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PENYELIDIKAN TABLET MATRIKS DUA-LAPIS UNTUK 

PENGHANTARAN DUA FASA LORATADIN DAN PSEUDOEFEDRIN 

 

ABSTRAK  

 

Pengambilan drug secara oral lebih digemari kerana ia mudah, komplians pesakit 

tinggi, keadaan pengeluaran yang kurang ketat dan kos yang lebih rendah. Sudah 

menjadi kebiasaan dengan dua atau lebih drug terkandung dalam satu bentuk dos 

untuk indikasi yang berlainan. Dalam kajian ini, rekabentuk tablet matriks yang 

berlainan diuji keupayaan mereka mengubahsuai pelepasan drug terutamanya dalam 

penghantaran lebih daripada satu drug dengan kadar berlainan. Kajian bermula 

dengan penyediaan tablet matriks “press coated” dan sistem “monolithic” yang 

dilengkapi dengan ciri-ciri terapung, menggunakan parasetamol sebagai satu drug 

model. Seterusnya, untuk mencapai profil penghantaran drug dua fasa, tablet matriks 

“press coated” dan dua-lapis diuji, sekali lagi menggunakan parasetamol sebagai 

drug model. Peningkatan kandungan hidroksipropil metilselulosa dan gam xantan 

pada tahap 40% mampu mengawal pelepasan drug sehingga 12 jam. Pada kepekatan 

polimer yang sama, profil pelepasan drug tablet matriks dua-lapis dan “press coated” 

adalah setara. Lebih daripada 50% drug dilepaskan dalam satu 1 jam diikuti dengan 

pelepasan yang perlahan dalam satu tempoh panjang bergantung pada kandungan 

dan jenis polimer yang digunakan. Kedua-dua sistem dinilai lebih lanjut untuk 

pelepasan dua fasa loratadin dan pseudoefedrin, dibandingkan dengan tablet 

Clarinase
®
. Profil pelepasan loratadin dan pseudoefedrin daripada tablet matriks 

“press coated” dan dua-lapis dibandingkan dengan tablet Clarinase
®
 untuk 

kesetaraan. Tablet matriks dua-lapis lebih disukai dan dipilih untuk kajian in vivo 



 xx 

dengan menggunakan arnab. Sebelum kajian in vivo, kaedah HPLC telah 

dibangunkan dan divalidasi untuk mengesan pseudoefedrin dan loratadin dalam 

plasma arnab. Formulasi F19 telah digunakan untuk kajian in vivo. Keputusan yang 

didapati menunjukkan kadar dan jumlah yang diserap untuk loratadin dan 

pseudoefedrin tablet matriks dua-lapis F19 setanding dengan tablet Clarinase
®
. 

Pendek kata, sistem tablet matriks dua-lapis boleh digunakan sebagai satu sistem 

penghantaran drug alternatif untuk penghantaran dua fasa dua drug dengan 

keterlarutan yang berlainan.  
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INVESTIGATION OF BILAYER MATRIX TABLET FOR BIPHASIC 

DELIVERY OF LORATADINE AND PSEUDOEPHEDRINE 

 

ABSTRACT 

The oral route of administration is often preferred due to its convenience, high 

patient compliance, less stringent production conditions, and lower costs. It has 

become common to incorporate two or more drugs in a single dosage form, for 

different indications. In the present study, different designs of matrix tablet systems 

were examined for their ability in modifying the drug release especially for the 

delivery of more than one drug at different release rates. The study commenced with 

the preparation of press coated matrix tablets and a conventional monolithic system 

with floating features, using paracetamol as a model drug. Subsequently, to achieve 

biphasic drug delivery profiles, the press coated and bilayered matrix tablet systems 

were examined, again using paracetamol as a model drug. An increase in 

hydroxypropyl methylcellulose and xanthan gum at 40% level was able to sustain the 

drug release for 12 hr. At similar polymer concentration, the drug release profiles of 

bilayer and press coated tablets were comparable. More than 50% of drug was 

released within 1 hour followed by a slow drug release over an extended period of 

time dependent on the content and types of polymer used. The two systems were 

further evaluated for biphasic delivery of loratadine and pseudoephedrine, in 

comparison with Clarinase
®
 tablets. The release profiles of loratadine and 

pseudoephedrine from the press coated and bilayer matrix tablet were compared with 

those of Clarinase
®
 tablets to establish similarity. The bilayer matrix tablet was 

preferred and selected for in vivo study using rabbits. Prior to the in vivo study, 
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HPLC method was developed and validated for the determination of 

pseudoephedrine and loratadine in rabbit plasma. Formulation containing 

hypromellose and sodium carboxymethyl cellulose (F19) was used for in vivo study. 

The results obtained show that the rate and extent of absorption of loratadine and 

pseudoephedrine of studied bilayer matrix tablets were comparable with those of 

Clarinase
®

 tablets. In short, the bilayer matrix tablet system could be used as an 

alternative drug delivery system for biphasic delivery of two drugs with different 

solubility.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 ORAL DRUG DELIVERY SYSTEM 

The oral delivery system is the most common route of drug administration due to the 

ease of administration and widespread acceptance by patients. However, this system 

has limitations (Jain, 2008) :  

(i) Drugs taken orally for systemic effects have variable absorption rates and serum 

concentrations which may be unpredictable. 

