PHYTOCHEMICAL AND SELECTED PHARMACOLOGICAL STUDIES OF STANDARDIZED FRUIT EXTRACTS OF MORINDA CITRIFOLIA LINN.

BEH HOOI KHENG

UNIVERSITI SAINS MALAYSIA
2012
PHYTOCHEMICAL AND SELECTED PHARMACOLOGICAL STUDIES OF STANDARDIZED FRUIT EXTRACTS OF MORINDA CITRIFOLIA LINN.

By

BEH HOOI KHENG

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

February, 2012
Dedicated to my parents, siblings, nephews and niece
ACKNOWLEDGEMENTS

This thesis has been a challenging project, brought to fruition through the efforts of some very special people. I am deeply grateful to my supervisors Prof. Dr. Zhari Ismail, Prof. Dr. Mohd Zaini Asmawi and Assoc. Prof. Dr. Norhayati Ismail for their commitment and invaluable guidance throughout the study.

I express my special thanks to Universiti Sains Malaysia, especially Institute for Postgraduate Studies for providing financial support and USM fellowship. I am also grateful to School of Pharmaceutical Science, USM for providing a good research environment during these years. My sincere thanks go to all of the staffs in the school for their kindness help and contribution in this study. My sincere thank to Professor Abdul Manaf Ali for helping in cytotoxicity assay. I appreciate Mr. Adenan Jaafar and Mr. V. Shanmugan (School of Biological Sciences, USM) for preparing the voucher of specimen. I am also grateful to Mr. Hilman and Mr. Razak (Center for drug research, USM) for their efforts in recording the GC-MS spectra.

My sincere appreciation goes to all of my friends and lab mates for their constant encouragement and investing their time and energies in this project. I can no other answer make, but, thanks, and thanks.
Most of all, my deepest gratitude goes to my wonderful parents for their support and sacrifice; to my loyal siblings and their partner for their thoughtfulness and good patience; to my lovely nephews and niece, for their innocent smile which always reminded me how beautiful a day can be.

Finally, my best wishes to all of those who have supported me in any respect during these years.
TABLE OF CONTENTS

Dedication ii
Acknowledgement iii
Table of Contents v
List of Tables xii
List of Figures xiii
List of Abbreviations xvii
List of Appendices xx
Abstrak xxii
Abstract xxiv

CHAPTER 1 INTRODUCTION

1.1 General 1
1.2 Phytochemical and biological activities of genus Morinda 2
1.2.1 Morinda elliptica 3
1.2.2 Morinda morindoides 7
1.2.3 Morinda officinalis 11
1.2.4 Morinda lucida 13
1.2.5 Morinda angustifolia 17
1.3 Plant Morinda citrifolia Linn. 19
1.3.1 Plant taxonomy 19
CHAPTER 2 MATERIALS AND METHODS

2.1 Materials and chemicals 50

2.2 Reagent 50
 2.2.1 Dragendorff’s reagent 50
 2.2.2 Natural Product reagent (1%) 51
 2.2.3 Liebermann-Burchard reagent 51

2.3 Instruments and apparatus 51
 2.3.1 High-performance liquid chromatography 51
 2.3.2 Gas chromatography - mass spectrometry 52
 2.3.3 X-ray crystallography 52
2.3.4 Thin layer chromatography 52

