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KAEDAH-KAEDAH BERASASKAN
PENYERAGAMAN HISTOGRAM UNTUK

PENGEKALAN KECERAHAN DAN PENEGASAN
KANDUNGAN SETEMPAT

ABSTRAK

Penyeragaman Histogram Sejagat (Global Histogram Equalization(GHE)) adalah salah

satu kaedah penyerlahan imej yang terkenal. GHE masih mempunyai batasan walaupun ia

mudah dan dikenali. Oleh kerana itu, terdapat dua kaedah baru yang berdasarkan Penyeraga-

man Histogram (Histogram Equalization(HE)) telah dicadangkan iaitu Penyeragaman His-

togram Dinamik Kecerahan Berkekalan (Brightness Preserving Dynamic Histogram Equal-

ization (BPDHE)) dan Penyeragaman Histogram Bertindih Blok Berbilang Aras (Multi-Levels

Block Overlapped Histogram Equalization(MLBOHE)). BPDHE dilengkapi dengan kebole-

han mengekalkan kecerahan, iaitu salah satu syarat bagi pelaksanaan di dalam produk elek-

tronik pengguna. BPDHE mengandungi tujuh langkah, iaitu pembentukan histogram, proses

penentudalaman, proses pelicinan, proses pengesanan maksimum setempat, proses pemetaan,

proses HE, dan proses penormalan kecerahan. Daripada perbandingan di antara BPDHE den-

gan GHE dan tujuh kaedah lain yang berasaskan Penyeragaman Histogram Berkekalan Min

Kecerahan (Mean Brightness Preserving Histogram Equalization(MBPHE)), telah ditunjukkan

bahawa BPDHE adalah yang terbaik bagi pengekalan kecerahan. Purata Ralat Sebenar bagi

Min Kecerahan (Average Absolute Mean Brightness Error(AAMBE)) untuk BPDHE adalah

hanya 1.06. Tambahan pula, BPDHE dapat menghasilkan penyerlahan yang asli dengan tidak

menimbulkan sebarang artifak yang tidak dikehendaki. Satulagi kaedah, iaitu MLBOHE, dire-

ka bagi penggunaan yang memerlukan penyerlahan setempat. MLBOHE terdiri daripada tiga

xxiii



peringkat, iaitu Penyeragaman Histogram bagi Blok Bertindih (Block Overlapped Histogram

Equalization(BOHE)), pengurangan aras hingar dan penggabungan imej untuk menghasilkan

hasil keluaran terakhir. Secara objektif, MLBOHE memenuhikesemua syarat rekabentuknya

dengan dari segi masa pelaksanaan (iaitut = 19.2 saat < 1 minit bagi setiap Mega piksel),

entropi (iaituE = 7.35 > input), Nisbah Isyarat Puncak kepada Hingar (Peak Signal-to-Noise

Ratio (PSNR)) (iaituPSNR= 54.77, tertinggi di antara kaedah-kaedah yang diuji), dan Ralat

Sebenar bagi Min Kecerahan (Absolute Mean Brightness Error(AMBE)) (iaitu AMBE = 8.25,

terendah di antara kaedah-kaedah yang diuji). MLBOHE juga mempunyai prestasi yang lebih

baik berbanding dengan GHE dan tiga kaedah Penyeragaman Histogram Setempat (Local His-

togram Equalization(LHE)) yang lain. Daripada pemeriksaan melalui penglihatan, hasil dari-

pada MLBOHE mempunyai aras hingar yang boleh diterima, dan tidak mengalami masalah

ketepuan keamatan dan kesan bongkahan. Di samping itu, MLBOHE dapat mengekalkan ben-

tuk asal histogram supaya tidak mengubah maklumat di dalam imej. Ujikaji bagi tujuh skim

pemprosesan warna untuk kedua-dua BPDHE dan MLBOHE juga dijalankan. Daripada kepu-

tusan yang didapati, dicadangkan bahawa proses perlu berdasarkan saluran hijau (Green(G))

daripada sistem warna Merah Hijau Biru (Red Green Blue(RGB)) kerana kaedah ini adalah

yang paling mudah, tetapi memberikan keputusan yang baik.
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HISTOGRAM EQUALIZATION BASED METHODS
FOR BRIGHTNESS PRESERVATION AND LOCAL

CONTENT EMPHASIS

ABSTRACT

Global Histogram Equalization (GHE) is one of the well-known image enhancement meth-

ods. Despite of its simplicity and popularity, GHE still haslimitations. Therefore, in this work,

two novel Histogram Equalization (HE) based methods have been proposed, which are Bright-

ness Preserving Dynamic Histogram Equalization (BPDHE) and Multi-Levels Block Over-

lapped Histogram Equalization (MLBOHE). BPDHE is equippedwith brightness preserving

ability, i.e. one of the requirements for the implementation in consumer electronic products.