(ii) The high acid content and ubiquitous digestive enzymes of the digestive tract can 

degrade some of the drugs before they reach the site of absorption into bloodstream; 

(iii) Many macromolecules and polar compounds cannot effectively traverse the 

epithelial membrane in the small intestine to reach the bloodstream.  

(iv) Many drugs become insoluble at the low pH levels encountered in the digestive 

tract. Since only soluble drugs can be absorbed into the bloodstream, the transition of 

the drugs to the insoluble form can significantly reduce the bioavailability.  

(v) Some drugs are inactivated by the first pass metabolism in the liver on its way to 

the systemic circulation. 

(vi) Some drugs irritate the gastrointestinal mucosa.  

(vii) Oral route may not be suitable for drugs targeted to specific organs.  

Hence, several improvements have taken place by development of sustained and 

controlled release form of oral drug delivery system to improve their action (Jain, 

2008).  
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1.2 EXTENDED RELEASE ORAL DRUG DELIVERY 

The United States Pharmacopoeia (USP, 2010) defines the modified-release (MR) 

dosage form as “the one for which the drug release characteristics of time course 

and/or location are chosen to accomplish therapeutic or convenience objectives not 

offered by conventional dosage forms such as solutions, ointments, or promptly 

dissolving dosage forms”. One class of modified-release dosage form is an extended-

release (ER) dosage form and is defined as the one that allows at least a 2-fold 

reduction in dosing frequency or significant increase in patient compliance or 

therapeutic performance when compared with that presented as a conventional 

dosage form (a solution or a prompt drug-releasing dosage form). The terms 

“controlled release (CR)”, “prolonged release”, “sustained or slow release (SR)” and 

“long-acting (LA)” have been used synonymously with “extended release”. The 

commercial products in this category are often designated by suffixes such as CR, 

CD (controlled delivery), ER, LA, PD (programmed or prolonged delivery), Retard, 

SA (slow-acting), SR, TD (timed delivery), TR (timed release), XL and XR 

(extended release) (Tiwari and Rajabi-Siahboomi, 2008). The rationale for 

development of an extended-release formulation of a drug is to enhance its 

therapeutic benefits, minimizing its side effects while improving the management of 

the diseased condition and providing an opportunity for pharmaceutical companies to 

manage product life-cycle (Tiwari and Rajabi-Siahboomi, 2008). 

 

 1.3 GASTRORETENTIVE DOSAGE FORMS 

The real challenge in the development of oral controlled-release drug delivery 

systems is not just to sustain the drug release but also to prolong the presence of the 

dosage form within the gastrointestinal tract (GIT) until all the drug is completely 
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released at the desired period of time (Prajapati et al., 2008). Most of the 

conventional oral delivery systems have shown some limitations related to fast 

gastric-emptying time (Sauzet et al., 2009). Indeed, gastric drug retention has 

received significant interest in the past few decades. The gastroretentive dosage 

forms are classified into high density systems (Hwang et al., 1998), floating systems 

(Xu et al., 2006), expandable systems (Deshpande et al., 1996), superporous 

hydrogels (Chen et al., 2000), mucoadhesive or bioadhesive systems (Chavanpatil et 

al., 2006) and magnetic systems (Gröning et al., 1998). 

 

The stomach anatomy and physiology constrain are the parameters to be considered 

in the development of gastric retentive dosage forms, probably the two most 

important features are their size and density (Bardonnet et al., 2006). Size is 

especially important in designing indigestible solid dosage forms (single unit 

systems). The human pyloric diameter is 12 ± 7mm (Timmermans and Moes, 1993). 

It is open while the stomach is in a fasting state. The first mouthful thus passes 

directly into the duodenum, triggering closure of the pyloric sphincter. The pylorus 

then sorts the gastric contents, large particles being carried away by retrograde flow 

to the center of the stomach. Solids are evacuated by the pylorus slowly and 

regularly. Finally, indigestible materials, including solid pharmaceutical dosage 

forms, are evacuated by a interdigestive migration myoelectric complex peristaltic 

wave. Particles with diameter < 7 mm are efficiently evacuated, and it is generally 

accepted that a diameter > 15 mm is necessary for useful prolongation of retention 

especially during the fasting state. Chance determines whether a single unit system is 

lost during a particular gastric emptying, so high variability in gastrointestinal transit 

time is a major drawback of these systems. However, density determines the location 
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of the system in the stomach. Systems with density lower than gastric content can 

float to the surface, while high-density systems sink to bottom of the stomach. Both 

positions may isolate the dosage system from the pylorus (Bardonnet et al., 2006). In 

addition, the molecular weight and the lipophilicity of the active agent, depending on 

its ionization state are also important parameters. Gastric secretion is an aqueous 

isotonic solution containing H
+
, Na

+
, K

+
, Cl

−
, HCO3

−
, mucus, intrinsic factor, 

pepsinogen and gastric lipase. The gastro-duodenal lumen pH approaches 2, while 

the layer immediately adjacent to the epithelium is almost neutral pH 7 (Frieri et al., 

1995, Goddard and Logan, 2003, Schreiber et al., 2004). This pH gradient, which 

helps protect the mucous membrane from digestion by the acid-dependent pepsin, is 

maintained by the secretion of HCO3
−
 and mucus (Frieri et al., 1995). Gastric mucus 

is an approximately 5% aqueous solution of glycoproteins with molecular weight 

> 10
6
 Da. Its electrical charge is determined by the presence of sialic acid (pKa 

 2.6) (Larhed et al., 1997). Mucus and HCO3
−
 are produced by the epithelial cells, the 

mucous neck cells of gastric glands and the Brunner's duodenal glands. The layer of 

mucus varies in thickness between 100 (Jordan et al., 1998, Newton et al., 1998, 

Newton et al., 2000) and 200 μm (Gu et al., 1988) according to the gastric location. 