2.3.5 Extraction 53

2.4 Plant material 53

2.5 Phytochemical screening 53

2.5.1 Dragendorff’s test for alkaloids 53

2.5.2 Liebermann-Burchard test for terpenes 54

2.5.3 Test for flavonoids 54

2.5.4 Borntrager’s test for anthraquinone derivatives 55

2.5.5 Ferric chloride solution test for tannins 55

2.5.6 Frothing test for saponins 56

2.6 Quality control parameter of *Morinda citrifolia* fruit 56

2.6.1 Ash content 56

2.6.1.1 Total ash 56

2.6.1.2 Acid-insoluble ash 56

2.6.1.3 Water soluble ash 57

2.6.2 Extractive values 57

2.6.2.1 Hot extraction 57

2.6.2.2 Cold maceration 58

2.6.3 Loss on drying 58

2.7 Plant extraction 59

2.7.1 Methanol extraction 59

2.7.2 Water extraction 59
2.8 Chemical profiling of *Morinda citrifolia* fruits

2.8.1 TLC analysis

2.8.2 HPLC analysis

2.8.2.1 HPLC analysis of fruit methanolic extract

2.8.2.2 Assay validation

2.8.2.2.1 Preparation of stock solution

2.8.2.2.2 Validation method

2.9 Anti-angiogenic activity

2.9.1 Chemicals and apparatus

2.9.2 Fertilized chicken eggs

2.9.3 Bioactivity-guided fractionation and isolation

2.9.4 Preparation of test samples for Chick Chorioallantoic Membrane (CAM) assay

2.9.5 Chick Chorioallantoic Membrane (CAM) assay

2.9.6 Statistical analysis

2.9.7 High-performance liquid chromatography (HPLC) analysis

2.10 Cytotoxicity (MTT cell viability assay)

2.10.1 Cell line and cell culture

2.10.2 Cytotoxicity Assay

2.11 Anti-obesity and anti-hyperlipidemic studies

2.11.1 Chemicals and apparatus

2.11.2 Animals

2.11.3 Diet
2.11.4 Dosage preparation of test samples 75
2.11.5 Animal study protocol 76
2.11.6 Measurement of average of total body weight increased 79
2.11.7 Blood analysis 79
2.11.8 Tissue preparation and relative organ weight 79
2.11.9 Statistical analysis 80
2.11.10 Hepatic histology 80
 2.11.10.1 Specimens preservation and tissue processing 80
 2.11.10.2 Specimen embedding and microtomy 81
 2.11.10.3 Staining 81
2.11.11 GC-MS analysis of the test samples 82
2.12 Antioxidant study 83
 2.12.1 Chemicals and apparatus 83
 2.12.2 Plant samples 83
 2.12.3 Assay for total phenolics 83
 2.12.4 Assay for total flavonoids 84
 2.12.5 Scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) 84
 2.12.6 Antioxidant assay using a β-carotene-linoleate model system 85
 2.12.7 GC-MS analysis of the most active test samples 84

CHAPTER 3 RESULTS AND DISCUSSIONS

3.1 Phytochemical screening 86
3.2 Quality control parameter of *M. citrifolia* fruit 89

3.3 Chemical profiling of *M. citrifolia* fruit 91
 3.3.1 Thin layer chromatography (TLC) 91
 3.3.2 HPLC analysis 93
 3.3.2.1 HPLC analysis of plant extract 93
 3.3.2.2 Assay validation 98

3.4 Anti-angiogenic activity 102
 3.4.1 Bioactivity-guided fractionation and isolation 102
 3.4.2 Anti-angiogenic effect of *M. citrifolia* extracts, fractions and chemical constituent 106
 3.4.3 High-performance liquid chromatography (HPLC) analysis 113
 3.4.4 Discussion 113

3.5 Cytotoxicity study 117
 3.5.1 Discussion 119

3.6 Anti-obesity and anti-hyperlipidemic studies 122
 3.6.1 Body weight and BMI analysis 122
 3.6.2 Blood analysis 124
 3.6.2.1 Lipid analysis 124
 3.6.2.2 Aspartate aminotransferase (AST) and alanine transaminase (ALT) analysis 128
 3.6.3 Relative organ weight analysis 130
 3.6.4 Hepatic histology 133
 3.6.5 GC-MS analysis 135
3.6.6 Discussion 143

3.7 Antioxidant study 148

3.7.1 Assay for total phenolics 148

3.7.2 Assay for total flavonoids 148

3.7.3 Scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) 153

3.7.4 Antioxidant assay using a β-carotene-linoleate model system 156

3.7.5 GC-MS analysis 158

3.7.6 Discussion 161

CHAPTER 4 CONCLUSION 165

REFERENCES 168

APPENDICES 181

LIST OF PUBLICATIONS AND SEMINARS 210
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Score values for the evaluation of the anti-angiogenic effect on the chorioallantoic membrane of the fertilized hen’s eggs</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Average Score values for the evaluation of the anti-angiogenic effect on the chorioallantoic membrane of the fertilized hen’s eggs</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Preliminary phytochemical tests of M. citrifolia fruit</td>
<td>88</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Physico-chemical characteristics of M. citrifolia fruit</td>
<td>90</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Between-day and within-day accuracy and precision values of the assay method for scopoletin (n = 5)</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>The recovery of the spiked scopoletin (n = 3)</td>
<td>100</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Hydrogen-bond geometry (Å, °)</td>
<td>103</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Anti-angiogenic effect of extracts, fractions and chemical constituent of M. citrifolia fruit</td>
<td>108</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>The compound identified in methanolic extract via GC-MS analysis</td>
<td>137</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>The compound identified in chloroform fraction via GC-MS analysis</td>
<td>138</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>The compound identified in ethyl acetate fraction via GC-MS analysis</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Isolated compounds from the roots of M. elliptica</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Isolated compounds from the leaf of M. morindoides</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Compounds isolated from the dried roots of M. officinalis How</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Compounds isolated from M. lucida Benth</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Structures of the isolated compounds from the roots of M. angustifolia</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Fruit of M. citrifolia (with flowers)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Young fruit of M. citrifolia</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Isolated compounds by Pawlus et al (2005)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Glycosides from the fruit of M. citrifolia</td>
<td>28</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Two new fatty acid glucosides from the fruit of M. citrifolia</td>
<td>29</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>Chemical structures of molecules</td>
<td>30</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>The rating steps in the tumor progression</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Anti-angiogenic compounds reported on natural products</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Fractionation of standardized methanolic extract of M. citrusoolia fruit</td>
<td>65</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>CAM-assay (A) Window made in the egg shell of a 3-day-old chick embryo; (B) Filter paper pellet with the test substance placed manually by microsurgical forceps onto the CAM of a 5-day-old chick embryo; (C) Filter paper pellet removed and the degree of anti-angiogenic effect was scored</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Summary of the animal study procedure</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>TLC profile of methanolic extract of M. citrifolia fruit</td>
<td>92</td>
</tr>
</tbody>
</table>
Figure 3.2 HPLC profile of methanolic extract of *M. citrifolia* fruit

