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KOMUNITI MANUSIA BERASASKAN MODEL ALGORITMA GENETIK 

(HCBGA) 

 

ABSTRAK 

 

 

Sebagai satu model gelintaran, Algoritma Genetik (GA), telah membuktikan 

kejayaannya dalam banyak apikasi. Walau bagaimanapun, beberapa penyelidik 

menyatakan bahawa GA mempunyai  “convergence” yang perlahan. Keperlahanan ini 

berpunca daripada kerawakan dalam kebanyakan operasinya.  Oleh itu, ramai penyelidik 

terkini telah menggunakan populasi berstruktur dalam GA untuk mengurangkan 

kerawakan seperti model algoritma genetik pulau (IGA), model algoritma genetik bersel 

(CGA) dan model lain. 

 

Tesis ini menyediakan satu pendekatan baru untuk populasi berstruktur dalam 

Algoritma Genetik, berdasarkan kelaziman, tingkah laku dan corak komuniti manusia. 

Antaranya termasuklah gender, umur, generasi, perkahwinan, kelahiran dan kematian. 

Oleh itu, model ini dinamakan model Komuniti Manusia Berasaskan Alogritma Genetik 

(HCBGA).  Model ini merupakan satu evolusi daripada Alogitma Genetik mudah 

(SGA).  Genderisasi diaplikasikan pada model ini, diikuti dengan imbangan gender, dan 

akhirnya dimasukkan komuniti manusia berasaskan peraturan. Siri eksperimen 

dijalankan pada tiga masalah yang berbeza:: masalah Knapsack, fungsi pertama De 

xvii 
 



Jongs’ (F1) dan masalah jurujual yang berjalan (TSP). Masalah ujian ini meliputi 

masalah permutasi dan bukan-permutasi, berserta dengan masalah selanjar dan bukan- 

selanjar, yang memberikan keputusan yang lebih tepat. Prestasi HCBGA didapati lebih 

baik daripada  SGA dan dua yang lain.  
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A HUMAN COMMUNITY BASED GENETIC ALGORITHM MODEL 

(HCBGA) 

 

ABSTRACT 

 

 

As a general search model, Genetic Algorithm (GA) has proved its success in many 

applications. However, several researchers argue that GA has slow convergence. This 

shortfall is due to the randomness in most of its operations. Hence, recently researches 

have employed structured populations in GA to reduce this randomness, such as in the 

island genetic algorithm model (IGA), cellular genetic algorithm model (CGA) and 

other models.  

 

This thesis provides a new approach to the structured population in Genetic 

Algorithm, based on the custom, behavior and pattern of human community. This 

includes gender, age, generation, marriage, birth and death. As such, this model is 

named the Human Community Based Genetic Algorithm (HCBGA) model. This model 

is an evolution of the simple Genetic Algorithm (SGA). Genderization is applied to this 

model, followed by gender balancing, and finally the human community based rules are 

included. Series of experiments were carried out on three problems of different nature: 

the Knapsack problem, De Jongs’ first function (F1) and traveling salesman problem 

(TSP). These test problems cover permutation and non-permutation problem, together 

xix 
 



with continuous and non-continuous problem, hence give better results. The 

performance of the HCBGA is found to be far better than the SGA and two advanced 

models, which are the island genetic algorithm model (IGA) and cellular genetic 

algorithm model (CGA) as this proposed model obtains better optimal maxima or 

minima, besides maintaining the diversity.  
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 أعوذ باالله من الشيطان الرجيم

 

مـن الرحيـه الرحمـم اللـبس  

 

 

 

 

 

 

 

 

 

 

  

“Prohibited to you (for marriage) are: your mothers, daughters, sisters; father's sisters,  

mother's sisters; brother's daughters, sister's daughters; foster-mothers (who gave you 

suck), foster-sisters; your wives' mothers; your step-daughters under your guardianship,  
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born of your wives to whom ye have gone, no prohibition if ye have not gone in; (those 

who have been) wives of your sons proceeding from your loins; and two sisters in 

wedlock at one and the same time, except for what is past; for Allah is Oft-Forgiving, 

Most Merciful.” (The Holy Qura’an, Soura (4), Aya (23)).  
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CHAPTER ONE 

INTRODUCTION 

 

 

 

1.1 Background 

 

     The complexity of nature makes many philosophers argue about how it was created. 