Mucus ensures lubrication of solid particles, and its gelatinous consistency enables 

retention of water and HCO3
−
 close to the epithelium. The gastric mucus layer acts as 

a sacrificial physical barrier against luminal pepsin, which digests the surface of the 

mucus gel to soluble mucin. The continuity and almost constant thickness of the 

mucus gel layer observed in vivo is evidence that mucus secretion balances the losses 

by peptic digestion and mechanical erosion. Diffusion of drugs through the mucus to 

the epithelium is dependent on their size. It was shown that gastric mucus was more 

permeable to metronidazole (171 Da) than amoxicillin (365.4 Da) (Shah et al., 1999). 
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It was demonstrated that charge decreased diffusion of a drug but lipophilicity was 

the most important physicochemical parameter: a high lipophilicity reducing 

diffusion across the very hydrophilic mucus layer (Bardonnet et al., 2006). 

 

1.3.1 High-density delivery systems 

Gastric contents have a density close to water (≈1.004 g/cm
3
). When the patient is 

upright small high-density pellets sink to the bottom of the stomach (Figure 1.1) 

where they become entrapped in the folds of the antrum and withstand the peristaltic 

waves of the stomach wall. A density close to 2.5 g/cm
3
 seems necessary for 

significant prolongation of gastric residence time (Clarke et al., 1993, Bardonnet et 

al., 2006). 

 

Figure 1.1:  Schematic localization of an intragastric floating system and high-

density system in the stomach (adapted from Bardonnet et al., 2006). 

 

1.3.2 Floating delivery systems 

These have a bulk density lower than the gastric content. They remain buoyant in the 

stomach for a prolonged period of time, with the potential for continuous release of 

drug. Eventually, the residual system is emptied from the stomach. Gastric emptying 

is much more rapid in the fasting state and floating systems rely heavily on the 

presence of food to retard emptying and provide sufficient liquid for effective 

buoyancy (Singh and Kim, 2000, Saito et al., 2003).  
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1.3.2 (a) Hydrodynamically balanced systems 

These are single-unit dosage forms, containing one or more gel-forming hydrophilic 

polymers. Hydroxypropylmethylcellulose (HPMC) is the most commonly used 

excipient, although hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), 

sodium carboxymethylcellulose (NaCMC), agar, carrageenans or alginic acid are 

also used (Reddy and Murthy, 2002). The polymer is mixed with drug and usually 

administered in a gelatin capsule. The capsule rapidly dissolves in the gastric fluid, 

and hydration and swelling of the surface polymers produces a floating mass. Drug 

release is controlled by the formation of a hydrated boundary at the surface. 

Continuous erosion of the surface allows water penetration to the inner layers, 

maintaining surface hydration and buoyancy (Reddy and Murthy, 2002) (Figure 1.2).  

 
Figure 1.2:  Hydrodynamically balanced system (HBS): The gelatinous polymer 

barrier formation results from hydrophilic polymer swelling. Drug is 

released by diffusion and erosion of the gel barrier (adapted from 

Hwang et al., 1998). 

 

 

Incorporation of fatty excipients gives low-density formulations, reduces water 

penetration and decreases the erosion. Madopar LP
®
, which is fabricated based on 

this system, was marketed by Roche during the 1980s (Jansen and Meerwaldtt, 

1990). The main drawback is the passivity of the operation. It depends on the air 

sealed in the dry mass centre following hydration of the gelatinous surface layer and 

hence the characteristics and amount of polymer (Hwang et al., 1998). Effective drug 

delivery depends on the balance of drug loading and the effect of polymer on its 
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release profile. A variety of strategies has been employed to improve efficacies of the 

floating HBS (Reddy and Murthy, 2002). Some investigators developed bilayer 

formulations in which one layer conferred the buoyancy and the other controlled the 

drug release. A bilayer formulation of misoprostol against gastric ulcers was 

produced (Oth et al., 1992). Both layers contained swellable polymers and only one 

contained drug (Figure 1.3a) so that buoyancy and drug release could be optimized 

independently. They observed a mean gastric residence time >3 h after a single meal 

(breakfast) and >10 h after a succession of meals. A bioadhesive floating system was 

formulated by coating tablets with Carbopol or a synthetic bioadhesive cross-linked 

polymer of methacrylic and acrylic acids (Chitnis et al., 1991). Finally, Krogel and 

Bodmeier (1999a) designed an impermeable polypropylene cylinder, 10–15 mm 

long, sealed on both sides by a matrix of hydrophilic polymer (HPMC) containing 

the drug. Air entrapped in the core of the cylinder provided the buoyancy (Figure 

1.3b). 