BPDHE consists of seven steps, which are histogram creation, interpolation process, smoothing

process, local maximums detection process, mapping process, HE process, and brightness nor-

malization process. From the comparison of BPDHE with GHE and seven other Mean Bright-

ness Preserving Histogram Equalization (MBPHE) based methods, it is shown that BPDHE

is the best in terms of brightness preservation. Its AverageAbsolute Mean Brightness Error

(AAMBE) is only 1.06. Furthermore, BPDHE produces natural enhancement, without un-

wanted artifacts. Another method, which is MLBOHE, is designed for the applications that

need local enhancement. MLBOHE consists of three stages, which are Block Overlapped His-

togram Equalization (BOHE), noise level reduction, and merging of images to form the final

image. Objectively, MLBOHE met all of its design requirements in terms of its average exe-

cution time (i.e. t = 19.2 s < 1 min per Mega pixels), entropy (i.e.E = 7.35 > input), Peak

Signal-to-Noise Ratio (i.e.PSNR= 54.77, the highest among the methods tested), and Absolute
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Mean Brightness Error (i.e.AMBE = 8.25, the lowest among the methods tested). MLBOHE

also has a better performance as compared to GHE and three other Local Histogram Equal-

ization (LHE) methods. By vision inspection, the results from MLBOHE have an acceptable

level of noise, and do not suffer from intensity saturation problem and blocking effect. Be-

sides, MLBOHE preserves the shape of the original histogramin order to maintain the image’s

information. Investigation on seven color processing schemes for both BPDHE and MLBOHE

also have been carried out. From the results, it is proposed that the process should be based on

the Green (G) channel from Red Green Blue (RGB) color space as this method is the simplest,

but gives good results.
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CHAPTER 1

INTRODUCTION

1.1 Background

Image enhancement, which is also known as contrast enhancement1, is one of the most inter-

esting and important processes in both human and computer vision field. The main purpose

of image enhancement is to bring out details that are hidden in an image, or to improve the

quality of the image, so that it will become suitable as an input to some specific automated

processing systems [2]. Normally, image enhancement produces an output image which is

subjectively looks better than the original image by changing the intensity values of the input

image [1, 3, 4]. It stretches up the dynamic range of the image, and enlarges the intensity

difference among objects and background. This is based on the assumption that the contrast is

proportional to the ratio between the brightest and the darkest pixel intensities contained in an

image [5, 6, 7].

(a) A circle with intensity 120
and background of 0

(b) A circle with intensity 120
and background of 130

(c) A circle with intensity 120
and background of 255

Figure 1.1: An example to illustrate the meaning of contrast

1The scope of image enhancement is very wide. It includes graylevel and contrast manipulation, noise level
reduction, edge crispening and sharpening, interpolationand magnification, and pseudocoloring [1]. However, the
scope of this thesis is limited to contrast manipulation only. Thus, the terms of image enhancement and contrast
enhancement will be used interchangeably.
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Simulated images in Figure 1.1 show the role of intensity difference in contrast enhance-

ment. In this figure, a circle with intensity level of 120, is overlaid to different backgrounds.

The circle is easier to be seen when the intensity differencebetween this circle and its back-

ground is big, as shown in Figure 1.1(a) and 1.1(c). These images have a better contrast com-

pared to Figure 1.1(b) where the intensity difference between the circle and its background is

small. However, the contrast cannot rely on the intensity value alone [2].

Histogram is one of the important features which is very related to image enhancement.

The histogram does not only gives us a general overview on some useful image statistics (e.g.

mode, median, mean, and dynamic range of an image), but it is also very useful in image

processing applications such as image compression and segmentation [2]. In order to define

a histogram, first, assume thatX = {X(i, j)} is an image that is composed ofL discrete gray

levels2 denoted by{X0,X1, · · · ,XL−1}. X(i, j) represents the intensity of the image at spatial

location(i, j) with the condition thatX(i, j) ∈ {X0,X1, · · · ,XL−1}. As the intensities are all in

discrete values, the histogram of a digital image is a discrete function. Then, the histogramh

is defined as:

h(Xk) = nk, for k = 0,1, · · · ,L−1 (1.1)

whereXk is thek-th gray level andnk presents the number of times that the gray levelXk appears

in the image. In other words, the histogram is the frequency of occurrence of the gray levels

in the image [8]. Alternatively, as used by Wang et al. in [9, 10], the histogram also can be

defined as the statistic probability distribution of each gray level in a digital image3. Usually,

the histogram of an imageX is presented as a graph plots ofh(Xk) versusXk.

Some of the example images and their corresponding histograms are shown in Figure 1.2.

2The value ofL presents the intensity resolution of an image. Typically, an grayscale image is recorded as an
8-bits depth per pixel image. Thus, for this case,L = 28 = 256.

3The probability for the occurrence of intensityXk in an image is defined as equation (1.1) normalized to the
total number of pixels contained in an image.
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(a) Image ofAkihabara(Night view)
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(b) Histogram ofAkihabara

(c) Image ofSnow
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(d) Histogram ofSnow

(e) Image ofGriffin

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250

h(X
k
)

X
k

(f) Histogram ofGriffin

Figure 1.2: Example images and their corresponding histograms

These figures demonstrate the relationship between the shape of the histogram with the inten-

sity characteristic and appearance of an image. Figure 1.2(a) shows a night view ofAkihabara

city. This image is dominated by low intensity pixels. Hence, the corresponding histogram, as

shown in Figure 1.2(b), is more concentrated on the left side(i.e. darker side) of the gray scale

axis. In contrast, Figure 1.2(c) shows an image that is dominated by high intensity pixels. As

shown by the corresponding histogram in Figure 1.2(d), the graph is biased towards the right
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side (i.e. brighter side) of the gray scale axis. The image ofGriffin, as shown in Figure 1.2(e),

is an example of image with good contrast. As referred to its histogram in Figure 1.2(f), the

components of the histogram occupy almost all the availablegray scale range, and do not con-

centrated only on one side of the gray scale. Hence, this highcontrast image exhibits a large

variety of gray tones.

