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PENGOPTIMUMAN DAN BIOSERASI PERANCAH BUSA ALUMINA 

BERSALUT BAGI APLIKASI KEJURUTERAAN TISU TULANG  

 

ABSTRAK 

Perancah busa alumina (AF) bersalut adalah salah satu bio sintetik yang mendapat 

perhatian daripada ahli-ahli sains bahan bagi mengatasi sifat lengai supaya interaksi 

ikatan tisu tulang dipertingkatkan. Kajian ini bertujuan untuk menghasilkan AF 

bersalut dengan kekuatan mampatan yang lebih tinggi daripada 2 MPa kepada 12 

MPa, keliangan yang lebih tinggi daripada 70% kepada 99% dan saiz liang yang 

besar daripada 100 µm hingga 1000 µm yang diperlukan dalam aplikasi kejuruteraan 

tisu tulang.  Faktor- faktor penting dalam teknik replikasi busa polimer (PFR) adalah 

jumlah liang (ppi) busa polimer (PU),  nisbah komposisi pepejal kepada air ternyah-

ion, peratusan pengikat dan kekerapan proses mecelup. Analisis DOE menggunakan  

rekabentuk pecahan 2
k
 faktorial menunjukkan jumlah liang, nisbah komposisi dan 

bilangan mencelup adalah faktor terpenting mempengaruhi kekuatan mampatan 

perancah AF. Merujuk kepada rekabentuk kiub berpusat muka (FCC), nisbah 

komposisi 60/40, 20 ppi bilangan liang dan tiga kali proses mencelup adalah syarat 

yang memenuhi untuk perancah tulang manusia. Perancah AF dipertingkatkan 

dengan salutan hidroksiapatit (HACAF) dan hidroksiapatit-bentonit (HABCAF). 

Sampel-sample dinilai oleh analisis in-vitro iaitu rendaman di dalam simulasi cecair 

badan (SBF) dan ujian sitotosik (MTS assay). Analisis in-vitro menunjukkan 

permukaan perancah HACAF dan HABCAF mempunyai lapisan mendakan apatit 

dan kesan pertumbuhan sel yang positif.  
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OPTIMIZATION AND BIOCOMPATIBILITY OF ALUMINA FOAM 

COATED SCAFFOLD FOR BONE TISSUE ENGINEERING APPLICATION 

 

ABSTRACT 

Alumina foam (AF) coated scaffold is one of synthetics biomaterials that has 

received much attention to overcome inertness properties for enhanced bone tissue 

bonding interaction. This research aims to produce AF coated scaffold with 

compressive strength higher than 2 MPa to 12 MPa, porosity higher than 70% to 

99% and pores size are larger than 100 µm to 1000 µm which required in bone tissue 

engineering application. The significant factors in polymer foam replication (PFR) 

techniques are number of pores (ppi) of polyurethane (PU) foam, the composition 

ratio of solid loading to deionized water, percentage of binder and number of dipping 

process. The DOE analysis using 2
k
 fractional factorial designs shows that the 

number of pore, composition ratio and number of dipping are most significant factors 

effect on the compressive strength of AF scaffold. According to the face-centered 

cube (FCC) design, the condition satisfied for human bone scaffold is prepared at 

60/40 composition ratio, 20 ppi numbers of pores and three times of dipping process. 

The AF scaffold was further improved by coated with hydroxyapatite (HACAF) and 

hydroxyapatite-bentonite (HABCAF). The samples were evaluated by in-vitro 

analysis which is immersed in simulated body fluid (SBF) solution and cytotoxicity 

by MTS assay. The in-vitro analysis showed the surface of HACAF and HABCAF 

scaffold have precipitations of apatite layer and positive effect on cell growth. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 

Human body is a perfect creation. It is a combination of many structural, 

cellular and functional levels in one-well organized unit. The structural elements of 

the human body are bones. Bones can be defined as a vascularised structure of living 

cells (Hench, 1996; Lickorish et al., 2007). Besides providing an internal structural 

framework for the body, bones also protect the internal organs, and are a reservoir 

for minerals that serve a metabolic function. 

Being hard and strong does not mean that bones do not get injured. Bone 

injuries such as fractures and slips, are now more prevalent in numbers. Alarmingly, 

over 70,000 hip fractures occur in the UK and estimated 7.9 million patients 

suffering fractures in the USA annually (Victoria et al., 2009; Patel et al., 2013). The 

increasing numbers are due to several reasons. For example, an increase in life 

expectancy, i.e., age increase will result in reduced the bone density, causing 

decrease in bone strength, allowing easier fracture. Increased amounts of trauma 

cases, largely due to motor vehicle accidents and other mishaps is arguably another 

major contributor. Other than couple, diseases (such as Paget’s disease and even 

cancer) and failures to heal (non-unions) also contributed to the increasing numbers 

of bone injuries. For example, approximately 10% of fracture cases in the USA 

resulted in non-unions and/ or delayed unions; the number tends to be higher in 

developing countries. Thus, widespread attention was focused on bone repair, up to a 

point that WHO has declared that year 2000 to 2010 as the Bone and Joint Decade 

(Lidgren, 2003). Current clinical bone repair strategies (i.e., autografts, allografts and 
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insertion of man-made materials) are associated with various bone problems. 