However, the remarkable theory that Darwin came up with in 1872 is able to explain the 

existence by the means of Evolution from Natural Selection (Darwin, 1872).

    

“I have called this principle, by which each slight variation, if useful, is preserved, by 

the term Natural Selection.” (Darwin, 1859, 1872).  

 

Darwin further clarified that the survival of individuals depends on better fitness 

among them, as they succeed to adapt themselves to their environment better than others 

(Darwin, 1859, 1872). 

 

The Darwinian theory of evolution has inspired many researchers to develop various 

biology-related models and approaches. These approaches and models provide new 

ways to view and solve problems. In the field of artificial intelligence (AI), a new 
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subfield was created to accommodate all these models and approaches (Madar, Abonyi 

& Szeifert, 2003).  It is called the evolutionary computation (EC) and it mimics the 

Darwinian evolutionary process (Bäck, Hammel & Schwefel, 1997; Eiben & Smith, 

2003). 

 

1.2 Evolutionary Computation (EC) 

      

Evolutionary computation (EC) is a class of algorithms within computer science that 

attempts to solve complex problems (De Jong, 2006). EC uses a simulated evolution in 

some degree, that these algorithms are able to evolve the population of potential 

solutions in a manner such that weaker solutions are removed and replaced with stronger 

and better solutions (Eiben & Smith, 2003). This process is done by mimicking the 

processes of Darwinian evolution (Back et al., 1997; Eiben & Smith, 2003; Blum & 

Roli, 2003). 

 

Different approaches have appeared and developed as subclasses of EC named 

evolutionary algorithms (EA) (Eiben & Smith, 2003; Blum & Roli, 2003). EA is a 

general term for various computational techniques, mostly based on biological life of 

natural world. Although these approaches are similar in terms of the basic assumptions 

where they are inspired by the same principles of natural evolution; they differ in their 

strategies. These include: 

4 
 



(a) Evolutionary programming (EP) developed by Lawrence Fogel (Eiben & Smith, 

2003; Blum & Roli, 2003) which focuses on optimizing continuous functions without 

recombination,  

(b) Evolutionary strategies (ES) developed in Germany by Ingo Rechenberg and Hans-

Paul Schwefel (Eiben & Smith, 2003; Blum & Roli, 2003) which focuses on optimizing 

continuous functions with recombination,  

(c) Genetic algorithms (GA) developed in USA by J. H. Holland, which focuses on 

optimizing general combinatorial problems (Holland, 1975; Eiben & Smith, 2003; Blum 

& Roli, 2003) and 

 (d) Genetic programming (GP) championed by Koza (Koza, 1990, 1994; Banzhaf, 

Nordin, Keller & Francone, 1998; Eiben & Smith, 2003;  Blum & Roli, 2003; Kicinger, 

Arciszewski & De Jong, 2005) which which focuses on evolving programs. 

 

Various problems have found solutions by using the evolutionary approach. These 

include applications in telecommunication (data, image compression and noise filtering), 

financial and market forecasting (stock market and exchange rates) and optimization 

problems (such as wire routing, scheduling, traveling salesman, image processing, 

engineering design, parameter fitting, computer game playing, knapsack problems, and 

transportation problems) (Fogel, Back & Michalewicz, 2000; Liao & Sun, 2001; Eiben 

& Smith, 2003; Bagheri & Deldari, 2006).   
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1.3 Genetic Algorithm (GA) 

 

      GA is one of the approaches developed from EA in the 1960’s (Holland, 1975). It 

has attracted many researchers due to its general purpose algorithm (Whitley, 1994; 

Miller & Todd, 1995; Bäck et al., 1997; Krink, Mayoh & Michalewicz, 1999; Nobel, 

1999; Hemelrijik, 1999; Thomsen, Rickers & Krink, 2000).  