There are many images (e.g. medical images, remote sensing images, electron microscopy

images and even real-life photographic pictures) suffer from poor contrast. Therefore, it is very

necessary to enhance the contrast of such images before further process or analysis can be con-

ducted. Currently, there are many image enhancement techniques that have been proposed and

developed. Image enhancement can be carried out in spatial domain or in frequency domain4

[1, 2, 11]. One of the most popular image enhancement methodsin spatial domain is Global

Histogram Equalization (GHE), from Histogram Equalization (HE) family. GHE becomes a

popular technique for contrast enhancement due to its simple function and its effectiveness.

1.2 Global Histogram Equalization (GHE)

Global Histogram Equlization (GHE)5 is also known as Tradisional HE [12, 13], Conventional

HE [14, 15, 16], Classical HE [8, 17], and Typical HE [18, 19, 20]. GHE technique has

been applied in many fields including medical image processing [4, 7, 10, 12, 16, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29], radar image processing[18, 19, 20, 23], sonar image

processing [24, 30], satellite image processing [22, 31, 32], near-sensor image processing [33],

holography image processing [34], optical image processing [35], watermarking system [36],

motion detection [37], speech recognition [12, 26, 38], texture synthesis [12, 26] and texture

4For the processing in frequency domain, an image in spatial domain must be transformed first into frequency
domain, for example, by using Fast Fourier Transform (FFT).Frequently, these frequency components are pro-
cessed by multiplying them with a transfer function. The results are then converted back to the spatial domain by
using corresponding inverse transform.

5Although GHE is normally denoted as HE in most of the literature, this thesis does not use this convention in
order to avoid confusion.
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classification [39]. GHE also has been widely implemented inmany image editing packages

such as Adobe Photoshop, National Institutes of Health Image and Lispix [16]. Furthermore,

GHE is also useful to be applied for backlight scaling which maximizes backlight dimming

while maintaining a pre-specifies image distortion level for Liquid Crystal Display (LCD) [40].

Moreover, GHE is widely applied in preprocessing stage for human face recognition system

[24, 41, 42, 43, 44]. This is due to the fact that GHE not only can improve the contrast of the

image, but this method is also capable to cope with illumination variations (which is caused by

uneven lighting environment during data acquisition process) and thus yields improvement in

the recognition performance.

The basic idea of GHE method is to remap the gray levels of an image based on the image’s

gray levels cumulative density function. GHE uses the information of the whole intensity val-

ues inside the image for its transformation function and thus this method is suitable for global

enhancement [45]. Its goal is to redistribute the intensityof an image uniformly6 over the entire

range of gray-levels (i.e. to make the image’s cumulative histogram to become linear). Thus,

GHE is expected to be very effective for enhancing low contrast detail [46] and to maximize

the entropy of an image7 [8, 10]. GHE attempts to “spread out" the intensity levels belongs

to an image to cover the entire available intensity range [21]. GHE flattens and stretches the

dynamic range of the resultant image histogram and as a consequence, the enhanced image

will optimally utilize the available display levels [40]. This then yields an overall contrast

improvement.

6Refer to [46] in order to obtain more information regarding on how to obtain an approximate uniform distribu-
tion of gray levels from the use of a simple gray level transformation.

7Entropy relates to the information contained in an image. Higher entropy means more information can be
extracted from the data. Entropy will be covered in Section 1.2.2.
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1.2.1 GHE Algorithm

For a given imageX, the Probability Density Function (PDF) for intensityXk, p(Xk), is given

by:

p(Xk) =
nk

N
, for k = 0,1, · · · ,L−1 (1.2)

whereN is the total number of samples in the image. By comparing equation (1.2) with equa-

tion (1.1), the PDF is actually a normalized version of the histogram8. For example, the PDF of

the image ofGriffin shown in Figure 1.2(e) is presented in Figure 1.3(a). Note that the shape of

the graph shown in Figure 1.3(a) is exactly the same as the oneshown in Figure 1.2(f), except

that the magnitude has been normalized.
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(b) CDF

Figure 1.3: PDF and CDF ofGriffin image

The sum of all components of the normalized histogram or PDF results a Cumulative Den-

sity Function (CDF) of an image. Based on the PDF in equation (1.2), the CDF for intensity

Xk, c(Xk), is defined by:

c(Xk) =
k

∑
j=0

p(Xj), for k = 0,1, · · · ,L−1 (1.3)

By definition,c(XL−1) = 1. Similar to PDF, CDF of an image also can be presented as a plot of

8Similar to the histogram, the PDF of an image also can be presented as a graph plot ofp(Xk) versusXk.
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c(Xk) versusXk. An example of CDF is shown in Figure 1.3(b). In GHE, CDF of thehistogram

is used as the intensity transfer function for intensity value mapping.

