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SIMULASI PROSES PUNARAN TERHADAP KUARZA 

MENGGUNAKAN KAEDAH MOLEKULAR MEKANIK 

ABSTRAK 

 

Thesis ini membentangkan hasil kajian tentang proses punaran secara fizikal 

menggunakan hentaman Argon ke atas substrat α-kuarza dan amorfus kuarza dengan 

menggunakan kaedah molekular mekanik.  Walaupun kajian mendalam terhadap 

proses punaran ke atas kuarza sudah ada, namun kebanyakan daripadanya adalah 

secara eksperimen dan fokus kajian tersebut hanyalah pada hasil akhir proses 

tersebut. Terlalu sedikit kajian dijalankan yang menjurus kepada asas dan 

fundamental proses punaran. Dengan menggunakan kaedah Monte Carlo (MC) dan 

Molekular Dinamik (MD), para pengkaji dan ahli akademik mampu membina model 

proses punaran daripada awal hingga penghujung proses tersebut.  Teknik ini 

membolehkan proses ini dikaji di tahap saiz sekecil molekul dan membantu pengkaji 

memahami teori asas dan fundamental proses punaran terhadap kuarza.  

 

Dua teknik penkomputeran digunakan untuk membina model proses punaran 

secara fizikal ke atas substrat kuarza. Teknik pertama berdasarkan statisik (teknik 

Monte Carlo) dan teknik kedua berdasarkan teknik ketentuan (Molekular Dinamik). 

Untuk teknik Monte Carlo, produk  utama yang dicari adalah hasil percikan, Ys dan 

pembahagian tenaga pada atom yang terpercik. Selain itu, hubungan antara tenaga 

tujahan, Ei, sudut tujahan, θi kepada  hasil akhir juga dibincangkan. Berdasarkan 

teknik ini, pada sudut tujahan, θi =70⁰  dengan sebarang tenaga tujahan, Ei,hasil 

percikan, Ys yang dihasilkan adalah maximum. 
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Teknik molecular dinamik pula melaporkan kesan terhadap punaran secara 

terpilih, kesan suhu substrat,Ts dan kesan tenaga tujahan, Ei terhadap hasil 

pemercikan atom dan seterusnya menghubungkan hasil pemercikan atom dengan 

sifat-sifat subtrak. Objektif utama projek ini adalah untuk mengguna kaedah 

pengkomputeran bagi membina model proses punaran di skala dalam molekul. Dua 

jenis substrat yang berlainan (α-kuarza dan amorfus kuarza) digunakan dan substrat 

tersebut melalui proses hentaman Argon dengan tenaga tujahan, Ei suhu substrat, Ts 

berlainan secara berkala. Model komputer punaran kuarza menggunakan Potensi 

Morse dan Potensi COMB (Charged Optimized Many-Body) sebagai potensi antara 

atom.  

 

Berdasarkan kajian yang telah dibuat, α-kuarza menghasilkan pemercikan atom 

lebih tinggi daripada amorfus kuarza dengan menggunakan mana-mana tenaga 

tujahan, Ei dan suhu substrak, Ts. α-kuarza juga menghasilkan pemercikan atom yang 

lebih stoikiometrik berbanding amorfus kuarza.  Ini desebabkan untuk α-kuarza  

produk pemercikan dalam bentuk SiO2 dan amorfus kuarza dalam bentuk atom. 

Tenaga tujuhan, Ei menghasilan impak yang lebih besar kepada hasil pemercikan 

atom berbanding suhu substrak, Ts.   

 

Di dalam kajian ini, model pengkomputeran untuk proses punaran berjaya 

didemonstrasikan dengan mengunakan kaedah Monte Carlo (MC) dan Molekular 

Dinamik (MD). Beberapa faktor yang memberi kesan ke atas punaran telah pun 

dikaji dan pemahamam terhadap proses punaran di skala molekul berjaya ditambah. 