 

GA mimics the natural biology process particularly in the human genes. It is based on 

the survival of the fittest the better genes have a higher chance to survive (Liao & Sun, 

2001; Bagheri & Deldari, 2006). So, the solution will improve all the time in which the 

better ones stay and the worst are removed. A solution to a problem in GA is represented 

as a genome (or chromosome) (Holland, 1975, 1992; Zheng & Kiyooka, 1999; Liao & 

Sun, 2001). This genome is a string with a fixed bit-length. Figure 1.1 represents the 

simple standard genetic algorithm (SGA) evolution flow.  
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        Figure 1.1: The evolution flow of the SGA (Liao & Sun, 2001) 

   

 

Initially, a population size of the first generation is generated randomly. Next a 

will have higher evaluations. Then, some genetic operations reproduction, crossover and 

fitness function is used to evaluate each solution in this first generation. Better solutions 

mutation are employed to generate the next generation based on these evaluations. This 

procedure is performed iteratively until the optimal solution(s) is (are) found or the time 

allotted for computation ends. 
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   The usage of GA began by solving classical problems such as the traveling salesman 

problem and the n queens’ problem (Bäck, 1996; Zheng & Kiyooka, 1999; Liao & Sun, 

2001). Years later, GA grew rapidly as it increased its applications to optimize complex 

scheduling problems and spatial layout (Dalton, 2007).  GA is mostly used to 

approximate solutions for NP-hard problems, to solve minimization and maximization 

ate difficult classical optimization problems (Holland, 1975; 

easley, Bull & Martin, 1993; Zheng & Kiyooka, 1999). Furthermore, GA is efficient 

In spite of the successes of GA; it also suffers from some weaknesses such as the 

premature convergence and loss of diversity (Affenzeller & Wagner, 2003; Sanchez-

Velazco & Bullinaria, 2003; Ursem, 2003; Gustafson & Burke, 2006; Vrajitoru, 2008). 

Researchers have been trying to overcome these drawbacks in many different ways. This 

thesis discusses a new strategy to overcome some of the weaknesses.  

 

 

SGA works randomly in selecting parents which means there are no 

onstraints in choosing two individuals to mate together (Sanchez-Velazco & Bullinaria, 

2003). This has m

problems, and to evalu

B

when applied on combinatorial optimization problems including several common 

computer science problems such as the knapsack problems (Zheng & Kiyooka, 1999).  

 

 

1.4 Problem Statement

     The simple 

c

ade the SGA to fall into what is called a premature convergence, in 

which the population of a problem converges too early which means finding a good 
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solution too fast, and this results in suboptimal solution. This leaves the possibility of 

searching for other solutions that could be better (Affenzeller & Wagner, 2003, 2004; 

Wagner & Affenzeller, 2005). Furthermore, the randomness of SGA may generate 

similar or new identical individuals; hence, the new generations do not span the entire 

search space effectively for optimal solutions. This affects the SGA and leads to a loss 

of diversity which causes the algorithm to fall into local minima or local maxima when 

searching for optimal solutions (De Jong, 1975; Goldberg, 1989; Krink et al., 1999; 

Ursem, 2002; Riget, & Vesterstrøm, 2002; Wagner & Affenzeller, 2005; Skolicki & De 

Jong, 2005).  

 

performance than SGA (Thomsen et al., 2000; Goldberg, 2002; Thomsen & Krink, 

2002; Gustafson & Burke, 2006; Vrajitoru, 2008). The main works include cellular 

s (CGA) (Whitley, 1994; Alba & Dorronsoro, 2004; Alba, Dorronsoro, 

iacobini & Tomasini, 2006; Nebro, Durillo, Luna, Dorronsoro & Alba, 2007), island 

 

Previous works that were intended to reduce this randomness by structuring the 

population with some control on how individuals interact, have come out with better 

genetic algorithm

G

genetic algorithms (Back et al., 1997; Enrique, Mario, Marco & Sergio, 2002; Skolicki 

& De Jong, 2005; Gustafson & Burke, 2006), patchwork genetic algorithms (Krink et 

al., 1999; Krink & Ursem, 2000), terrain based genetic algorithms (TBGA) (Krink & 

Ursem, 2000; Gordon & Thein, 2004), religion-based genetic algorithms (RBGA) 

(Thomsen et al., 2000; Thomsen & Krink, 2002) and others.  
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In line to these works, this thesis presents an approach of structuring the population 

based on human communities, to further improve the weakness of SGA. 

 

1.5 Motivation 

 govern most human communities and 

ey are quite common across the communities. The most important relationship in the 

human communities is the relationship between males and females. The union between 

s normally formalized as marriage in most communities.  Some 

xamples of these rules and regulations are: marriage is normally between a male and a 

tion for GA. This 

motivation provides the basis for the new model. 