Figure 3.3 HPLC profile of scopoletin

Figure 3.4 HPLC profile of methanolic extract of *M. citrifolia* fruit spiked with scopoletin

Figure 3.5 The mean standard curve of scopoletin solution

Figure 3.6 Chemical structure of compound isolated from *M. citrifolia*

Figure 3.7 Molecular structure of scopoletin

Figure 3.8 The crystal packing of scopoletin, viewed along the *a* axis, showing the two-dimensional planes. Intermolecular interactions are shown as dashed lines. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity

Figure 3.9 Anti-angiogenic effect of extracts and chemical constituent of *M. citrifolia* (A) Scopoletin treated CAM; (B) Chloroform fraction of fruits treated CAM; (C) Methanol extract of fruit treated CAM; (D) Suramin treated CAM

Figure 3.10 Anti-angiogenic effects showed score value of 0, 0.5, 1 and 2 on CAM

Figure 3.11 Anti-angiogenic effect of the active extracts and fraction of *M. citrifolia*, scopoletin and positive control

Figure 3.12 HPLC chromatogram of extracts and chemical constituent of *M. citrifolia* (A) Scopoletin at 50μg/ml; (B) Methanol extract of fruit at 5000 μg/ml; (C) Chloroform fraction of fruit at 5000 μg/ml; (D) Blank sample

Figure 3.13 Cytotoxic effect of *M. citrifolia* fruit extracts on (A) breast cancer cell lines (MCF 7) and (B) human promyelocytic leukemia cell lines (HL-60), n = 3

Figure 3.14 The effect of 30 days daily oral treatment with methanolic extract and chloroform fraction of *M. citrifolia* fruit on (A) body weigh increased and (B) body mass index (BMI) on high fat diet (HFD) induced hyperlipidemic
Figure 3.15 The effect of 30 days daily oral treatment with methanolic extract and chloroform fraction of *M. citrifolia* fruit on (A) triglycerides level and (B) total cholesterol level on high fat diet (HFD) induced hyperlipidemic rats

Figure 3.16 The effect of 30 days daily oral treatment with methanolic extract and chloroform fraction of *M. citrifolia* fruit on (A) low density lipoprotein level and (B) high density lipoprotein level on high fat diet (HFD) induced hyperlipidemic rats

Figure 3.17 The effect of 30 days daily oral treatment with methanolic extract and chloroform fraction of *M. citrifolia* fruit on (A) AST level and (B) ALT level on high fat diet (HFD) induced hyperlipidemic rats

Figure 3.18 The effect of 30 days daily oral treatment with methanolic extract and chloroform fraction of *M. citrifolia* fruit on (A) relative organ weight per 100g body weight of lung and (B) relative organ weight per 100g body weight of heart on high fat diet (HFD) induced hyperlipidemic rats

Figure 3.19 Histology slide of the liver from normal control group (A), HFD untreated group (B), HFD with methanolic extract treated group (C) and HFD with chloroform fraction treated group

Figure 3.20 Molecular structures of the compounds found in methanolic extract

Figure 3.21 Chemical constituents found in chloroform fraction

Figure 3.22 Gallic acid calibration curve

Figure 3.23 Total Phenolics content in extracts

Figure 3.24 Quercetin calibration curve

Figure 3.25 Total flavonoids content in extracts

Figure 3.26 Scavenging effect of *M. citrifolia* fruit

Figure 3.27 DPPH scavenging activity curve of ethyl acetate fraction
Figure 3.28 Antioxidant activities of *M. citrifolia* fruit by the bleaching of β-carotene 157

Figure 3.29 The molecular structures of the compounds from ethyl acetate fraction 160
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>BHK</td>
<td>Baby hamster kidney</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BuOH</td>
<td>Butanol</td>
</tr>
<tr>
<td>CAM</td>
<td>Chick Chorioallantoic Membrane</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-Diphenyl-2-picrylhydrazyl</td>
</tr>
<tr>
<td>EA</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FCR</td>
<td>Folin-Ciocalteu’s reagent</td>
</tr>
<tr>
<td>FTC</td>
<td>Ferric thiocyanate</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalent</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography - mass spectrometry</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
</tbody>
</table>
HCl Hydrochloric acid
HCT116 Human colon cancer
HDL High-density lipoprotein
HEp2 Human laryngeal epithiloma
HFD High fat diet
HL-60 Human promyelocytic leukemia cell lines
HPLC High-performance liquid chromatography
i.d Internal diameter
kg Kilograms
L Liter
LC$_{50}$ Median lethal concentrations
LDL Low-density lipoprotein
Na$_2$CO$_3$ Sodium carbonate
m Meter
MCF-7 Human breast cancer cell lines
mg Milligram
min minute
mL Milliliter
mm Millimeter
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NaOH Sodium hydroxide
nm Nanometer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin equivalent</td>
</tr>
<tr>
<td>R<sub>f</sub></td>
<td>Retardation factor</td>
</tr>
<tr>
<td>S.D</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid</td>
</tr>
<tr>
<td>TC</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TWEEN</td>
<td>Polysorbate</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Vero</td>
<td>African green monkey kidney</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight over weight</td>
</tr>
<tr>
<td>Y79</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius degree</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A (1) Total ash content of the fruit of *M. citrifolia*