 
Figure 1.3:  Hydrodynamically balanced systems (adapted from Bardonnet et al. 

(2006)). 

  

 

 

1.3.2 (b) Gas-generating systems 

Floatability can also be achieved by generation of gas bubbles. CO2 can be generated 

in-situ by incorporation of carbonates or bicarbonates, which react with acid, either 

the natural gastric acid or co-formulated as citric or tartaric acid. The optimal 

stoichiometric ratio of citric acid and sodium bicarbonate for gas generation is 

reported to be 0.76:1.  
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In single unit systems, such as capsules (Chen and Hao, 1998) or tablets 

(Baumgartner et al., 2000, Xu and Groves, 2001), effervescent substances are 

incorporated in the hydrophilic polymer, and CO2 bubbles are trapped in the swollen 

matrix (Figure 1.4a). In vitro, the lag time before the unit floats is <1 min and the 

buoyancy is prolonged for 8 to 10 h (Baumgartner et al., 2000). In vivo experiments 

in fasted dogs showed a mean gastric residence time increased up to 4 h 

(Baumgartner et al., 2000). Bilayer or multilayer systems have also been designed 

(Krögel and Bodmeier, 1999b, Yang et al., 1999, Ozdemir et al., 2000, Wei et al., 

2001). Drug and excipients can be formulated independently and the gas generating 

unit can be incorporated into any of the layers (Figure 1.4b). Further refinements 

involve the coating of the matrix with a polymer which is permeable to water, but not 

to CO2 (Krögel and Bodmeier, 1999b) (Figure 1.4c). The main difficulty of such 

formulation is to find a good compromise between elasticity, plasticity and 

permeability of the polymer. 

 
Figure 1.4:  Gas-generating systems. (a) Schematic monolayer drug delivery system. 

Bilayer gas-generating systems, (b) without semipermeable membrane; 

(c) with semipermeable membrane. 

 

It is essential that the multiple unit systems remain dispersed and suspended 

individually in the gastric fluid and not agglomerate into a mass floating at the top of 
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the stomach (Hou et al., 2003). Ichikawa et al. (1991b) reported a double-layered 

coated system in the form of granules, comprising of an inner effervescent layer 

(bicarbonate and tartaric acid) and an outer swellable membrane (polyvinyl acetate 

and shellac). The system floated completely within 10 min and 80% remained 

floating over a period of 5 h. In-vivo studies were carried out in beagle dogs and 

humans in the fed state using granules loaded with barium sulphate as a radio-opaque 

marker. Most floated in the stomach within 10 min and remained so for at least 3 h as 

observed by X-ray photography (Ichikawa et al., 1991a) (Figure 1.5).  

 

Figure 1.5:  (a) Schematic representation of ‘‘floating pill’’. (b) The penetration of 

water into effervescent layer leads to a CO2 generation and makes the 

system float (adapted from Ichikawa et al., 1991a).  

 

Atyabi et al. (1996a) developed microparticles loaded with theophylline and 

bicarbonate (Atyabi et al., 1996a). The ion-exchange resin beads were coated with a 

semipermeable membrane. CO2 was released on contact with the acid gastric juice 

(Atyabi et al., 1996b). The microparticles exhibited in vitro floating times of over 24 

h. Studies in human volunteers using gamma-scintigraphy showed a prolonged 

residence time for coated beads (40% to 65% of the dose remained in the upper 
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stomach 3 h after a light breakfast) compared to control (no uncoated beads remained 

in the stomach after 3 h). 

 

1.3.2 (c) Raft-forming systems 

For raft-forming system, a gel-forming solution (e.g. sodium alginate solution 

containing carbonates or bicarbonates) swells and forms a viscous cohesive gel 

containing entrapped CO2 bubbles on contact with gastric fluid (Figure 1.6). 

Formulations also typically contain antacids such as aluminium hydroxide or calcium 

carbonate to reduce gastric acidity. As raft-forming systems produce a layer on the 

top of gastric fluids, they are often used for gastroesophageal reflux treatment 

(Fabregas et al., 1994, Havelund et al., 1997) as with Liquid Gaviscon
®

 

(GlaxoSmithkline). 

 

Figure 1.6: Schematic illustration of the barrier formed by a raft-forming system 

(adapted from Fabregas et al., 1994). 

 

1.3.2 (d) Low-density systems 

Gas-generating systems inevitably have a lag time before floating on the stomach 

contents, during which the dosage form may undergo premature evacuation through 

the pyloric sphincter. Low-density systems (<1 g/cm
3
) with immediate buoyancy 
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have therefore been developed. They are made of low-density materials, entrapping 

oil or air. Most are multiple unit systems, and are also called ‘‘micro-balloons’’ 

because of the low-density core (Kawashima et al., 1992, Jayanthi et al., 1995, Sato 

et al., 2003, Sato et al., 2004a, Sato et al., 2004b) (Figure 1.7a). 

 
Figure 1.7:  (a) Microballoons (adapted from Sato et al., 2003) and (b) foam-

particles  (adapted from Streubel et al., 2002). 

 

Generally, the techniques used to prepare hollow microspheres involve simple 

solvent evaporation or solvent diffusion/evaporation methods. Polycarbonate, 

Eudragit S
®
, cellulose acetate, calcium alginate, agar and low methoxylated pectin 

are commonly used as polymers. Buoyancy and drug release are dependent on 

quantity of polymer, the plasticizer–polymer ratio and the solvent used (Reddy and 

Murthy, 2002). 