 

 

     The motivation to this thesis is the human communities which are governed by rules 

and regulations. These rules and regulations could be religions, customs and norms of 

the community or laws of the country. These rules

th

males and females i

e

female; there is no marriage between siblings and there is no marriage with uncles or 

aunts. These rules and regulations have been in existence since the beginning of 

mankind and the success of these rules and regulations are self evident.  

    

   The mankind is the most successful example of the evolutionary process and their 

numbers are rapidly increasing. This human community with its rules and regulations 

between them has inspired us to construct a structured popula

10 
 



1.6 Research Scope

 

      This work in general involves humanizing the GA’s population. In particular we are 

concerned with the process of m

 

arriage in human community. As such, the research 

se elements related to marriage. This includes genderization, 

relationship, marriage and aging. Genderization will include portioning the population 

elationship between family members will be maintained. This 

ill include relationship between parent and child, between siblings, and between child 

locks: youth, parents and grandparent. 

      balancing, causes 

He  of speed and time, 

 

1.7 Research Questions 

 

      In trying to tackle the SGA problems stated previously, the following research 

scope will include tho

into males and females. R

w

and their uncle and aunt. Basic rules of marriage are also implemented. Finally, aging is 

implemented in three major b

 

   The addition of rules of marriage, on top of the genderization and

the algorithm to search more effectively, however, it takes longer computation time. 

nce, the effectiveness of this algorithm is achieved at the expense

which are worth compromising. 

questions were formulated:   
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1. Ho

perfor y relying on the functions of a community? 

2. Wh

order to preserve the genetic strength throughout the generation?  

3. Do ic algorithm models? 

 

1.8 Research Objectives 

 

Accordingly, our research objectives based on the research questions are as follows: 

1.  to mimic the human communities towards 

ature convergence:  

a) To divide the population into male and female while keeping the balance 

between them.  

b) To partition the age of a population into three blocks: child, parent, and 

grandparent. 

c) To set rules and regulations governing marriage. 

2. To compare the performance towards optimal solutions of the structured model 

 against several advanced models such 

as the cellular genetic algorithm (CGA) model and the island genetic algorithm 

(IGA) model by using several test problems. This can be observed through 

preserving the diversity in the population which leads to preventing the search 

to fall in a premature convergence.  

w to construct and build a structured population model to enhance the 

mance of SGA b

at are the constraints that control the selection and crossover of individuals, in 

es the enhanced model perform better than other genet

To structure the SGA’s population

maintaining diversity and preventing prem

against the standard model (SGA), and
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1.9 Research Contributions 

 

         In this thesis our main contribution is constructing and building an enhanced and 

structured population model for SGA to increase its performance. The proposed 

HCBGA model will adapt the Islamic rules as a case study to measure the effectiveness 

of this model in achieving better solutions for the problems mentioned in section 1.4.  

The contributions can be detailed as follows: 

 on human communities.  

2. Parent selection is modeled after the selection of mates in a marriage. 

3. A balanced gender based population. 

1.10 Research Methodology 

 

he research is carried out in a series of steps, beginning with SGA and ending with 

the

1. A new structured population model based

 

T

 new advance model. 

Firstly, the SGA was tested with the three chosen test problems: the knapsack 

problem, the De Jong’s first test function, and the traveling salesman problem. This 

forms the basis for the rest of the experiments. 
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In the second stage, genderization is introduced to SGA. The population is divided 

into male and female. This is called the genderized SGA (GSGA).  The behavior of 

GSGA is tested with the same three test problems and results are compared against the 

ones of the simple SGA.  

 

In the third stage, a balance between the male and female in the population is 

introduced to enhance GSGA. This mechanism will preserve the diversity of the SGA’s 

population. This is called balanced gender SGA (BGSGA). The behavior of this 

mechanism is also tested with the same three test problems and the obtained results are 

compared against the results of GSGA, as well as simple SGA.  

In the next step, the final model is introduced. It includes relationship, marriage, and 

ree test problems and the obtained results are compared against all the results of 

previous mechanisms – results of GSGA, BGSGA and simple SGA.  

 

 

aging besides the previous enhancements.  Its behavior is tested, once again with the 

same th

 

Then finally, we compare the completed model against two advanced models namely 

CGA and IGA. 
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1.

zed in accordance with the objectives mentioned 

bove: 

Chapter Two covers some basic information presented to interested readers for a 

better understanding of this thesis. It also introduces basic knowledge of different 

techniques in EA. In addition, GA will be described more specifically in this chapter. 