Appendix A (2) Acid-insoluble ash of the fruit of *M. citrifolia*

Appendix A (3) Water soluble ash of the fruit of *M. citrifolia*

Appendix B (1) Extractable matter of the fruit of *M. citrifolia* by hot extraction

Appendix B (2) Extractable matter of the fruit of *M. citrifolia* by cold extraction

Appendix C Anti-angiogenic effect of extracts and chemical constituent of *M. citrifolia* (AB) Chloroform treated; (CD) Methanolic extract treated CAM; (EF) Scopoletin treated CAM; (GH) Suramin treated CAM

Appendix D Calibration curve of scopoletin

Appendix E Approval letter from the Animal Ethical Committee for animal work

Appendix F Lipid level in blood analysis of the rats

Appendix G Aspartate aminotransferase and alanine transaminase analysis

Appendix H Percentage of body weight increased and rat BMI

Appendix I Rat’s organ weight

Appendix J (1) GC-MS chromatogram of methanolic extract

Appendix J (2) GC-MS report of methanolic extract

Appendix K (1) GC-MS chromatogram of chloroform fraction

Appendix K (2) GC-MS report of chloroform fraction

Appendix L GC-MS chromatogram of scopoletin

Appendix M (1) Total phenolics content (Gallic acid calibration curve)
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix M</td>
<td>2</td>
<td>Total phenolics content</td>
</tr>
<tr>
<td>Appendix N</td>
<td>1</td>
<td>Total flavonoids content (Quercetin calibration curve)</td>
</tr>
<tr>
<td>Appendix N</td>
<td>2</td>
<td>Total flavonoids content</td>
</tr>
<tr>
<td>Appendix O</td>
<td>1</td>
<td>DPPH scavenging activity</td>
</tr>
<tr>
<td>Appendix O</td>
<td>2</td>
<td>DPPH scavenging activity</td>
</tr>
<tr>
<td>Appendix O</td>
<td>3</td>
<td>DPPH scavenging activity</td>
</tr>
<tr>
<td>Appendix P</td>
<td>1</td>
<td>Antioxidant assay using a β-carotene-linoleate model system</td>
</tr>
<tr>
<td>Appendix P</td>
<td>2</td>
<td>Antioxidant assay using a β-carotene-linoleate model system</td>
</tr>
<tr>
<td>Appendix Q</td>
<td>1</td>
<td>GC-MS chromatogram of ethyl acetate fraction</td>
</tr>
<tr>
<td>Appendix Q</td>
<td>2</td>
<td>GC-MS report of ethyl acetate fraction</td>
</tr>
<tr>
<td>Appendix R</td>
<td>1</td>
<td>Cytotoxicity study (MCF 7)</td>
</tr>
<tr>
<td>Appendix R</td>
<td>2</td>
<td>Cytotoxicity study (HL-60)</td>
</tr>
</tbody>
</table>
ABSTRAK

Kesan anti-angiogenik dari ekstrak buah telah dinilai dengan menggunakan kaedah membran korioalantoik embrio ayam (CAM). Ekstrak metanol dan fraksi kloroform memberikan kesan anti-angiogenik dengan nilai skor 0.94 dan 1.22 masing-masing. Pengasingan bioaktiviti-bimbingan telah dilakukan dan scopoletin telah dikenalpastikan sebagai salah satu sebatian aktif dalam aktiviti anti-angiogenik (nilai skor 1.39).

Kesan sitotoksik ekstrak buah telah diperhati pada sel kanser payudara (MCF-7) dan sel leukemia manusia (HL-60) dengan menggunakan assai MTT. Ekstrak metanol telah merencat 37.6% sel MCF-7 dan 25.62% sel HL-60 pada kepekatan
30 ug/mL. Fraksi-fraksi yang lain dari buah tala menunjukkan aktiviti sitotoksik yang lebih lemah berbanding dengan ekstrak metanol.

Kajian antioksidan ekstrak buah telah dinilai dalam kajian ini. Fraksi etil asetat mengandungi kandungan fenolik (167.71 ± 5.30 ug/mL GAE) dan kandungan flavonoid (22.30 ± 1.22 ug/mL QE) yang tertinggi. Fraksi tersebut juga mempunyai aktiviti antioksidan yang tertinggi dalam penangkapan radikal DPPH dengan nilai EC50 164.09 ug/mL and mempunyai 83.46% aktiviti antioksidan dalam ujian β-karoten-linoleat pada kepekatan 500 ug/mL.

PHYTOCHEMICAL AND SELECTED PHARMACOLOGICAL STUDIES
OF STANDARDIZED FRUIT EXTRACTS OF MORINDA CITRIFOLIA
LINN.