 

An emulsion–solvent diffusion method was used to prepare hollow microspheres 

loaded with drug (ibuprofen) in their outer polymer shells. They dissolved the drug 

and an enteric acrylic polymer (Eudragit S
®
) in an ethanol/dichloromethane solution. 

This mixture was added into a stirred aqueous solution of polyvinyl alcohol (0.75% 

w/v) to obtain an o/w emulsion. The gas phase generated in the dispersed polymer 

droplet by the evaporation of dichloromethane formed an internal cavity in the 

microspheres. In-vitro study showed that the “microballoons” floated for >12 h on 

acidic dissolution medium containing surfactant (Kawashima et al., 1992). Thanoo et 

al. (1993) prepared polycarbonate microspheres loaded with aspirin, griseofulvin and 
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p-nitroaniline, by a solvent evaporation technique. Electron microscopy revealed 

spherical and hollow microspheres. A high drug loading (>50%) was achieved and 

the microspheres floated on simulated gastric and intestinal fluids (Thanoo et al., 

1993). Stithit et al. (1998) used a novel emulsion–solvent evaporation process to 

obtain microspheres containing theophylline. The drug–polymer (cellulose acetate 

butyrate and Eudragit
®
 RL 100 at 1:1) dispersions are pressurized under CO2, which 

dissolves within them and forms bubbles upon the release of the pressure, giving 

microspheres with round cavities enclosed in the dispersed drug polymer droplets. 

They float for more than 24 h in pH 1.2 and 7.5 buffers (Stithit et al., 1998). Streubel 

et al. (2002) prepared foam-based floating microparticles consisting of 

polypropylene foam powder, drug (chlorpheniramine maleate, diltiazem-HCl, 

theophylline or verapamil-HCl) and polymer (Eudragit RS
®
 or polymethyl 

methacrylate), by soaking the microporous foam carrier with an organic solution of 

drug and polymer, followed by drying. The mixture was poured into an organic 

liquid (ethanol or methylene chloride) forming a suspension. The polypropylene 

foam particles acted like microsponges, absorbing the organic liquid, and becoming 

free-flowing, low-density microparticles following solvent evaporation (Figure 1.7b). 

Good in-vitro buoyancy was observed in most cases and a broad variety of drug 

release patterns could be achieved by varying drug loading and type of polymer. 

More than 77% or 98% of particles floated for at least 8 h depending on the polymer 

type (Eudragit RS
®
 or polymethyl methacrylate) and initial drug loading of the 

system (10% or 23%) (Streubel et al., 2002). Based on a similar approach, the same 

group developed a single unit floating system, consisting of low-density 

polypropylene foam powder, matrix-forming polymers (HPMC, polyacrylates, 
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sodium alginate, corn starch, carrageenan, agar, guar gum, arabic gum), drug and 

filler (Figure 1.8).  

 
Figure 1.8:  Schematic presentation of the structure of the low-density, floating 

matrix tablets ( adapted from Streubel et al., 2003). 

 

All the tablets remained floating for at least 8 h in 0.1M HCl at 37 ºC. The release 

rate could effectively be modified by varying the matrix-forming polymer/foam 

powder ratio, the initial drug loading, the tablet geometry (radius and height), the 

type of matrix-forming polymer, the use of polymer blends and the addition of water 

soluble or insoluble fillers (such as lactose or microcrystalline cellulose) (Streubel et 

al., 2003). 

 

Talukder and Fassihi (2004) developed a multiple unit system based on cross-linked 

beads. They were prepared using Ca
2+

 and low methoxylated pectin (anionic 

polysaccharide), or Ca
2+

, low methoxylated pectin and sodium alginate. Riboflavin, 

tetracycline and methotrexate were used as model drugs and drying was performed 

using two methods—air convection oven at 40 ºC for 6 h and freeze drying. Confocal 

laser microscopy revealed hollow spaces inside the freeze dried beads, which 

allowed them to remain buoyant over 12 h in buffer of pH 1.5, while the air-dried 

beads sank. Calcium–pectinate–alginate beads released their contents at relatively 

faster rates than did calcium–pectinate beads (100% vs. 50% in 10 h) (Talukder and 

Fassihi, 2004). Presently, hollow microspheres are considered to be one of the most 

promising buoyant systems because they combine the advantages of multiple unit 
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systems and good floating properties. However, like all floating systems, their 

efficacy is dependent on the presence of enough liquid in the stomach, requiring 

frequent drinking of water (Hwang et al., 1998). In conclusion, development of an 

efficient gastroretentive dosage form is a real challenge. Indeed, the drug delivery 

system must remain for a sufficient time in the stomach, which is not compatible 

with its normal physiology. 

 

1.4  MODIFIED RELEASE DRUG DELIVERY SYSTEMS 

The modified release dosage forms may offer one or more advantages over 

immediate release formulations of the same drug. There are many ways to design 

modified release dosage forms for oral administration; from film coated pellets, 

tablets or capsules to more sophisticated and complicated delivery systems such as 

osmotically driven systems, systems controlled by ion exchange mechanism, systems 

using three dimensional printing technology and systems using electrostatic 

deposition technology. The design of modified release drug product is usually 

intended to optimize a therapeutic regimen by providing slow and continuous 

delivery of drug over the entire dosing interval whilst also providing greater patient 

compliance and convenience (Wilding et al., 1991).  

