorithms in timetabling published in the literature. Thus, new alternatives for solving course

timetabling problems are provided.

The key objectives of the research presented in this dissertation are as follows:

1. To adapt the harmony search algorithm for course timetabling.

2. To hybridise the adapted HSA with components from other metaheuristics in order to

further improve the quality of the solution.

1.4 Research Contributions

The research has made main contributions to the literature as it has:

1. adapted the HSA to course timetabling and therefore provided the timetabling commu-

nity with an efficient template for applying HSA to the timetabling problems, henceforth

called Basic Harmony Search Algorithm (BHSA).

2. introduced three hybridised versions of the adapted harmony search algorithm with other

metaheuristic components. Note that the three versions were introduced sequentially,

9

each to overcome the weaknesses of the previous one and thus obtain a high-quality

solution to UCTP. These can be described as follows:

(a) Modified Harmony Search Algorithm (MHSA). Hybridisation of BHSA with global

best concept from Particle Swarm Optimisation (PSO) to improve its speed of con-

vergence. Furthermore, hybridising three neighbourhood structures which were

guided by the objective function with BHSA to improve its local exploitation.

(b) Harmony Search Algorithm with Multi-Pitch Adjusting Rate (HSA-MPAR). Hybridi-

sation of BHSA with global best concept from PSO to improve its speed of con-

vergence. Furthermore, hybridising eight different neighbourhood structures which

were guided by the objective function with BHSA to increase its ability in local

exploitation.

(c) Hybrid Harmony Search Algorithm (HHSA). Hybridisation of BHSA with global

best concept from PSO to improve its speed of convergence. Furthermore, hybridis-

ing hill climbing optimizer with BHSA as a new operator to increase its ability to

find the local optimal solution in the search space of the new harmony solution.

The results obtained were compared with a total of 21 other previous methods in terms of

penalty value using the same dataset defined by Socha et al. (2002).

1.5 Overview of Methodology

This section provides a brief discussion on the methodology, described fully in chapter 4, to

achieve the research objectives.

For the first objective, the course timetabling data and the way of evaluating each solution

with suitable data structures are embedded into BHSA. Although the results were not impres-

10

UCTP Modelling

MHSA HHSA

Adapting BHSA for UCTP

HSA-MPAR

Comparative Evaluation

Hybridization versions of BHSA

Figure 1.2: Research Methodology

sive, the approach was worthy of further research in order to achieve the second objective.

For the second objective, three hybridisation techniques of effective components from

metaheuristics were incorporated into BHSA. The first hybridises the global-best concept from

PSO and three neighbourhood structures guided by objective function with BHSA to enhance

its convergence speed and local exploitation aspect (i.e., MHSA). The second hybridises the

global-best concept from PSO and eight neighbourhood structures guided by objective func-

tion with BHSA to further improve local exploitation aspects (i.e., HSA-MPAR). The third

hybridises the global-best concept from PSO and hill climbing operator with BHSA to further

improve the local exploitation (i.e., HHSA).

For the purpose of evaluating the efficiency of the proposed algorithms, comprehensive

comparisons were provided against a total of 21 methods.

Figure 1.2 shows that the stages of the research methodology. Initially, the UCTP is math-

ematically modeled to be embedded into the BHSA. In the first stage, BHSA is adapted for

UCTP to achieve the first objective. Two drawbacks were determined related to convergence

11

rate and local exploration. The second stage is carried out to overcome the two drawbacks of

BHSA by hybridising it with efficient metaheuristic components. This leads to MHSA, HSA-

MPAR, and HHSA sequentially. Note that in Figure 1.2, the arrow between the hybridised

versions shows that they are sequentially proposed, each to overcome the weaknesses of the

previous one.

1.6 Overview of Dissertation

This dissertation includes ten chapters organized as follows: Chapter 2 discusses the basics

of the harmony search algorithm. The analogy between musical and optimisation terms are

provided.