ABSTRACT

Morinda citrifolia is commonly used in Malaysia by locals as traditional medicine for various diseases. Currently there are eleven registered commercial products of *Morinda citrifolia* fruit available in Malaysia. In this study, preliminary phytochemical screening and physico-chemical studies of the fruit powder were attempted and quality parameter involving chromatographic profiling of the extracts were carried out for standardization.

The fruit extracts were screened for anti-angiogenic effect using *in vivo* chick chorioallantoic membrane assay. Methanolic extract and chloroform fraction showed anti-angiogenic effect with the score value of 0.94 and 1.22, respectively. Bioactivity-guided isolation was performed and scopoletin was identified as one of the active constituents in anti-angiogenic activity (score value 1.39).

Cytotoxic effects of the fruit extracts were observed on breast cancer cell lines (MCF 7) and human leukemia cell lines (HL-60) using MTT cell viability assay. The methanolic extract inhibited 37.6% of MCF 7 cells and 25.62% of HL-60 cells
at concentration of 30 μg/mL. The other fractions of the fruit showed weaker cytotoxic activity than methanolic extract.

Adipogenesis is concomitantly accompanied by new blood vessel growth, and thus suppression of angiogenesis would prevent adipogenesis and obesity. Methanolic extract and chloroform fraction were tested for their anti-obesity and anti-hyperlipidemic effects using high fat diet induced hyperlipidemic rats. The finding showed the fruit extracts influenced triglyceride and cholesterol metabolism in obese rats. The fruit extracts also significantly reduced the percentage of total body weight increased in the rats.

Antioxidant activity of fruit extracts was evaluated in this study. Ethyl acetate fraction contains the highest phenolic content (167.71 ± 5.30 μg/mL GAE) and flavonoid content (22.30 ± 1.22 μg/mL QE). The fraction also possesses the highest antioxidant activity in DPPH scavenging with EC$_{50}$ value 164.09 μg/mL and 83.46% antioxidant activity in β-carotene-linoleate assay at the concentration of 500 μg/mL.

The present studies provided information on the quality and standardization of the fruit extracts. The anti-angiogenic, cytotoxicity, anti-obesity, anti-hyperlipidemic and antioxidant studies of the fruit provided evidence on the traditional use for related disease.
CHAPTER 1
INTRODUCTION

1.1 General
Herbal medicines are the therapeutic experiences of generations of practicing physicians of traditional medicine over hundreds of years and they are known to be oldest health care products that have been used by mankind all over the world to treat various types of ailments (Torey et al., 2010). Recently, considerable attention has been paid to utilize eco-friendly and bio-friendly plant-based products for the prevention and cure of different human diseases. It is documented that 80% of the world’s population has faith in traditional medicine, particularly plant drugs for their primary healthcare (Dubey et al., 2004).

Modern technological medicine is nowadays much criticized for waiting for diseases to occur and then trying to cure it rather than seeking to prevent it from occurring in the first place (Laurence & Black, 1978). Herbal products have played an important role today not only to heal the diseases but also to prevent the diseases from occurring. The chemical constituents present in them are a part of the physiological functions of living flora and hence they are believed to have better compatibility with the human body and lesser side effects (Kamboj, 2000).

There are estimated 350,000 flowering plant species identified so far, about 35,000 species are used worldwide for medicinal purposes (Kong et al., 2003). However,
the number could be much higher as knowledge on the indigenous uses of plants was mostly passed on orally from one generation to another and has largely remained undocumented (Jantan, 2004). Tropical rainforests cover about 12 % of the land area of the earth, Kong et al. (2003) reported that tropical rainforests are a vital source of medicines, there are not more than 1 % of the world's tropical forest plants have been tested for pharmaceutical properties, yet at least 25 % of all modern drugs originally came from rainforests.

Morinda citrifolia is commonly used in Malaysia by local people as folk remedy to cure or to prevent diseases. There are eleven registered commercial products of *M. citrifolia* fruit available in the market. In Malaysia, *Morinda citrifolia* L. (mengkudu besar) and *Morinda elliptica* Ridl. (mengkudu hutan) are the two common *Morinda* species. Both of the species have their therapeutic effect. *M. citrifolia* is widely used to treat diabetes and *M. elliptica* is widely used to treat diarrhoea (Ong & Nordiana, 1999).

1.2 Phytochemical and biological activities of genus *Morinda*

The genus *Morinda* (Rubiaceae) is made up of around 80 species (Chan-Blanco *et al.*, 2006). In the Indo-Pacific region, species diversity is highest in Near Oceania with attenuation into Remote Oceania. The genus *Morinda* includes trees, shrubs, and vines (McClatchey, 2003). *Morinda* is a genus of the family Rubiaceae and has long been known to contain substantial amount of anthraquinones. About 90%
of these compounds occur as derivatives of 9,10-anthracenedione with several hydroxy and other functional groups, such as methyl, hydroxymethyl and carboxyl (Jasril et al., 2003). Hydroxyanthraquinones are the active principles of many phyto-therapeutic drugs (Wolfle et al., 1990).