 

The most common controlled delivery system has been the matrix type such as 

tablets and granules where the drug is uniformly dissolved or dispersed throughout 

the polymer, because of its effectiveness, low cost, ease of manufacturing and 

prolonged delivery time period (Abdul and Poddar, 2004). Hydrophilic polymers are 

becoming more popular in formulating oral controlled release tablets. It is well 

documented that the dissolution curve of drug release from a hydrophilic matrix 

shows a typical time dependent profile (Narasimhan and Langer, 1997, Conte and 



 15 

Maggi, 2000). The release of a dissolved drug inherently follows near first-order 

diffusion with an initially high release rate, due to the dissolution of the drug present 

at the surface of the matrix, followed by a rapidly declining drug release rate. The 

enhanced release rate observed at the beginning for a short time of the release 

process is known as burst effect and in many a times undesirable since it may have 

negative therapeutic consequences (e.g. toxicity due to increase of the concentration 

of the delivered substance beyond the acceptable higher limits especially on repeated 

administration). After this burst effect, hydration and consequent swelling and/or 

erosion of retard polymer occurs. These phenomena control the release process but, 

with time, the diffusion path-length increases and a saturation effect are attained, 

resulting in a progressively slow release rate during the end of dissolution span 

(Narasimhan and Langer, 1997, Conte and Maggi, 2000). There are a number of 

variables that can affect the constant drug release patterns in polymeric matrix 

devices. These variables include physico-chemical properties, content of drugs and 

polymers, drug/polymer weight ratio, administration form and dosage and 

manufacturing process (Abdul and Poddar, 2004).  

 

Over the years, considerable efforts have been expanded in the development of new 

drug delivery concepts to achieve zero-order or near zero-order release, since 

constant rate delivery is the primary goal of controlled release systems, especially for 

drugs with a narrow therapeutic index. Examples of altering the kinetics of drug 

release from the more commonly inherent non-linear to linear behaviour included the 

use of geometry factors (solid units having spherical, cylindrical, conical, biconcave, 

biconvex, donut shapes, hemisphere with cavity, core-in-cup, circular sectioned 

cylinder, rings, oval bi-dose divisible tablets), films, erosion/dissolution controlled 
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and swelling controlled mechanisms, non-uniform drug loading and matrix-

membrane combination (Shah and Britten, 1990, Benkorah and McMullen, 1994, 

Danckwerts, 1994, Hildgen and McMullen, 1995). Various matrix geometries have 

been recommended over the last two decades to achieve an almost constant release 

rate of the drug with time and one of these techniques relies on the use of multi-

layered matrix tablets as drug delivery devices (Abdul and Poddar, 2004). 

 

1.4.1  Multi layered matrix tablets 

Layered tablets, such as bi-layered tablets (Maggi et al., 1999, Choi et al., 2000, Park 

and Munday, 2002) and even triple-layered tablets (Conte et al., 1993a, Yang et al., 

1997, Abdul and Poddar, 2004), have been developed to achieve controlled drug 

delivery with pre-defined release profiles for different active ingredients (Wu and 

Seville, 2009). Multi-layered matrix tablet is a drug delivery device, which 

comprises a matrix core containing the active solute and one, or more barriers 

(modulating layers) incorporated during the tabletting process. The modulating 

layers delay the interaction of active solute with dissolution medium, by limiting the 

surface available for the solute release and at the same time controlling solvent 

penetration rate (Conte and Maggi, 1998). The coat layers prevent the water 

penetration, through the protected core for some duration, which results in reduced 

hydration rate and controlled area for solute release at the core. Thus, burst effect can 

be smoothened and the release can be maintained at a relatively constant level during 

the barrier layers' swelling and erosion process (Figure 1.9). After this phase, during 

the subsequent portion of the dissolution process, these swollen barriers are erosion 

dominated and the surface available for drug release slowly increases. In this way the 

decrease of delivery rate due to the increase of diffusion path-length (saturation 
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effect) is counterbalanced by the simultaneous increase of the area available for drug 

release (Conte et al., 1993a). By this way, combining a time-dependent control of the 

hydration rate of the device with the reduction of tablet surface exposed to the 

dissolution medium, it is feasible to achieve a linear release profile. It is also possible 

to obtain various dissolution patterns such as multi modal, pulsatile or delayed 

delivery, extended release (characterized by reasonably constant rate) for different 

drugs by varying the formulations of layers. In all the applications, the multi-layered 

system should swell, gel and finally erode completely, leaving negligible residue in 

the gastro-intestinal tract (Conte and Maggi, 1998). The system is a unique drug 

delivery device, which overcomes the major disadvantage of non-linear release 

associated with most diffusion controlled matrix devices. This system also has the 

advantage of being compatible with conventional manufacturing methods. 
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Figure 1.9:  Effect of the application of polymeric layers (barriers) on the release of 

drug from a matrix core (Abdul and Poddar, 2004). 