GHE is a scheme that maps the input image into the entire dynamic range,[X0,XL−1], by

using CDF as its transformation function. Now, letx = Xk. The transform function,f (x), is

defined based on the CDF as:

f (x) = X0+(XL−1−X0) ·c(x) (1.4)

From here, the output image produced by GHE,Y = {Y(i, j)}, can be expressed as:

Y = f (X) = { f (X(i, j))|∀X(i, j) ∈ X} (1.5)

1.2.2 The Entropy of Message Source

Ideally, GHE will produce a flat histogram and PDF (i.e. a linearly CDF), and thus it can max-

imize the entropy contained in an image. This subsection will show the relationship between a

flat PDF with the maximum entropy value. In information theory, the entropy,E, is defined as

the expectation of the uncertainty of a message source and the formula is given as:

E(x) = −
x

∑
i

pi log10 pi (1.6)

where∑
i

pi = 1, andpi > 0. The entropy is the measurement of the average informationcontent

that can be obtained from the message source [2, 9, 10].

Consider a digital imageX with its gray intensities are digitized intoL levels, with{p0,

p1, · · · , pL−1}, denote the PDF of each gray level respectively. Now, suppose E denotes the

entropy of the image information which is the average information content of the image. Then,
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its formula is given by:

E = −
L−1

∑
i=0

pi log10 pi (1.7)

where
L−1
∑

i=0
pi = 1.

The following equations show the condition to achieve the maximum E value [9]. By

considering that∀p > 0, then log10 p 6 (p−1). Now, introduce two variables,ω andυ , such

that∀ωi, υi > 0, and

L−1

∑
i=0

ωi =
L−1

∑
i=0

υi = 1 (1.8)

Let pi = ωi
υi

, then

−
L−1

∑
i=0

pi log10 pi =
L−1

∑
i=0

ωi

υi
log10

υi

ωi
(1.9)

From here,

L−1

∑
i=0

ωi log10
υi

ωi
6

(
L−1

∑
i=0

ωi

(
υi

ωi
−1

)
=

L−1

∑
i=0

υi −
L−1

∑
i=0

ωi = 0

)
(1.10)

Thus,

L−1

∑
i=0

ωi log10υi 6
L−1

∑
i=0

ωi log10ωi (1.11)

So,

−
L−1

∑
i=0

ωi log10ωi 6 −
L−1

∑
i=0

ωi log10υi (1.12)

Especially, let

υi =
1
L

L−1

∑
i=0

ωi =
1
L

(1.13)

Then,

−
L−1

∑
i=0

ωi log10ωi 6

(
−

L−1

∑
i=0

ωi log10υi = −
L−1

∑
i=0

ωi log10
1
L

= log10L

)
(1.14)

Because 0< (pi = υi
ωi

) 6 1, equation (1.14) is reasonable only whenω0 = ω1 = · · · = ωL−1.

Based on equations (1.8) to (1.14), it can be concluded that the entropy of the message
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source will have its maximum value when the message has been uniformly distributed. Hence,

an image will have its maximum entropy value when its histogram or PDF is flat or uniformly

distributed. Theoretically, GHE produces images with flat histogram. Thus, this becomes one

of the reasons why GHE is used for contrast enhancement.

1.2.3 Limitations of GHE

Although GHE is suitable for an overall contrast enhancement, practically there are some lim-

itations associated with GHE. To ease the discussion, Figure 1.4 shows an image processed

using GHE and its corresponding histogram. By comparing histograms in Figure 1.4(b) with

its original version in Figure 1.2(b), it is shown that GHE successfully stretches and expands the

dynamic range of the image [2]. However, the histogram is farfrom being flat. The histogram

in Figure 1.4(b) has many empty bins9 because this histogram is actually a shifted version of

the histogram shown in Figure 1.2(b) [17]. Thus, the entropyvalue of the GHE enhanced image

is almost similar to the original version, and not maximizedas expected in theory.

(a) GHE processed image
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(b) Histogram of image (a)

Figure 1.4: GHE processed image ofAkihabaraand its histogram

GHE also usually causes level saturation10 (clipping) effects in small but visually important

9A bin is defined as a series of equal intervals in a dynamic range of an image employed to describe the divisions
in a histogram.

10Saturation is the decrease in the absorption coefficient of amedium when the power of the incident radiation
exceeds a certain value [47].
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areas [12]. This happen because GHE extremely pushes the intensities towards the right or

the left side of the histogram. If the input image is dominated by dark intensity pixels, the

histogram is pushed to the right side, and thus bright saturation effect (as shown in Figure

1.4(a)) will be clearly visible. On the other hand, if the input is dominated by bright intensity

pixels, the output normally suffers from dark saturation effect. This saturation effect, not only

degrades the appearance of the image, but also leads to information loss [45]. For example, the

contents on the billboards in Figure 1.4(a) are completely demolished because these billboards

are saturated with bright intensity values.