1.2.1 *Morinda elliptica*

Morinda elliptica Ridl. is a small plant known as “mengkudu kecil”. It is a shrub or small tree, growing wild in newly developed areas or in bushes. It is a native plant of Asia and Polynesia used in traditional folk medicine such as cholera, diarrhea, piles, headache and to increase appetite (Ismail et al., 1997; Ishak et al., 2010).

Ismail et al. (1997) reported a new anthraquinone and 10 known anthraquinones. The anthraquinone, 2-formyl-1-hydroxyanthraquinone and 10 known anthraquinones, 1-hydroxy-2-methylantraquinone, nordamnacanthal, damnacanthal, lucidin-ω-methyl ether, rubiadin, soranjidiol, morindone, rubiadin-1-methyl ether, alizarin-1-methyl ether and morindone-5-methyl ether were isolated from roots of *M. elliptica*. The structures of the isolated compounds were shown in Figure 1.1.

Jasril et al. (2003) tested the antitumor and antioxidant activities of six anthraquinones (nordamnacanthal, alizarin-1-methyl ether, rubiadin, soranjidiol,
lucidin-ω-methyl ether and morindone) of *M. elliptica*. All compounds exhibited stronger antitumor activity than the reference compounds genistein and quercetin. In antioxidant assay using ferric thiocyanate (FTC) method, nordamnacanthal and morindone showed stronger antioxidant activity than α-tocopherol. However when the compounds were assayed for scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, only morindone was considered to be active as free radical scavenger. This observation suggested that radical scavenging is less prominent in nordamnacanthal as compared to morindone. The differences between the two compounds are that the formyl at C-2 and hydroxyl at C-3 in nordamnacanthal are replaced by a methyl and proton groups, respectively in morindone.
Figure 1.1 Isolated compounds from the roots of *Morinda elliptica*
Figure 1.1 (continued) Isolated compounds from the roots of *Morinda elliptica*
1.2.2 *Morinda morindoides*

Morinda morindoides Milne-Redh, is one of the most popular medicinal plants currently used in villages and towns in Democratic Republic of Congo in traditional medicine. An aqueous decoction of fresh leaves, which is the typical traditional remedy used for the treatment of various illnesses among which are diarrhoea and constipation associated with intestinal worms (Cimanga *et al*., 2010).

Marie-Genevieve *et al*. (2010) reported that the *in vitro* effect of the toluene, methyl tert-butyl ether (MtBE), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water extracts from *M. morindoides* leaves on their cytotoxicity effect against leukemic cell lines. They found that both toluene and MtBE extracts exhibited a significant cytotoxic effect on the cell lines. The highest cytotoxicity was obtained with toluene extract. By contrast, EtOAc, n-BuOH and water extracts did not affect cell viability of the three cell lines tested.

Cimanga and co-workers reported *M. morindoides* leaf extracts have been shown to possess antiprotozoal activity particularly against *Entamoeba histolytica* (Cimanga *et al*., 2006). Extracts, fractions and some isolated compounds from *M. morindoides* leaves were tested for their potential *in vitro* antiamoebic activity. Results indicated that the aqueous decoction (dried extract) and 80% methanolic extract displayed an appreciable antiamoebic activity. The CHCl$_3$, EtOAc and n-BuOH soluble fractions from the partition of 80% methanolic extract exhibited an
average antiamoebic activity. The residual water-soluble fraction showed a weak effect against *Entamoeba histolytica*.

A number of isolated compounds from the leaf of *M. morindoides* were reported (Cimanga *et al.*, 2006). The structures of the compounds are shown in Figure 1.2.

![Chemical structures of isolated compounds](image)

Figure 1.2 Isolated compounds from the leaf of *Morinda morindoides*
Figure 1.2 (continued) Isolated compounds from the leaf of *Morinda morindoides*
Figure 1.2 (continued) Isolated compounds from the leaf of *Morinda morindoides*
1.2.3 *Morinda officinalis*

Morinda officinalis How, is one of the traditional Chinese plants grows in humid areas of southeast China. It has been reported to possess the ability to reinforce kidney function, strengthen the tendons and bones and relieve rheumatic condition. This plant is also claimed for its anti-diabetic effects and may have an antidepressant-like action (Soon & Tan, 2002; Zhang *et al.*, 2002).

Zhang and co-workers (2009) reported the polysaccharides from the roots of *M. officinalis* were found to have significant anti-fatigue activity by using mice weight-loaded swimming model. The activity may be related to the anti-stress and enhancing immunity effects of *M. officinalis*. The anti-fatigue activity of the polysaccharides may partially explained the tonic property in traditional medicine, which provided scientific evidence for traditional medicine and further development of medicinal products for prevention and treatment of diseases related to chronic fatigue syndromes.