Hasil kajian dari tesis ini berpotensi untuk digunakan di dalam proses pencorakan 

untuk fabrikasi nano 2D dan 3D. 
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MOLECULAR MECHANICS SIMULATIONS OF QUARTZ 

ETCHING PROCESS 

ABSTRACT 

 

In this thesis, the physical etching of argon bombardment onto α-quartz and 

amorphous quartz substrates were studied and investigated using molecular 

mechanics methods. Although there are extensive studies on quartz etching, larger 

numbers of the research are experimental and the studies focus on the process 

outcomes rather than the fundamental study of the process. Molecular mechanics 

methods such as Monte Carlo (MC) method and Molecular Dynamics (MD) method 

enables researchers in building the model from ground up to the physical etching 

process. This kind of bottom-up design allows us to study the process in molecular 

level and help researcher grasp the fundamental theory of the process. 

 

Two computational methods have been employed in order to study quartz 

etching process. The first method are based on statistical approach i.e Monte Carlo 

and the second method is based on deterministic approach i.e Molecular Dynamics. 

In Monte Carlo method, the main interest of the simulations is sputtering yield, Ys 

and energy distribution of sputtered atoms. The relationship of incident energy, Ei , 

and incident angle θi to the interested subjects will also been investigated and 

discussed. It was found that at incident angle θi =70⁰ at any incident energy, Ei, the 

sputtering yield, Ys is maximum.  
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Molecular Dynamics method reported the effect of etching selectivity, the 

effect of substrate temperature, Ts, and the effect of incident energy, Ei to the 

sputtering yield and ultimately corroborates the factor and sputtering yield with the 

properties of the substrate. The main objective of this project is to use computational 

method (i.e Molecular Dynamics) to model the process at the scale of molecular 

level. Two difference substrates (amorphous and α-quartz) are subjected to a range of 

incident energy. Ei and temperature, Ts and the sputtering yield were studied. Morse 

potential and Second Generation Charge-Optimized Many Body (COMB) potentials 

were utilised as the inter-atomic potential.  

 

α-quartz shows higher sputtering yield as compared to amorphous quartz at 

any given incident energy, Ei and substrate temperature, Ts. α-quartz has also 

produced more stoichiometric yield compared to amorphous quartz. This is because 

for α quartz, the sputtered product are in mostly the form of SiO2 molecule while 

amorphous substrate the sputtered product in the form of atom. Incident enery, Ei 

gave significant increase in the sputtering yield compared to temperature, Ts.   

 

In this thesis, the computational model of physical etching on quartz has been 

demonstrated using the Monte Carlo (MC) method and Molecular Dynamics (MD) 

method. Several factors are studied and better understandings of the process in 

molecular level have been achieved. The results of this study could be applied in 2D 

and 3D patterning used in lithography technique. 



 

1 

 

CHAPTER 1   

INTRODUCTION 

1.1 Introduction 

For the past 20 years, the demands for micro and nano size devices have 

increased substantially. Along with the advancement of new technology and 

scientific research, new methods have been introduced for patterning and fabricating 

the micro/nano structures.  

 

 Many studies have been carried out related to etching process. However most 

of the studies were performed experimentally which produced results but not fully 

explaining the fundamental science of the process. These huge vacuums of 

knowledge on the underlying science of nanofabrication make the process 

unrepeatable and ultimately make the product from individual experiment cannot be 

mass produce. Thus, computational aided simulations are essentials to fully grasp the 

fundamental of the process. However, classical approaches that utilise spatial-

temporal analysis i.e Finite Elements Analysis or Finite Volume Method (FEA/FVA) 

method are insufficient to model nano or meso scale size simulations. This is because 

the size of individual atoms and molecules are comparable to the overall size of the 

simulation box thus violating the assumption make when using Navier Stoke’s 

equation. In addition, intermolecular bond and interactions between atoms and 

molecules are non-trivial, unlike in continuum model where inter-atomic and 

intermolecular forces are omitted. Hence, to overcome this problem, a novel method 

is needed. One of the many methods is Molecular Dynamics. 
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 Molecular Dynamics (MD) methods are used to tackle complex problems in 

nano scale analysis. Numerous researches in materials properties, rheology and 

tribology had hugely benefited from molecular dynamics simulation works. With the 

great advancement in computational capability, molecular dynamics has become 

powerful tools for engineer and scientist. 