The damage of the contents on the billboards in Figure 1.4(a)is also because GHE does the

enhancement globally, without considering the local contents of the image. GHE method is ef-

fective in enhancing the low contrast image when the input image contains only one big single

object, or when there is no appearance contrast change between the object and the background

in the image [3]. For other images, GHE mapping often resultsin undesirable effects such as

over enhancement for intensity levels with high probabilities, and loss of contrast for levels

with low probabilities [3, 5, 12, 45, 48]. Thus, the enhancement might be biased towards the

depiction of parts of the image which are unimportant for theviewer such as the background

area of the image [49, 50]. As a consequence, GHE algorithm isnot applicable to many im-

ages, such as infrared image, because this algorithm usually enhances the image’s background

instead of the object that occupies only a small portion of the image [51].

Furthermore, GHE often causes the shifting on the average (i.e. mean) luminance of the

image [9], which is a well-known mean-shift problem [48]. Hence, GHE is rarely employed

in consumer electronic products (e.g. video surveillance,digital camera, and digital television)

where the brightness preserving characteristic of the enhancement method is crucial [10]. A

dark movie scene displayed on television, for example, should be maintained dark in order to

keep its artistic value [9].
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Besides, the excessive change in brightness level introduce by GHE leads to annoying

artifacts and unnatural enhancement, as shown in Figure 1.4(a). The noise in the image is

also enhanced or magnified [52]. Thus, although GHE can increase the brightness level in the

image, this technique might significantly degrade the quality of the image.

1.3 Objectives of Study

Based on the limitations of GHE stated in Subsection 1.2.3, the objectives of this research are

to develop two independent HE based methods, where the aims of these methods are:

1. To develop an extension of HE with brightness preserving ability.

2. To develop an extension of HE that can emphasis local contents.

In addition to grayscale image processing, an extension to color image processing for both

methods will be also developed.

1.4 Organization of Thesis

The structure of this thesis is as follows. As a first step in this work, Chapter 1 gives an

introduction to the basic concepts of contrast enhancement, histogram and the GHE method.

Then, Chapter 2 will briefly review the previous works on the extensions to HE method which

are Mean Brightness Preserving HE, Bin Modified HE, and LocalHE. Next, the novel method

which is based on Mean Brightness Preserving HE, BrightnessPreserving Dynamic Histogram

Equalization (BPDHE) is presented in Chapter 3. Chapter 4 will discuss another novel method,

Multi-Levels Block Overlapped Histogram Equalization (MLBOHE), which is a method based

on Local HE. Besides, an extension of BDPHE and also MLBOHE tocolor image is presented

in Chapter 5. Some experimental results from the application of these proposed methods are
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presented in Chapters 3, 4, and 5. Finally, a conclusion to summarize this entire work is drawn

in Chapter 6. Some suggestions for future work are also provided in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Extensions of HE

The limitations of GHE as mentioned in Subsection 1.2.3, have encourage many researchers

to actively develop various extensions to HE method. Generally, these variations of HE can

be classified into four groups as shown in Figure 2.1. In addition to GHE, they are Mean

Brightness Preserving HE, Bin Modified HE, and Local HE.

HE

Bin Modified
HE

Local HEGHE Mean Brightness
Preserving HE

Figure 2.1: Block diagram of HE’s extensions

Hence, this chapter provides a literature review on some of the extensions of HE. Section

2.2 will discuss about the Mean Brightness Preserving HE methods. Then, the Bin Modified

HE will be presented in Section 2.3. After that, Section 2.4 will give in details about the Local

HE. Finally, the last section will summarize all the methodsdiscussed in this chapter.

2.2 Mean Brightness Preserving Histogram Equalization (MBPHE)

Mean Brightness Preserving Histogram Equalization (MBPHE) is a novel extension to HE.

This type of enhancement method is specially developed for the use in consumer electronic
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products such as digital television, digital camera and camcorder. The idea of keeping the

mean brightness of an image for consumer electronic products was first introduced by Kim

[18]. By preserving the mean brightness, this not only can maintain the artistic value of the

image, but it is also proven that this methodology can reducethe saturation effect, and able to

avoid unnatural enhancement and annoying artifacts on the output image.

Mean Brightness
Preserving HE

(MBPHE)

Recursive
Mean-

Separate HE
(RMSHE)

Dual
Sub-Image

HE
(DSIHE)

Brightness
Perserving

Bi-HE
(BBHE)

Recursive
Sub-Image

HE
(RSIHE)

Dynamic
HE

(DHE)

Quanzatized
Bi-HE

(QBHE)

Minimum
Mean

Brightness
Error Bi-HE

(MMBEBHE)

Recursive
Separated and
Weighted HE

(RSWHE)

Multipeak
HE

(MPHE)

Multi-HE
(MHE)

Brightness
Preserving

Weight
Clustering HE
(BPWCHE)

Figure 2.2: Block diagram of MBPHE’s extensions

Commonly, MBPHE decomposes the input image into two or more sub-images, and then

it equalizes the histograms of these sub-images independently. The major difference among

the MBPHE methods is the criteria used to decompose the inputimage. As shown by Figure

2.2, MBPHE can be divided into 11 methods, which consists of Brightness Preserving Bi-

Histogram Equalization (BBHE), Quantized Bi-Histogram Equalization (QBHE), Dual Sub-

Image Histogram Equalization (DSIHE), Minimum Mean Brightness Error Bi-Histogram Equal-

ization (MMBEBHE), Recursive Mean-Separate Histogram Equalization (RMSHE), Recur-

sive Sub-Image Histogram Equalization (RSIHE), RecursiveSeparated and Weighted His-

togram Equalization (RSWHE), Multipeak Histogram Equalization (MPHE), Dynamic His-

togram Equalization (DHE), Multi-Histogram Equalization(MHE), and Brightness Preserving
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Weight Clustering Histogram Equalization (BPWCHE). The details of each MBPHE methods

are discussed in the following subsections.