Chapter 3 provides an overview of the timetabling problems with particular attention to

course timetabling. It also surveys some previous methods that tackled the university timetabling

problems successfully. The modeling for the course timetabling is described in Chapter 4

which also includes a thorough description of the methodology and the procedures that were

conducted.

Chapters 5, 6, 7, 8 present the BHSA, MHSA, HSA-MPAR, HHSA consecutively. It should

be noted that each chapter describes a particular proposed method when it is adapted or hy-

bridised for course timetabling and presents the experiments and results with detailed analysis

of studying the behaviour of that method in terms of the convergence properties.

In Chapter 9, a comparative analysis of the proposed methods and the previous methods in

the literature are provided. Finally in Chapter 10, the research conclusion together with some

possible future work are presented.

12

CHAPTER 2

FUNDAMENTALS TO HARMONY SEARCH
ALGORITHM

2.1 Introduction

This chapter provides an explanation to Harmony Search Algorithm (HSA). The characteristics

of HSA are provided in Section 2.2. The equivalences between optimisation and musical terms

are explained in Section 2.3. Finally the steps of HSA are discussed in Section 2.4. Note that

further explanation about the optimisation discipline is provided in Appendix A.

2.2 Harmony Search Algorithm

HSA is a recent metaheuristic population-based method developed by Geem (2000) and Geem

et al. (2001). It stems form the musical improvisation process in which a group of musicians

play the pitches of their musical instruments seeking for a pleasing harmony as estimated by

an audio-aesthetic standard. This is similar to the optimisation process which will be discussed

in more detail in Section 2.3.

The HSA is in a sense similar to other metaheuristics in the following characteristics: (Lee

and Geem, 2005; Mahdavi and Abolhassani, 2009):

1. HSA is a stochastic search mechanism which does not require derived information in the

initial search.

2. In HSA, the objective function guides the search which distinguishes between the poor

13

and good solutions.

3. HSA is simple to be tailored for a wide variety of optimisation problems.

4. HSA has an iterative improvement procedure called ‘improvisation process’. During

each iteration, a resulting solution called ‘new harmony’ is obtained based on operators

that can efficiently and effectively vacillate with harmony across the search space.

5. HSA has very few requirements for mathematical computation.

This algorithm has an interesting feature that differentiates it from the other metaheuristics:

it iteratively explores the search space by combining multi-search space regions to visit a single

search space region. We have to recall that, through the recombination and randomness, the

harmony search algorithm iteratively recombines the characteristics of many solutions in order

to make one solution. It is able to fine tune this solution to which the algorithm converges

using neighborhood structures. Throughout the process recombination is represented by mem-

ory consideration, randomness by random consideration, and neighborhood structures by pitch

adjustment. In the typical population-based methods, the search space is explored by mov-

ing from multi-search space regions to multi-search space regions and the local search-based

methods explore the search space regions moving from a single region to another. As such,

the harmony search algorithm has the advantage of combining key components of population-

based and local search-based methods in an optimisation model.

2.3 Analogy between Musical and Optimisation Contexts

Before providing any explanation, it is worth perusing into Table 2.1 which shows the com-

parison factors between the optimisation and musical contexts. Figure 2.1 shows the analogy

between the music improvisation process and optimisation process. In musical improvisation,

a group of musicians improvise the pitches of their musical instruments, practice after practice,

14

Table 2.1: The Optimisation Terms in the Musical Context

Musical Terms Optimisation Terms

Improvisation ←→ generation or construction
Harmony ←→ Solution vector
Musician ←→ Decision variable
Pitch ←→ Value
Pitch Range ←→ Value Range
audio-aesthetic standard ←→ Objective function
Harmony memory ←→ Memory matrix
Practice ←→ Iteration
Pleasing harmony ←→ (Near-) optimal solution

seeking for a pleasing harmony as determined by an audio-aesthetic standard. Initially, each

musician improvises any pitch from the possible pitch range which will finally lead all musi-

cians to make a fresh harmony. That fresh harmony is estimated by an audio-aesthetic standard:

if it is good (i.e., involves better pitches than the preferable pitches in musicians’ memory), the

musicians retain the good pitches in their memory instead of those included within the worst

harmony stored earlier for using them in the next practice. Practice after practice, the good

pitches are stored in the musicians’ memory which give them a better chance to produce a

pleasing harmony in the following practices.