Five anthraquinones including alizarin-1-methylether, 1,2-dimethoxy-3 hydroxyanthraquinone, 1-hydroxy-3-hydroxymethylantraquinone, rubiadin-1-methylether and anthragallol-2-methylether were isolated from the dried roots of *M. officinalis* How (Zhu *et al.*, 2009). The structures of the isolated compounds are shown in Figure 1.3.
22. alizarin-1-methylether
23. 1,2-dimethoxy-3 hydroxyanthraquinone

24. 1- hydroxy-3-hydroxymethylantraquinone
25. rubiadin-1-methylether

26. anthragallol-2-methylether

Figure 1.3 Compounds isolated from the dried roots of *M. officinalis* How
1.2.4 *Morinda lucida*

Morinda lucida Benth., is a tropical West Africa rainforest tree also called Brimstone tree. Different parts of the plant are attributed with diverse therapeutic benefits. For example, in Southern Cameroon, cold decoction of the plant leaves is used for the treatment of fever. However, in most parts of West Africa, the bitter water decoction of the plant bark, root and leaf are used as bitter tonic and as astringent for dysentery, abdominal colic and intestinal worm infestation (Adeneye & Agbaje, 2008).

Raji *et al.* (2005) investigated the effect of *M. lucida* on the reproductive activity of male albino rats. *M. lucida* leaf extract did not cause any changes in body and somatic organ weights, but significantly increased the testis weight (*P* < 0.05). The sperm motility and viability, and the epididymal sperm counts of rats treated for 13 weeks were significantly reduced (*P* < 0.05). Sperm morphological abnormalities and serum testosterone levels were significantly increased (*P* < 0.05). There were various degrees of damage to the seminiferous tubules. The extract reduced the fertility of the treated rats by reducing the litter size.

The antibacterial activity of *M. lucida* was investigated against *Staphylococcus aureus*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Salmonella typhi* using the Kirby–Bauer agar diffusion method. The bark methanolic extract of *M. lucida* inhibited the growth of the above mentioned
bacteria with the MIC values below 20 mg/mL. Phytochemical screening was performed on the plant extract and the tests suggested the presence of saponins, flavonoids, alkaloids, terpenoids, tannins and anthraquinones in the plant (Gbedema et al., 2010).

The chemical constituents isolated from *M. lucida* were reported by Adesogan (1973). The structures of these chemical constituents are shown in Figure 1.4.
Figure 1.4 Compounds isolated from *Morinda lucida* Benth.
33. rubiadin-1-methylether

34. 2-methyl-anthraquinone

35. 1-methoxy-2-methyl-anthraquinone

36. hexacosanoic acid

Figure 1.4 (continued) Compounds isolated from *Morinda lucida* Benth.
1.2.5 *Morinda angustifolia*

Morinda angustifolia Roxb, is a resourceful perennial undershrub, and widely distributed in the southwestern mountainous areas of China, and nearby countries, such as Burma, Laos, Thailand and India. The major usage of the plant is to make yellow fabric dye stuff (Xiang *et al*., 2008).

Bhuyan and Saikia (2005) reported that the isolated morindone from the root benzene extract of *M. angustifolia* was the colour component responsible for dyeing. Dyes derived from natural sources have emerged as important alternatives to synthetic dyes, which have been reported to have carcinogenic effects. Recently with the worldwide concern over the use of eco-friendly and biodegradable materials, the use of natural dyes has once again gained interest.

Xiang and co-workers (2008) studied the antimicrobial activity of *M. angustifolia*. Six isolated compounds (1,8-dihydroxy-2-methyl-3,7- dimethoxyanthraquinone, lucidin 3-O-β-primeveroside, 1,3-dihydroxy-2-methylantraquinone, lucidin-ω-ethyl ether, lucidin-ω-butyl ether and damnacanthol) were tested for their antimicrobial potential against *Bacillus subtilis, Escherichia coli, Micrococcus luteus, Sarcina lutea*, *Staphylococcus aureus, Aspergillus niger, Candida albicans* and *Saccharomyces sake*. Among the compounds, 1,8-dihydroxy-2-methyl-3,7-dimethoxy anthraquinone demonstrated the most significant antimicrobial activity against *Bacillus subtilis, Escherichia coli, Micrococcus luteus, Sarcina lutea,*
Candida albicans and Saccharomyces sake. The structures of the isolated compounds are shown in Figure 1.5.

Figure 1.5 Structures of the isolated compounds from the roots of M. angustifolia
1.3 Plant *Morinda citrifolia* Linn.

1.3.1 Plant taxonomy

Kingdom: Plantae

Sub kingdom: Tracheobionta

Super division: Spermatophyta

Division: Magnoliopsida

Class: Magnoliopsidae

Subclass: Asteridae

Order: Rubiales

Family: Rubiaceae

Genus: *Morinda*

Species: *Morinda citrifolia*

Common name: Noni (Hawaii or island of Polinesia) or mengkudu (Malaysia)

Figure 1.6 The fruit of *Morinda citrifolia* (with flowers)

Figure 1.7 Young fruit of *Morina citrifolia*
1.3.2 Plant morphology

Morinda citrifolia is a bush or small tree, 3–10 m tall, with abundant wide elliptical leaves (5–17 cm length, 10–40 cm width). The small tubular white flowers are grouped together and inserted on the peduncle. The petioles leave ring-like marks on the stalks and the corolla is greenish white (Chan-Blanco et al., 2006).