 

 

1.4.2 System design 

Generally, the drug release mechanism from hydrophilic, swellable matrices is a 

coupling of polymer macromolecular relaxation and drug diffusion (Lee, 1985, 

Ritger and Peppas, 1987). Both phenomena depend initially on the rate at which 

water may enter the device. Multi-layered design is based on the following aspects: 

(1) matrix hydration rate and consequent swelling and/or lowering of diffusion rate; 
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(2) modulation of the surface of matrix through which the drug can be delivered. 

These principles are more effective in the initial phase of the dissolution process and 

less pronounced as swelling proceeds, leading to linearization of the release profile. 

To achieve similar objective, coating of the matrix tablets with an inert impermeable 

film have been attempted (Colombo et al., 1987). The coating was applied 

extemporaneously on the tablet faces and/or on the sidewall to obtain different 

coating combinations as schematically represented in Figure 1.10. From their in vitro 

release performance, it may become clear that as the extent of coating is increased, 

the release is slowed and the release kinetics approached zero order. The release rate 

was mainly driven by the surface geometry of the system (coated–uncoated surface 

ratio). From these observations, it is confirmed that during dissolution, although the 

matrix swells, the coating considerably reduces the drug-releasing surface compared 

with the uncoated matrix and also hinted towards the ability of coating design to 

modulate both release extent and kinetics (Abdul and Poddar, 2004). The casting of 

impermeable membrane on a portion of the matrix tablet is a manual process 

(Colombo et al., 1987). To overcome this drawback, which does not allow for the 

automatic production of the system, different approaches were tried. In particular, the 

application of polymeric swellable and erodible barrier layers, instead of 

impermeable film, was evaluated taking into account that the former should exhibit 

properties of drug impermeability similar to those offered by the latter. The 

development of the barrier formulation was carried out through two different 

approaches (Conte et al., 1993). The first was based on the use of inert insoluble 

polymer (ethyl cellulose) and the second was based on the use of hydrophilic 

swellable polymer (HPMC). The in vitro release performance of such layered tablets 

and their morphological behavior were examined and compared to that of partial film 
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coated system (Conte et al., 1993). The partial film coating does not swell and 

maintains its original size and shape and offer consistent release retardation for the 

whole duration of dissolution process. On the contrary, the barrier made of an inert 

polymer tends to crack and detach itself from the core within hours after water 

immersion. This effect is due to core volume expansion upon water immersion, by 

polymer swelling. This stresses the outer barrier layer, which does not expand to 

accommodate the swelling of the core. The swellable barriers show a more 

homogenous system in which both the barrier and the core may swell simultaneously 

without any internal stress during the dissolution process (Conte et al., 1993a). The 

barriers can be applied using a multi-layer compression process. The easiest example 

was represented by either double layer (Figure 1.10b) or three layer tablets (Figure 

1.10c) in which only one layer contains the active ingredient (active core), while one 

or two other layers are barrier layers. A considerable time has been devoted to the 

optimization of suitable barrier formulations that could be applied on the core 

directly during the tabletting process. The performance of the final barrier 

formulation was evaluated using many active cores, compositions (Conte et al., 

1994) proving the efficiency and flexibility of the multi-layered concept, particularly 

in controlling the release of drugs of high solubility (Wilding et al., 1995, Conte and 

Maggi, 1996). Based on this new development, a product was launched in 1992 in 

US. It is Dilacor


 XR (Rhone Poulene-Rorer), a device for the 24-h extended release 

of diltiazem hydrochloride a drug of high solubility. 

 
Figure 1.10:  Schematic representation of the (a) matrix tablet, (b) 1-face coated, (c) 

2-face coated, (d) side coated, and (e) face and side coated designs. 
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The multi-layer design allows for the production of different tablet designs by 

varying the geometry of the device or modulating layers characterized by specific 

release properties to achieve various dissolution patterns (not limited to a constant 

release) such as delayed, pulsatile or multi modal delivery profiles. The section 

below deals with various tablet possibilities based on this proposed design. 

 

1.4.3 Different designs 

1.4.3 (a) Zero order sustained release 

This system is comprises either a hydrophilic or hydrophobic intermediate layer 

containing the active drug(s) or one or two barrier layers which are press coated to 

the faces of the tablet core, leaving the sides of the core exposed. Many researchers 

have evaluated this design, to approach zero-order sustained release (Chidambaram 

et al., 1998, Qiu et al., 1998). The widely used barrier polymers for sustaining the 

drug delivery are either hydrophilic and/or hydrophobic materials. In general, linear 

release profiles can be obtained by applying hydrophilic barrier layers on either of th 

faces of a hydrophobic matrix tablet or by applying a hydrophilic barrier layer on one 

face and hydrophobic barrier layer on the other face of the matrix tablet. However, 

formulation and variables within the matrix and barrier layers need to be controlled 

rather carefully to achieve zero-order drug release from hydrophobic matrix tablet 

coated with hydrophobic barrier layers on both faces (Chidambaram et al., 1998, Qiu 

et al., 1998, Krishnaiah et al., 2002a, Krishnaiah et al., 2002b). 

 

1.4.3 (b) Time-programmed delivery system (press coated tablet) 

The concept of the chronopharmacokinetics and chronotherapy of drugs has been 

utilized in clinical therapy for improving the drug efficacy and preventing the side 
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effects and drug tolerance (Reinberg, 1992, Smolensky and D'Alonzo, 1993, 

Lemmer, 1996). The maintenance of a constant drug blood level in the body is not 

always desirable for optimal therapy. For ideal therapeutic efficacy, a drug with 

optimum concentration should be delivered only when and where it is needed. 