This can be translated into the optimisation process as follows: a set of decision variables is

assigned with values, iteration by iteration, seeking for a ’good enough’ solution as evaluated

by an objective function. Initially, each decision variable is assigned by any value from its

possible range which will finally lead all decision variables to make a new solution vector.

That solution vector is evaluated by an objective function: if it is good (i.e., involves better

values than experience values stored in the memory), the decision variables will store the good

values in their memory instead of those included within the worst solution vector stored earlier

for using them in the next iterations. Iteration by iteration, the good values for each decision

variable will be stored in the memory giving them a better chance to produce a better solution

in the following iterations.

15

Audio-aesthetic

standard

(Do, Sol, Fa,

La, Si)

f(203, 400, 180,

250, 230) � � � � �

=Do = Sol =Fa = La = Si

=203 =400 =180 = 250 = 320

Figure 2.1: Analogy between Music Improvisation and Optimisation Process

When each musician improvises a pitch from his musical instrument, there are three op-

tions: (i) improvising any pitch from his memory, (ii) modifying a pitch which exists in mem-

ory, or (iii) improvising a pitch from the possible pitch range. Analogously, in the optimisation

context, the value of each decision variable is decided according to one of the following op-

tions: (i) assigning a value stored in the memory, (ii) modifying a value which exists in the

memory, or (iii) assigning a value from its feasible range. Geem et al. (2001) formalized these

three options into three operators: memory consideration, pitch adjustment, and random con-

sideration (those will be discussed in more detail in Section 2.4).

Figure 2.2 shows the harmony memory structure which is the core part of the improvi-

sation process. Consider musical instruments of five musicians on the Jazz bandstand. They

have sets of preferable pitches in their memory as follows: Guitarist: {Do, Mi, Sol}; Trum-

peter: {La, Si, Sol}; Drummer:{Re, Sol, Si} ; Saxophonist: { Fa, Do, La}; Double bassist:

{Re, Sol, Mi}. Assume in a practice if Guitarist randomly improvises {Do} from his mem-

ory; Trumpeter improvises {Sol} from his memory; Drummer adjusts {Re} from his memory

to {Fa}, Saxophonist improvises {La} from his memory, and Double bassist improvises {Si}

from the available range {Do, Re, Mi, Fa, Sol, Si}. All these pitches together create a new

harmony (Do, Sol, Fa, La, Si) which is estimated by an audio-aesthetic standard. If the new

16

Harmony memory

Do, Mi,

Sol

La, Si,

Sol

Fa, Do,

La

Re, Sol,

Si

Re, Sol,

Mi

100,

203, 504

70, 250,

300

104, 50,

600

100,

200, 300

220,

400, 700

Figure 2.2: The Harmony Memory Structure

harmony is better than the worst harmony stored in the harmony memory, the worst harmony

existing in harmony memory is substituted with the new one. This process is repeated until a

pleasing harmony is obtained.

In terms of optimisation: consider five decision variables, each of which has stored ex-

perience values in the harmony memory as follows: x1 :{100,203,504}; x2 : {220,400,700};

x3 :{104,50,600}; x4 :{100,200,300}; x5 :{70,250,300}. Suppose in an iteration, if x1 is as-

signed with 203 from its memory; x2 is assigned with 400 from its memory; x3 is adjusted

from the value 104 stored in its memory to be 180; x4 is assigned with 200 from its mem-

ory; x5 is assigned with 320 from its feasible range x3 ∈ [0,600]. The new harmony solution

(203,400,180,200,320) is evaluated by an objective function. If the new harmony solution is

better than the worst solution in the harmony memory, then it replaces the worst solution. This

process is repeated until an optimal solution is considered to have been reached.