M. citrifolia fruit (Figure 1.6 and Figure 1.7) is oval in shape and will turn from a greenish to a yellowish-white color when it ripens. It has a bitter taste and exhales a strong butyric acid-like pungent smell. The seeds have a distinct air chamber, and can retain viability even after floating in water for months (Nelson, 2003). The roots and inner bark may have little coloration or may range from bright yellow to red.

1.3.3 Plant habitat and distribution

The plant habitat ranges from tropical rainforest to dry lowland plains, from the coast to elevated inland sites. It can tolerate exposed sites as well as the relatively thin and infertile soils. The plant is present worldwide predominantly in tropical countries. *M. citrifolia* occurs in Africa, Australia, Barbados, Cambodia, Caribbean, Cayman Islands, Cuba, Dominican Republic, El Salvador, Fiji, Florida, French West Indies, Guadeloupe, Guam, Haiti, Hawaii, India, Jamaica, Java, Laos, Malaysia, Marquesas Islands, Philippines, Polynesia, Puerto Rico, Raratonga,
Samoa, Seychelles, Solomon Islands, Southeast Asia, St. Croix, Surinam, Tahiti, Thailand, Tonga, Trinida and Tobago and Vietnam (Mathivanan et al., 2005).

1.3.4 Uses in traditional medicine

M. citrifolia has been used in folk remedies by Polynesians for over 2000 years, and is reported to have a broad range of therapeutic effects, including antibacterial, antiviral, antifungal, antitumor, analgesic, hypotensive, anti-inflammatory, antidiabetic and immune enhancing effects (Wang et al., 2002).

Dixon et al. (1999) and Morton (1992) reported the fruit of *M. citrifolia* was traditionally used to treat gum disorder, tuberculosis, anthelmintic and as purgative. The fruit pulp can be used as an insecticidal shampoo. The flower was applied to treat sore eye. The leaves of the plant was used to treat wounds, ulcers, ringworm, rheumatic pain, inflammation, liver diseases, internal bleeding, abdominal swollen, fever, headache, cough and cold. The bark was used to treat malaria and finally the root was consumed to cure hypertension.

Nelson (2003) reported the teas from the leaves were used as treatment for malaria and analgesic in Africa. All parts of the plants are useful laxative. Decoctions of the stem bark are consumed to treat jaundice and the extract of the leaves is for hypertension. Other usages such as to treat sprains, deep bruising, toothaches, fractures, diabetes, loss of appetite, urinary tract ailments, abdominal swelling,
hernias, stings from stonefish and human vitamin A deficiency were also reported by the author.

1.3.5 Literature survey

Yong et al. (2006) studied the free-radical-scavenging activity of *M. citrifolia* juice and powder in processing and storage. The authors proposed the fresh juice *M. citrifolia* possessed free-radical-scavenging activity (RSA), 1,1-diphenyl-2-picrylhydrazyl (DPPH), at 140 mg equivalent ascorbic acid/100 mL and total phenols at 210 mg gallic acid/100 mL. Fermentation of the fruit for 3 months resulted in a loss of more than 90% of RSA. Dehydration at 50 °C produced a loss of 20% of RSA. Storage of fresh fruit juice at 24°C for 3 months reduced RSA more than 90%. Storage of fruit juice or powder at -18°C and 4°C for 3 months decreased RSA by 10–55%. For maintenance of the substantial antioxidant properties of *M. citrifolia* fruit products, processing of fruit powder or fresh frozen fruit juice rather than fermented fruit juice is recommended.

Pawlus et al. (2005) isolated a new anthraquinone, 2-methoxy-1,3,6-trihydroxyanthraquinone from the fruit of *M. citrifolia*. The compound was reported to have potent quinone reductase (QR) induction activity, which is 40 times more potent than a positive control, L-sulforaphane. Furthermore, this compound demonstrated no discernible cytotoxicity at the highest dose tested. QR is a phase II metabolizing enzyme. The induction of phase II enzymes is
considered cancer chemopreventive in that potential oxidative and electrophilic molecules can be more readily metabolized and excreted before they can interact with cellular macromolecules such as DNA. QR is also responsible for maintaining the reduced states of antioxidants such as R-tocopherol and coenzyme Q10. Hence, QR inducers are sometimes referred to as “indirect antioxidants”, and this activity is considered protective at the initiation stage of carcinogenesis. The chemical structures of 2-methoxy-1,3,6-trihydroxyanthraquinone together with a few known isolated compounds were shown in Figure 1.8.

Taskin et al. (2009) investigated the apoptosis-inducing effects of M. citrifolia and doxorubicin on the Ehrlich ascites tumor in Balb-c mice and also combined it with a potent anti-cancer agent, doxorubicin. The first group of animal received M. citrifolia fruit only, the second group of animal received doxorubicin, and the third group of animal received both M. citrifolia fruit and doxorubicin for 14 days after the inoculation of cells. The control group received 0.9% NaCl only. The result found that short and long diameters of the tumor tissues were about 40–50% smaller and the proliferation was decreased, compared to those in control group. This anti-growth effect resulted from the induction of apoptosis. The authors concluded M. citrifolia fruit may be useful in the treatment of breast cancer either on its own or in combination with doxorubicin.
Figure 1.8 Isolated compounds by Pawlus et al. (2005)