This is followed by a literature review of a number of different types of GA models and 

ap

 

Chapter Three presents the research methodology and the major steps involved in 

developing the methodology. This chapter will also cover how the model evolved from 

the original SGA to the HCBGA.  

 

In Chapter Four, three different test problems: the knapsack problem, the De Jongs’ 

first function and the traveling salesman problem applied on the enhanced model will be 

presented and discussed.  

 

 In Chapter Five implementation results are presented and analyzed. In addition, 

comparisons between the enhanced model and existing genetic algorithm models which 

are the SGA, CGA and the IGA will also be presented. Finally, Chapter Six contains the 

conclusion and discussion of future work. 

11 Outline of this Thesis 

 

    The rest of the thesis is organi

a

proaches developed to improve the SGA.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

 This chapter begins with an overview of EA. This is followed by a brief introduction 

to the main techniques of EA. A more detailed coverage of GA is included due to the 

importance of the material to this thesis. This is followed by a review on the major 

works in GA. In finalizing this chapter a discussion on the development of the HCBGA 

model is included. 

 

2.2 An Overview of Evolutionary Algorithm (EA) 

 

 From the Darwinian evolution theory, many researchers have taken the opportunity 

to invent many optimization methods to provide solutions to complicated problems 

(Uresm, 2003). Early ideas relating to EA were proposed during the 40’s (Blickle, 1996; 

Uresm, 2003). Later, Fogel (EP), Rechenberg and Schwefel (ES), John Holland (GA) 

and Koza (GP) were considered as the fathers of modern EA (Blickle, 1996; Eiben & 

Smith, 2003; Ursem, 2003). In the early 90’s, EA and EC were introduced as unifying 

16 
 



terms among the optimization techniques which mimic the biological evolution (Blickle, 

1996; Ursem, 2003).  

 

EC is the process of computing evolution where it models the processes of natural 

evolution. The subset of EC is called an EA, which is the algorithm or what is called the 

general scheme of the EC. An EA is a stochastic search for an optimal solution to a 

given problem. Kicinger et al., (2005) emphasize that EA is a search algorithm which 

has a population as a base for its search, and simulates natural organisms by iterative 

processes of selection, reproduction and variation (Grosan, Abraham & Nicoara, 2005; 

Kicinger et al., 2005).  

 

These days, EA is considered the most popular techniques for complex problems 

which do not need a single solution, but needs a population of potential solutions to 

choose the best among them (Whitely, 1994; Grosan et al., 2005). General steps of EA 

will be detailed in the following section. 

 

2.3 General Steps of the Evolutionary Algorithm (EA)  

 

      Figure 2.1 illustrates the general schema of an EA as a flowchart. There are several 

major steps in EA. At the beginning, the population is initialized only once. Then the 

algorithm passes through a loop. This loop is repeated until a termination condition is 
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reached, and each repetition is known as a generation. There are several steps in each 

loop: selection, recombination, mutation, and replacement.  

 

 

 

 

 

 

 

 

 

 

 

E

•

 

                                           

                                                        Parent selection 

 

 

Initialization 

                                                                                                                     Recombination

 

                                                                                                              Mutation 

 

 

Termination 

                                           Survivor selection 

            

               

Parents 

Offspring 

Population 
 

Figure 2.1: The general scheme of an EA as a flow chart (Eiben & Smith, 2003) 

   

 
The evolutionary search process is influenced by the following main components of 

A (Eiben & Smith, 2003):  

 

 Representation: The link between the real world and the EA world. It is a bridge 

between the original problem context and the problem-solving space where 
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evolution takes place. Representation encodes the objects forming possible solutions 

to a certain problem. 

 

• Evaluation function: it is commonly known as the fitness function. It is a function or 

procedure that assigns a quality measure to individuals. 

 

• Population: it is a set of individuals. The role of the population is to hold the 

possible solutions of a certain problem. 