17

2.4 Harmony Search Procedure

Algorithm 2.1 shows the pseudo-code of the classical HSA with five main steps that will be

described as follows:

Algorithm 2.1 The classical harmony search algorithm

STEP1 Initialise the problem and the HSA parameters

1: Input data instance of the optimisation problem
2: Set the HSA parameters (HMCR, PAR, NI, HMS).

STEP2 Initialise the harmony memory

1: Construct vectors of the harmony memory, HM = {x1,x2, . . . ,xHMS}
2: Recognise the worst vector in HM, xworst ∈ {x1,x2, . . . ,xHMS}

STEP3 Improvise a new harmony

1: x′ = φ /**x′ is the new harmony vector**/
2: for i = 1, · · · ,N do
3: if (U(0,1)≤ HMCR) then
4: x′i ∈ {x1

i ,x
2
i , . . . ,x

HMS
i } /**memory consideration**/

5: if (U(0,1)≤ PAR) then
6: x′i = vi,k±m /** pitch adjustment **/
7: end if
8: else
9: x′i ∈ Xi /** random consideration **/

10: end if
11: end for

STEP4 Update the harmony memory (HM)

1: if (f (x′)< f (xworst)) then
2: Include x′ to the HM.
3: Exclude xworst from HM.
4: end if

STEP5 Check the stop criterion

1: while (not termination criterion specified by NI is met) do
2: Repeat STEP3 and STEP4
3: end while

Step 1 Initialise the problem and the HSA parameters. Suppose that the discrete optimisation

18

problem is modeled as in Eq.(2.1).

min{ f (x)|x ∈ X} Subject to g(x)< 0 and h(x) = 0 (2.1)

Where f (x) is the objective function; x = {xi|i = 1, . . . ,N} is the set of each decision

variable. X = {Xi|i = 1, . . . ,N} contains all possible discrete values for each decision

variable, i.e., Xi = {vi,1,vi,2, . . . ,vi,Ki}. N is the number of decision variables, and Ki is

the number of values for each decision variable xi. g(x) are inequality constraint func-

tions and h(x) are equality constraint functions. The parameters of the HSA required

to solve the optimisation problem are also specified in this step:

(a) The Harmony Memory Consideration Rate (HMCR) is used in the improvisation

process to determine whether the value of a decision variable is to be selected

from the solutions stored in the Harmony Memory (HM).

(b) The Harmony Memory Size (HMS) is similar to the population size in genetic

algorithm.

(c) The Pitch Adjustment Rate (PAR) decides whether the decision variables are to

be adjusted to a neighbouring value.

(d) The Number of Improvisations (NI) corresponds to the number of iterations.

Note that the HMCR and PAR are the two parameters responsible for the improvisation

process. These parameters will be explained in more detail in the next steps.

Step 2 Initialise the harmony memory. The harmony memory (HM) is a memory location

which contains sets of solution vectors which are determined by HMS (see Eq.2.2). In

this step, these vectors are randomly (or heuristically) constructed and stored to the HM

19

based on the objective function values.

HM =

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
...

. . .
...

xHMS
1 xHMS

2 · · · xHMS
N

(2.2)

Step 3 Improvise a new harmony. In this step, the HSA will generate (improvise) a new har-

mony vector from scratch, x′ = (x′1,x
′
2, · · · ,x′N), based on three operators: (1) memory

consideration, (2) random consideration, and (3) pitch adjustment.

Memory consideration. In memory consideration, the value of the first decision vari-

able x′1 is randomly assigned from the historical values, {x1
1,x

2
1, . . . ,x

HMS
1 }, stored in

HM vectors. Values of the other decision variables, (x′2,x
′
3, . . . ,x

′
N), are sequentially

assigned in the same manner with probability of HMCR where 0 ≤ HMCR ≤ 1. The

operation of this operator is similar to the recombination operator in other population-

based methods and is a good source of exploitation (Yang, 2009).