2.2.1 Brightness Preserving Bi-Histogram Equalization (BBHE)

Brightness Preserving Bi-Histogram Equalization (BBHE) is a novel method invented by Kim

[18]. First, BBHE finds the value ofXm which is the mean of the imageX, whereXm ∈

{X0,X1, · · · ,XL−1}. Then, BBHE decomposes the input image into two sub-imagesXL andXU

based on the mean (i.e.Xm) as given in equations (2.1) to (2.3).

X = XL ∪XU (2.1)

where

XL = {X(i, j)|X(i, j) 6 Xm,∀X(i, j) ∈ X} (2.2)

and

XU = {X(i, j)|X(i, j) > Xm,∀X(i, j) ∈ X} (2.3)

Note that the sub-imageXL is composed of{X0,X1, · · · ,Xm} and the another sub-imageXU is

composed of{Xm+1,Xm+2, · · · ,XL−1}. This is shown in Figure 2.3.

Figure 2.3: An input histogram of BBHE is divided based on itsmean
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Then, the respective PDFs of the sub-imagesXL andXU are given by:

pL(Xk) =
nk

L

NL
, for k = 0,1, · · · ,m (2.4)

and

pU(Xk) =
nk

U

NU
, for k = m+1,m+2, · · · ,L−1 (2.5)

in which nk
L andnk

U represent the respective numbers ofXk in {X}L and{X}U , andNL and

NU are the total numbers of samples in{X}L and{X}U , respectively. Note thatNL =
m
∑

k=0
nk

L,

NU =
L−1
∑

k=m+1
nk

U andN = (NL +NU).

Next, the respective CDFs for{X}L and{X}U are then defined by:

cL(x) =
m

∑
j=0

pL(Xj) (2.6)

and

cU(x) =
L−1

∑
j=m+1

pU(Xj) (2.7)

wherex = Xk. By definition,cL(Xm) = 1 andcU(XL−1) = 1.

Similar to the case of GHE, CDFs are used as the transform functions to assign the new

intensity values to the input image. The transform functions for BBHE are defined as:

fL(x) = X0+(Xm−X0) ·cL(x) (2.8)

and

fU(x) = Xm+1+(XL−1−Xm+1) ·cU(x) (2.9)

The decomposed sub-images are equalized independently based on their transform func-
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tions. Finally, the output image of BBHE,Y, is expressed by equations (2.10) to (2.12).

Y = {Y(i, j)} = fL(XL)∪ fU(XU) (2.10)

where

fL(XL) = { fL(X(i, j))|∀X(i, j) ∈ XL} (2.11)

and

fU(XU) = { fU(X(i, j))|∀X(i, j) ∈ XU} (2.12)

From equations (2.11) and (2.12), it can be said thatfL(XL) equalizes the sub-imagesXL

over the range[X0,Xm] while fU(XU) equalizes the sub-imagesXU over the range[Xm+1,XL−1].

As a consequence, the input imageX is equalized over the entire dynamic range[X0,XL−1] with

the constraint that the samples less than the input mean are mapped to[X0,Xm] and the samples

greater than the mean are mapped to[Xm+1,XL−1].

Unlike GHE that always produce the output mean intensity at the middle gray level regard-

less of the input mean brightness [18, 20], BBHE is able to preserve the mean brightness quite

well [16, 18, 20, 23, 24]. If the intensity distribution of the input is symmetry around its mean,

it proves that the average intensity of BBHE output will be atthe middle of the input mean and

the middle gray level [8]. Thus, BBHE normally gives resultswith more natural enhancement

compared with GHE.

Yet, as the mean-separation1 of BBHE method is done only once, BBHE only can pre-

serve the mean brightness to a certain extent. However, somecases do require higher degree of

preservation to avoid unpleasant artifacts [20]. Furthermore, BBHE can only preserve the orig-

1Mean-separation refers to the separation of an input image into sub-images based on the mean of an input
image. In other words, mean-separation separates the histogram into two based on the mean of the input image’s
histogram.

17



inal brightness if and only if the input histogram has a quasi-symmetrical distribution around

its mean [10]. However, most of the input histograms do not have this property. This condition

leads to the failure of BBHE in preserving the mean intensityin real life applications.

2.2.2 Quantized Bi-Histogram Equalization (QBHE)

Quantized Bi-Histogram Equalization (QBHE), as proposed by Kim [19], is a modification to

BBHE. QBHE follows the same procedures as BBHE. However, QBHE provides much simple

hardware structure than BBHE since it utilizes the CDF of a quantized image, which require

less number of components, such as comparators, counters, and dividers. Thus, the realization

of BBHE in real consumer electronic applications is more feasible. The goal of QBHE is to

preserve the mean brightness of a given image effectively with less hardware complexity while

enhancing the contrast of a given image [19].