 

1.2 Research Background 

Nanoscale devices have been hugely benefited by society in wide range of 

applications. Applications like NEMs/MEMs, microfluidics, nano-optical devices 

have attracted industry as well as researchers because these applications offer a huge 

prospect for development. In order to build nanoscale devices, the knowledge in 

nanofabrication is vital. There are many fabrications techniques and they can be 

characterized into two categories; wet and dry etching. Wet etching employed 

chemical or liquid etching for material removal (fabrication) process whilst dry 

etching process utilised plasmas or etchant gasses for material removal. 

 

One of the most common patterns transferring technique in nano scale is by 

using reactive ion etching (RIE) method. In this method, continuous bombardments 

of atoms or ions onto a substrate (e.g quartz) are used as means to fabricating pattern 

by etching the surface atoms. This technique is also often paired with plasmas or 

gaseous etching in order to achieve anisotropic or high aspect ratio profile. 

 

Although there are extensive studies have been done relating to RIE, most of 

the studies are experimental. Often, the results from experimental are cannot explain 

the fundamental of the process. This is because of the complex behaviour of plasma 
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etching process. Hence, a computational model is essential in simulating the process 

and provides useful information in understanding and hopefully predicting the 

process at molecular level. 

 

In this thesis, an attempt to model quartz etching process using molecular 

dynamics (MD) and Monte Carlo simulation are presented. In this project, the 

mechanical or physical process is the main focus rather than the chemical process. 

This project will study the physical etching roles in the pattern transferring process. 

The main interests are the analysis of velocity, momentum, force and energy of the 

quartz etching process. 

 

Molecular dynamics simulation can be divided to three stages. The first stage 

is to define the system. This include initial conditions (e.g number of atoms, 

simulation’s volume), boundary conditions and inter-atomic potential etc. At stage 

two, new positions and velocities of atoms are calculated using Newtonian equation. 

Macroscopic properties such as temperature and stress can be calculated using the 

updated position and velocity. At stage three, the time averaged macroscopic 

properties are calculated.  

 

Quartz is chosen as an object of study because of its superiority properties and 

has huge unexplored potential in MEMS/NEMS. Quartz has superior in hardness, 

stronger resistance in temperature and higher UV light transmission. Quartz also has 

unique properties of piezoelectric. High aspect ratio nanostructure on quartz has 

many applications such as sensor, wave guide and nano-imprint mold. 
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1.3 Problem Statements 

The main objective for nanofabrication methods is to obtain the desired profile 

within tolerance. However, most of the cases suggest the contrary. There are many 

factors that can cause the end results deviate from the desired profile. Due to the 

imaging limitation, the etching process cannot be observed in real time. In order to 

understand the influencing factors, a computational model is proposed. A 

computational model enables us to study the etching as the process proceeding. This 

includes bond breaking, bond formation and sputtering etc. 

 

Etching process occurs at molecular level. Methods that used continuum model 

such as FEA that used Navier Stoke equation unable to model process at molecular 

level. Thus, a novel method is required in order to model the process at nano-scale. 

There are several methods that are available in nano-scale modelling. However the 

most accurate and deterministic method is Molecular Dynamics (MD) method. In 

this project, a MD model of quartz etching process will be investigated. 

 

From experimental observations, the main factor that affects etching are energy 

and temperature. However, proper explanations are unable to be presented because of 

experimental and imaging limitations. Hence, one way of explaining the factor is by 

using computational modelling. 

1.4 Research Objectives 

a) To develop a computational model of the reactive ion etching (RIE) 

environment for α-quartz and amorphous quartz etching. These include the 

incident ions with pre-determined velocity, substrate structure, the suitable 

bonding energy between them and intermolecular forces.  
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