Random consideration. Decision variables that are not assigned with values according

to memory consideration are randomly assigned according to their possible range by

random consideration, with a probability of (1-HMCR) as in Eq.(2.3).

x′i ←

x′i ∈ {x1
i ,x

2
i , . . . ,x

HMS
i } w.p. HMCR

x′i ∈ Xi w.p. 1 - HMCR

(2.3)

Random consideration is functionally similar to the mutation operator in genetic al-

gorithm which is a source of global exploration in HSA (Yang, 2009). The HMCR

parameter is the probability of assigning one value of a decision variable, x′i, based

on historical values stored in the HM. For instance, if (HMCR =0.90), this means that

20

the probability of assigning the value of each decision variable from historical values

stored in the HM vectors is with the probability of 90%, and the value of each decision

variable is assigned from its possible value range is with the probability of 10%.

Pitch adjustment. Every decision variable x′i of a new harmony vector, x′=(x′1,x
′
2,x

′
3, . . . ,x

′
N),

that has been assigned a value by memory considerations is examined for whether or

not it should be pitch adjusted with the probability of PAR where 0 ≤ PAR ≤ 1 as in

Eq.(2.4).

Pitch adjusting decision for x′i ←

Yes w.p. PAR

No w.p. 1-PAR

(2.4)

A PAR of 0.10 means that the HSA modifies the existing value of decision variables

assigned by memory consideration with a probability of (PAR×HMCR), while the

other values of decision variables assigned by memory consideration do not change. If

the pitch adjustment decision for x′i is Yes, the value of x′i is modified to its neighboring

value as follows:

x′i(k) = vi,k±m (2.5)

where x′i is assigned with value vi,k, that is, the kth element in Xi. m is the neighboring

index, m ∈ Z. The following summarizes the improvisation process of step 3, which is

the main mechanism for iterating towards an optimal solution:

x′i ←

x′i ∈ {x1
i ,x

2
i , . . . ,x

HMS
i } w.p. HMCR

x′i = vi,k±m w.p. HMCR×PAR

x′i ∈ Xi w.p. 1 - HMCR

(2.6)

It is clear that the HSA assumes implicitly that good harmony vectors consist of good

21

harmony decision variables. It also assumes that the process of learning the harmony

memory by means of storing good values for each decision variable can help to produce

a good quality new harmony.

Step 4 Update the harmony memory. If the new harmony vector, x′ = (x′1,x
′
2, · · · ,x′N), is

better than the worst harmony stored in HM in terms of the objective function value,

the new harmony vector replaces the worst harmony vector. Basically, each update of

HM causes HSA to focus on the search space regions containing high quality solutions.

Step 5 Check the stop criterion. Step 3 and step 4 of HSA are repeated until the stop criterion

(maximum number of improvisation) is met. This is specified by NI parameter.

2.5 Conclusion

HSA is a recent metaheuristic population-based method. This algorithm has been successfully

applied to a wide variety of optimisation problems as shown in Appendix B. The concepts of

HSA are described within the context of creating a pleasing harmony within a musical context.

Finally, the main steps of HSA have been thoroughly described. Note that further explanation

about other optimisation methods has been provided in Appendix A.

22

CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

This chapter will discuss the timetabling problems in general and university course timetabling

problem (UCTP) in particular. The methods tackling UCTP will be surveyed and eventually a

comprehensive analysis to the exiting methods will be conducted.

3.2 Timetabling Problems

A comprehensive definition for timetabling problems was put forward by Burke et al. (2004),

“A timetabling problem is a problem with four parameters: T , a finite set of times; R, a finite

set of resources; M, a finite set of meetings; and C, a finite set of constraints. The problem is to

assign times and resources to the meetings so as to satisfy the constraints as far as possible.”