The first step of QBHE is the quantization2 process, where theL discrete gray levels are

quantized intoK discrete levels (i.e.K 6 L). Next, similar to BBHE, the input image is then

decomposed into two sub-images based on its mean. After that, quantized CDF is defined

for each of the sub-images. A linear interpolation is then used to evaluate the function value

at every input gray level in order to perform equalization properly. Finally, the decomposed

sub-images are equalized independently based on the transfer functions obtained.

The brightness preservation by QBHE is comparable to BBHE (regardless the level ofK).

But, the degree of contrast enhancement by QBHE decreases asK discrete levels decreases.

Furthermore, quantization is also not so recommended when an image is needed to be trans-

formed from one color space to another [53].

2In image processing, quantization is a process in which eachpixel in an image is assigned one of a finite set of
gray levels [47].
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2.2.3 Dual Sub-Image Histogram Equalization (DSIHE)

Dual Sub-Image Histogram Equalization (DSIHE) that is developed by Wang et al. [9], is an

extension to BBHE. DSIHE outperforms BBHE in terms of preserving the image’s brightness

and also in image content or entropy. By following the fact from BBHE, which is the brightness

can only be preserved well when the input histogram is symmetry around its separating point,

DSIHE method decomposes the input image into two equal area sub-images based on its gray

level PDF. In other words, DSIHE separates the histogram using threshold level with CDF

equal to 0.5. Then, the two sub-images are equalized independently. Finally, the processed

sub-images are composed back into one image to obtain the output image.

The implementation of BBHE and DSIHE are almost similar except that DSIHE separates

the histogram based on the gray level with CDF equal to 0.5 (i.e. the median value) instead of

using the mean3. Theoretically, if the separation of the histogram is done based on the median

of the input image’s brightness (i.e. median-separation4), the maximum Shannon’s entropy can

be obtained after the two equal areas, which corresponds to dark and bright areas, are equalized

independently.

Unlike BBHE, DSIHE changes the brightness to the middle level between the median level

and the middle of the input image [10]. Thus, DSIHE can enhance image information ef-

fectively and also keep the original image luminance well enough [9]. However, although

DSIHE can overcome the aforementioned problems of GHE, DSIHE fails to preserve the orig-

inal brightness of an image when the higher degree of preservation is needed.

3For the implementation of DSIHE,Xm in Figure 2.3 presents the median value.
4Median-separation is similar to mean-separation except itis using median value instead of mean value.
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2.2.4 Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE)

Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE) is introduced by

Chen and Ramli [23, 24], to overcome the limitation of GHE, BBHE, and DSIHE in preserving

the image’s original brightness [10, 24]. The ultimate goalof this method is to allow maximum

level of brightness preservation, which indirectly can avoid the output from unpleasant artifacts

and unnatural enhancement due to excessive equalization.

Unlike BBHE and DSIHE, MMBEBHE will first test all possible values of the separating

intensity from 0 to(L− 1) in order to find the optimal threshold level that can produce the

smallest Absolute Mean Brightness Error (AMBE) [23]. AMBE is defined as the absolute

difference between input and output mean,AMBE, as given by:

AMBE = |X −Y| (2.13)

whereX is the input mean andY is the output mean. From equation (2.13), lower AMBE

indicates that the brightness is better preserved.

The following are the procedures of MMBEBHE method. First, the AMBE is calculated

for each of the possible threshold levels. Then, the algorithm finds the threshold level that yield

minimum AMBE and consider it as the separating point. Lastly, the input is decomposed into

two based on this separating point (as refer to Figure 2.3,Xm is the separating point that can

produce the minimum AMBE value for the given input image). These two sub-images are then

equalized independently.

From the procedures described in the previous paragraph, the process of calculating the

AMBE for each of the possible threshold levels, especially when the number of gray level

is large, requires considerable amount of computations [23]. As the process of selecting the
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separating point is based on enumeration method, this couldbecome a major drawback of

MMBEBHE for a real time implementation.

2.2.5 Recursive Mean-Separate Histogram Equalization (RMSHE)

Recursive Mean-Separate Histogram Equalization (RMSHE),which is introduced by Chen

and Ramli, is a generalization of BBHE method [20, 24]. Similar to BBHE, RMSHE uses

the mean values to decompose the input image into several sub-images. The only difference

between BBHE and RMSHE is the mean-separation in BBHE is doneonly once while the

mean-separation in RMSHE is done recursively. RMSHE further separates each of the new

subhistograms based on their respective means. In other words, RMSHE uses BBHE repeatedly

[10].

The first step of RMSHE is the same with BBHE, which is to separate the input histogram

into two pieces based on its mean. Then, recursive separations are applied many times, using

the mean value of the sub-images, depending on the scaler (i.e. the recursive factor that is

set by the user) to generateRsub = 2r -pieces of subhistograms. An example of RMSHE is

presented in Figure 2.4.