Autografts, although being the most reliable technique, however it is exhibit 

significant limitations, such as lack of sources (limited transplantable option), donor 

site morbidity and cellular reactions such as inflammation. Allografts meanwhile, are 

accountable for poor osteoconductivity and immune responses. As for man-made 

materials, leaving a foreign material in the body is perhaps not the best solution. This 

is where bone tissue engineering (BTE) comes into the scene (Gomes and Reis, 

2004; Jones and Hench, 2003). 

Since mid-80s, BTE becomes exciting field with extreme potential in the 

future. Shalak and Fox (1988), and Sachlos and Czernuszka (2003), describes TE as 

multidisciplinary research, combining multiple areas of research such as 

mathematics, engineering and biology to restore of repair tissue function. Not only 

for cellular level repairs, tissue engineering (TE) is also hoped to find and develop 

biological substitutes and cellular aids (e.g., scaffolds) to improve the quality of 

human life (Jones and Hench, 2003; Gomes and Reis, 2004).  

Scaffold act as a template and as an artificial extracellular matrix. A template 

should have ability to support the human weight with appropriate mechanical 

strength. The range of mechanical strength for cancellous types is between 2-12MPa 

to mimic the original bone (Takaoka et al., 1996; Ramay and Zhang, 2003; Vitale-

Brovarone et al., 2009). Besides, the scaffolds induced the formation of bone by 

guiding new tissue growth in three dimensionality (3D) structure. The 3D structure 

with porosity in a range of 50 to 90% is suggested to simulate an extracellular 

function closely (i.e., nutrient transportation, waste removal and gas diffusion) 

(Hutmacher, 2000; Vitale-Brovarone et al., 2007; Bellucci et al., 2011). In addition, 

scaffold should exhibit pore diameter size higher than 100μm as requirement for 
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osteoinduction process (Jun et al., 2003). The osteoinduction stimulates osteogenesis 

dependent on the surface materials response. Thus, the materials of scaffold must be 

biocompatible with the host tissue for cell-materials interaction. The findings were 

proved that ceramic materials have biocompatible chemical composition for 

implantable in human body (Hench, 1996). 

Some of ceramic materials are classified as biomaterials. Biomaterials can be 

categorized into natural or synthetic materials that are suitable for implantable in 

human body (Chevalier and Gremillard, 2009). Ceramic is exhibiting good response 

to human body according to their various properties such as chemical reactivity, 

biocompatibility and resorbable. For example, alumina (Al2O3) and zirconia (ZrO2) 

have been widely used in BTE field (Miao et al., 2007; Yang et al., 2011). Both 

having high mechanical strength, high density and high wear resistance. It also 

promotes excellent result from load bearing application. Alumina is suggested as the 

most widely used in orthopaedic applications due to minimum tissue rejection after 

implantation. Unfortunately, alumina has inherently an inertness property which does 

not support cell proliferation. Therefore, alumina coated with HAp has been working 

since 1995 to enhance bone bonding interaction (Takaoka et al., 1996). The bioactive 

silica glasses, hydroxyapatite (HAp) and tri-calcium phosphate (TCP) shows good 

sign of biological response at the interface of material and encourage the growth of 

new bone (Yang et al., 2011). Other than that, bentonite also chosen as coating 

materials based on its influence on bioavailability, non-toxicity and various proof 

that it acts as good binding agent for excellent coating (Carretero, 2012).  

There are various fabrication techniques to produce porous biomaterials such 

as foaming consolidation, gel-casting, salt leaching, polymeric foam replication and 

rapid prototyping (Lyckfeldt and Ferreira,1998; Hou et al., 2003; Ryan et al., 2008; 
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Sopyan and Kaur, 2009). Control over fabrication route could help to obtain good 

implantable properties. Yet, it is still arguable which techniques are most excellent 

and pave an interesting route for design bone scaffold. Thus, polymer foam 

replication (PFR) was proposed as an effective technique to fabricate porous 

structure has been proven with controllable pore size, controllable interconnectivity 

and uniform pore size distribution (Lyckfeldt and Ferreira, 1998; Sopyan and Kaur, 

2009). Moreover, due to the low cost of polymer foam, the PFR is also known as 

profitable technique and economical (Colombo and Modesti, 1999). PFR is 

dependent on several factors which, properties of foam, the preparation of slurry and 

the fabrication parameters influenced the properties of scaffold (i.e., mechanical 

strength, porosity, pore diameter size, interconnectivity and biocompatibility). These 

properties play very important roles in nutrient transportation to encourage cell 

growth in 3D. 

The transportation of nutrient prediction performed through modelling 

approaches. Current modelling approaches for transportation involved various 

bioreactors design models for bone tissue growth for example hollow fibre 

membrane, confined perfusion bioreactor, and suspended tube bioreactor (Abdullah 

et al., 2009). The transport can be enhanced dependent on the types of bioreactor. For 

example, the transport restriction on batch system can be improved by addition of 

perfusion or by continuously refreshing the surrounding medium (Sengers et al., 

2005). Designing of bioreactor for tissue engineered is important to allow tissue 

formation in 3D by good support for cell attachment, proliferation and 

vascularisation as well as enabling sufficient nutrient supply to cells. Modelling is 

requires for optimization process by identifying the main governing processes for 

practical TE efforts. In order to meet the goal of improving nutrient transportation, 
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