Timetabling problems appeared in various forms with reference to different disciplines

including Educational Timetabling (Lewis, 2008; Carter and Laporte, 1997; Schaerf, 1999;

Burke et al., 1997; Qu et al., 2009; Burke et al., 2004; Burke and Petrovic, 2002), Nurse Ros-

tering (Heang et al., 2003), Transportation Timetabling (Wren and Rousseau, 1995), Employee

Timetabling (Meisels and Lusternik, 1998) and Sport Scheduling (Wright, 2007).

Educational timetabling problems in particular have been studied intensively over five

decade. They comprise three forms (Schaerf, 1999): (i) school timetabling problems, (ii)

course timetabling problems, and (iii) examination timetabling problems.

23

Table 3.1: Differences and Similarities between Examination and Course Timetabling

Course Timetabling Examination Timetabling

Similarities – It is the process of schedul-
ing a set of courses to rooms and
timeslots.

– It is the process of assigning
exams to rooms and timeslots.

– It is NP-complete in often all
their variations.

– It is NP-complete in often all
their variations.

– The constraints are related to
the preferences of lecturers and
students.

– The constraints are related to
the preferences of lecturers and
students

Differences – One course can be timetabled
in the same room at the same
timeslot.

– Many exams can be timetabled
in the same room at the same
timeslot.

– Weekly-based. The course
timetable is designed for one
week and repeated for others
(the number of timeslots re-
quired is fixed).

– Periodic-based. The number
of timeslots is predetermined or
should be minimised (number of
timeslots required is fixable in
most cases).

University timetabling involves two forms of educational timetabling problems: course

and examination timetabling problems. Although they are solved separately, they share some

characteristics as shown in Table 3.1. Lewis (2008) clarified the similarities between both

problems while McCollum (2006) explained the major differences in each research domain.

Generally speaking, university timetabling is the process of assigning a set of events (e.g.,

courses, examinations, tutorials), each with a set of features, to a set of rooms and timeslots

according to a set of constraints.

Conventionally, the constraints are divided into two types (Burke et al., 1997):

1. Hard Constraints. This type of constraints must be essentially satisfied in the timetabling

solution to be feasible.

2. Soft Constraints: The satisfaction of soft constraints in the timetabling solution is

not essential but desirable. The quality of timetabling solution is normally determined

against the number of the violations of the soft constraints. For example, if the quality of

24

Table 3.2: The Timetabling Constraint Classes (Lewis, 2008)

Constraint Class Descriptions

Unary constraints A constraint involving one event. For example, an event
has to be scheduled in specific timeslot and room.

Binary constraints A constraint involving two events. For example, two events
that share the same student cannot be scheduled in the same
timeslot. This class of constraints is called ‘event clash’.

Capacity constraints A constraint related to room capacity. For example, the
event must be scheduled in a room with sufficient capacity.

Event spread constraints A constraint related to the time gap between events that
share common resources. For example, the student may
prefer to have sufficient free time before the exam dates so
that he can revise his exams. To cite another example, a
student may not wish to attend three events in a row.

Agent constraints A constraint related to personal preferences. For example,
a lecturer may prefer to teach a particular event or may like
to be free on a Friday morning.

a timetabling solution is 20, this means that there are 20 violations in the soft constraints

(assuming that each violation in any soft constraint has a similar weight equal to 1).

Corne et al. (1995) distinguished between five general classes of university timetabling

constraints (See Table 3.2). A common constraint on the university timetabling problems is

the ‘event clash’ where the events that share the same student must be scheduled in a different

timeslot (Lewis, 2008). A comprehensive list of constraints in the literature can be seen in

(Pongcharoen et al., 2008).

3.3 Graph Colouring Model for University Timetabling

The basic timetabling problems1 can be modeled as a graph colouring (Welsh and Powell, 1967;

Wood, 1969; Werra, 1985). A graph G = (V,E) is an indirect graph with a set of N vertices

1Basic timetabling forms include the process of assigning events to timeslots only but without rooms.

25