Hence, the drug release behaviour should be controlled by time in addition to rate. 

To avoid developing tolerance, a reasonable and generally accepted rationale is to 

have a delivery system capable of releasing drugs, in a pulsatile fashion rather than 

continuous, at predetermined time points and/or sites following administration 

(Yoshida et al., 1993, D'Emanuele, 1996, Lin et al., 1996). For this purpose, different 

systems including the time clock system, have been developed using various 

techniques and functional polymers or additives (Narisawa et al., 1994, Pozzi et al., 

1994, Matsuo et al., 1995). Press coating technique is one candidate for such a novel 

system that not only acts as a rate controlling system but also delivers the drug in the 

gut when it is required, which is in a time-controlled fashion. This technique has 

many advantages because no special coating solvents or equipments are needed for 

coating of tablets and manufacturing speed is also faster. The system consists of a 

core (either conventional or a modified release formulation), which is coated by 

compression with different polymeric barriers (press-coated systems) (Conte et al., 

1993b) (Figure 1.11). This system delivers the drug from the core tablet after 

swelling/eroding the hydrophilic or hydrophobic barrier of the coating shell and may 

exhibit a pulsatile release of the drug (Fukui et al., 2000, Takeuchi et al., 2000). This 

outer shell may delay the penetration of fluid, thereby inducing a long lag time prior 

to the start of drug release. Once the solvent penetrates into the interior core tablet, 

the core tablet will dissolve and/or swell to break the outer shell resulting in rapid 

drug release (Fukui et al., 2000, Fukui et al., 2001, Lin et al., 2001). This delay in the 
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start of release is not influenced by the core composition and only depends on the 

shell formulation. Moreover, except for time lag, the release kinetics of the core is 

not significantly influenced by the presence of erodible barrier. However, the kinetics 

is strongly influenced by the presence of gellable or expandable polymeric shell. This 

type of coating hydrates and gels completely but does not get removed from the 

surface of the core. The device can be considered as a reservoir system (Abdul and 

Poddar, 2004). The net release pattern depends on the release kinetics of the core and 

penetration behavior of the swelled/gelled coat. 

 
 

Figure 1.11:  Geometric press coated tablets for the delayed release of drugs (Abdul 

and Poddar, 2004). 

 

1.4.3 (c) Bimodal release profile 

An oral controlled release system which releases drug at zero-order rate is often 

considered an ideal system for maintaining constant drug levels in plasma. This is 

based on the assumption that drug absorption occurs rapidly and uniformly through 

the entire GI tract, so that the rate of elimination dictates the rate at which the drug 

must release from the dosage form. However, for many drugs, absorption is 

moderately slow in the stomach, rapid in the proximal intestine, and declining 

sharply in the distal segment of the intestine. This means that to maintain constant 
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drug absorption, the delivery system should release drug in such a way that it is able 

to compensate for the changing drug absorption pattern in the GI tract by increasing 

or reducing drug release rate to adjust the regional flux. Thus, a release system with 

variable rate of release may indeed be more desirable than a constant zero-order 

release system. The bimodal release system provides such a variable rate release. 

Bimodal release is characterized by an initial rapid release, followed by a period of 

slow and constant release, and again a second phase of rapid drug release (i.e. 

sigmoidal release profile). Such bimodal release system can offer two major 

advantages over other systems: (1) it produces rapid drug release during the initial 

and later phase to compensate for the relatively slow absorption in the stomach and 

large intestine; (2) it can be used to design programmed pulse release oral drug 

delivery systems for the therapeutic agents that perform more effectively when drug 

levels at the site of action undergo periodic changes. Figure 1.12 shows that in 

bimodal delivery system an additional layer, i.e. fourth layer, containing initial dose 

rapidly disintegrates to produce quick onset of dissolution, promoting greater 

concentration gradient in stomach. The release from the SR portion-containing drug 

is controlled by barrier layers to achieve constant rate release. The appearance of the 

pH 7.4 in the GIT is the initiator for the second rapid drug release towards promoting 

the absorption in large intestine (Streubel et al., 2000). 
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Figure 1.12:  Release profiles of theophylline from investigated tablets (●) 

Bimodal; (♦) Single layered tablet; (□) Tri-layered tablet (Abdul and 

Poddar, 2004).  

 

1.5 Influence of process and formulation parameters 

Since the incorporation of initial dose layer (as in the case of bimodal delivery 

system and quick/slow delivery system) affected neither the intermediate slow nor 

the second rapid phase or constant phase, this layer is not necessary to be considered 

in the formulation process. Therefore, multi-layered tablet consisting of a core and 

one or more barrier layers and/or a core and outer shell (in the case of press-coated 

tablet) should be taken into account while determining the parameters involved in the 

processing. The following factors should be considered for the process and 

formulation (Kannan et al., 2003a, Kannan et al., 2003b). 

 

1.5.1 Granulation-layer containing therapeutics 

The following factors are to be considered while making granulation of active 

substances: granulation liquid percentage, outlet air target temperature during the 
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