Figure 2.4: An input histogram of RMSHE is divided based on its mean recursively (i.e.r = 2)

Finally, each subhistograma, with CDF defined asca(x), is equalized independently by
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using transform function,fa(x), as:

fa(x) = Xla +(Xua −Xla) ·ca(x), for a = 1,2, · · · ,Rsub (2.14)

whereXla andXua are the lowest and the highest gray level limits defined by subhistograma,

respectively. Lastly, the output image of RMSHE,Y, is expressed as:

Y = {Y(i, j)} =
Rsub⋃

a=1

fa(Xa) (2.15)

where

fa(Xa) = { fa(X(i, j))|∀X(i, j) ∈ Xa} (2.16)

The ultimate goal of RMSHE is to allow higher level of brightness preservation to avoid

unpleasant and unnatural enhancement due to excessive equalization while enhancing the con-

trast of a given image as much as possible. RMSHE provides better and also scalable brightness

preservation [20]. The performance of RMSHE is better in some cases where GHE and BBHE

fail in their applications [16].

RMSHE with recursive level,r = 0 is similar to GHE because there is no mean-separation

performed. As a result, the mean brightness cannot be preserved. RMSHE withr = 1 is

similar to BBHE because the mean-separation is done only once. Hence, the original brightness

can be preserved to a certain extent. For RMSHE withr is greater or equal to 2, if more

mean-separation is done recursively (i.e. largerr value), then a better brightness preservation

can be achieved. Thus, in general, RMSHE can preserve an image’s original brightness in

a scalable manner, which allows scalable degree of brightness preservation range from 0%

(r = 0, output of GHE) to 100% (r = ∞, original input image) [20]. Theoretically, the output

mean converges to the input mean whenr grows larger, and thus yields a good brightness
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preservation. However, whenr grows to infinite, the output histogram is exactly the same with

input histogram, and thus the output image has no enhancement at all [10].

2.2.6 Recursive Sub-Image Histogram Equalization (RSIHE)

Recursive Sub-Image Histogram Equalization (RSIHE) that is developed by Sim et al. [16],

subdivides the input image into 2r sub-images. RSIHE is a generalization of DSIHE method.

RSIHE shares the same characteristics (i.e. recursive framework) with RMSHE in generating

the sub-images, except RSIHE chooses to separate the histogram based on the median value

(i.e. CDF∼= 0.5) rather than the mean-separation approach.

RSIHE first determines median of the input image and separates the histogram into two

equal areas. Then, depending to the levelr set by the user, RSIHE further recursively subdi-

vides these subhistograms by using the median value of the corresponding histogram sections.

The separation process halts once 2r sub-images are generated5. Then, the equalization process

is carried out to these subhistograms, independently usingequations (2.14) to (2.16).

Similar to RMSHE, the output from RSIHE with recursive level, r = 0 is the same as the

one produced by GHE because there is no median-separation performed. Therefore, there is no

brightness preservation can be obtained whenr = 0. RSIHE withr = 1 is similar to DSIHE as

the histogram separation, which is based on the median valueis done only once. The original

brightness can be preserved to a certain extent. For RSIHE with r greater or equal to 2, the

separation is done recursively based on median to further preserve the original brightness [16].

RSIHE provides better brightness preservation and also thehigh structure similarity. Be-

sides, RSIHE can preserve the quality of image while producing a more natural enhancement.

Hence, the features of RSIHE are energy preservation, better contrast, and better image with

5Here, 2r must be less thanL in order to allow enhancement to happen.
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high Peak Signal-to-Noise Ratio (PSNR)6 and Mean Structural Similarity Index (MSSI)7. Sim-

ilar to RMSHE, parameterr allows the brightness preserving ability posses by RSIHE tobe

controlled [16]. However, whenr > 3 (i.e. total sub-images greater than 8), the resultant im-

age produced by RSIHE will result in ineffective image enhancement and also consumes more

computation time. Furthermore, RSIHE also shares the same problem with RMSHE where the

image cannot be enhanced if the value ofr is set to a very large value.

2.2.7 Recursively Separated and Weighted Histogram Equalization (RSWHE)

Recursively Separated and Weighted Histogram Equalization (RSWHE) is proposed by Kim

and Chung [48]. RSWHE method is similar to both RMSHE and RSIHE in terms of recur-

sively decompose the input histogram into 2r subhistograms. However, unlike RMSHE and

RSIHE, the weighting function is applied to RSWHE method. The main difference between

the previous MBPHE methods and RSWHE is that all the previousmethods, which are dis-

cussed in subsections before, do not modify the shape of the input histogram. RSWHE, on the

other hand, changes the input histogram before it performs HE process.

Generally, RSWHE method consists of three modules which arehistogram segmentation

module, histogram weighting module, and HE module. These RSWHE modules are discussed

as follow:

1. Histogram Segmentation Module

First, the image is decomposed into 2r subhistograms based on some specified recursive

level,r. There are two types of segmentation process which is based on mean and median

of the subhistogram, respectively. The mean-based histogram segmentation of RSWHE

is defined as RSWHE-M, which the procedures of segmentation is the same as RMSHE.

6PSNR is a common measure used to indicate the strength of the signal toward its surrounding noise.
7MSSI measures the structural similarity between two images.
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