 

• Parent selection mechanism: it is also called mating selection, which is to allow 

better individuals to become parents of the next generations. It is a process whereby 

parents are selected for recombination purposes, based on their fitness. Fitter 

individuals get higher chances to be selected. This step is considered the most 

important step of the EA steps due to the fact that choosing the most suitable 

individuals which has a high fitness is very important. There are several different 

methods in the selection step the stochastic uniform sampling, the tournament 

selection method, the fitness proportional selection and the fitness ranking selection 

method (Madár et al., 2004). 

 
 

•  Variation operators: to create new individuals from the older ones. They are divided 

into two types based on the number of objects they take as inputs (arity). 
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• Recombination: often called as crossover. It is a binary variation operator which 

applies two objects as inputs. Some information from each individual is interchanged 

between them, and then merges them to produce one or two new individuals 

(offspring).  

 
 

• Mutation: a unary variation operator which applies one object as input. It is applied 

to an individual who then delivers a slightly modified child or offspring of it. Just as 

in real life, no individual inherits all the genes exactly as they are from its parents. 

There should be some kind of differences between the individuals. A slight change 

on each offspring may occur. Accordingly, part of the code of the new offspring’s 

chromosome is randomly changed. By this, new different individuals are produced. 

This operator is known as mutation. 

 

• Survival of the fittest (replacement): it is often called the replacement. In this step, 

selection of the best quality individuals is made, similar to the selection mechanism. 

The only difference is, this survival selection mechanism is called after the creation 

of the offspring. The selected individuals form the new generation. 

 
 

• Initialization: it is simple in most EA applications. The first population is initialized 

by generating individuals randomly.  

 

• Termination: There are two termination conditions – either the problem has a known 

optimal fitness level or a condition is selected to stop the algorithm. In the first 
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condition, when the problem has a known optimal fitness, attaining this level 

becomes the stopping condition. However, EA is stochastic, thus there is no 

guarantee that EA will reach an optimum, which may lead to an infinite loop and the 

algorithm may never stop. In the second option, a condition is chosen to stop the 

algorithm. The commonly used conditions are: the maximally allowed CPU time 

elapses, the total number of fitness evaluations reaches a given limit, or given number 

of generations or fitness evaluations, the fitness remains below a threshold value, or 

the population’s diversity drops under a given threshold.  

 

2.4 Evolutionary Algorithm (EA) Techniques 

 

In the following subsections, a brief description of each technique in EA will be 

discussed. 

 

2.4.1 Genetic Algorithm (GA) 

GA has become the most popular type among EA techniques in terms of its simple 

framework in solving complex search problems (Eiben & Smith, 2003; Blum & Roli, 

2003). In GA, the recombination operator is highlighted over the mutation operator. This 

algorithm uses fitness proportionate selection, bitstrings of a fixed length to represent the 

individuals and one-point crossover. 
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Taking into consideration that GA is the scope of this thesis, the GA technique will 

be presented in more detail in Section 2.5.  

 

2.4.2 The Genetic Programming (GP) 

       GP can be viewed as a GA with tree representation to represent the individuals. This 

technique was developed by Koza (Koza, 1990; Banzhaf et al., 1998; Eiben & Smith, 

2003; Blum & Roli, 2003). It uses tournament selection as a preferred selection scheme, 

and crossover with no mutation. For example, the population of GP consists of computer 

programs (Wright, 2002), hence GP evolves the computer programs (Walker, 2001). 

 

As GP is represented by a tree representation, this makes it much more flexible, and it 

has the same operators as GA. The main difference between GP and GA is in the 

representation scheme used. GA uses string representations whereas GP represents 

individuals as executable programs. In GP, each evolved program is executed for each 

generation, to measure its performance within the problem domain. The results are then 

used to determine the fitness of that program. 

 

2.4.3 Evolution Strategies (ES) 

ES is considered a search algorithm which basically focuses on gene mutation, where 

the recombination role in the search is mainly in adapting mutation (Pérez-Fructuoso, 

Garcia, Berlanga & Molina, 2007). This strategy was developed in Germany by 

Rechenberg and Schwefel (Whitley, 1994; Bäck et al., 1997; Jones, 1998; Eiben & 
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Smith, 2003; Blum & Roli, 2003;  Kicinger et al., 2005). ES have been traditionally used 

for optimization problems with real-valued vector representations (Blickle, 1996; Jones, 

1998). ES tends to use more direct representations (Bäck, Hoffmeister & Schwefel, 

1991), where each individual is represented by a one-dimensional vector. In this 

algorithm, the mutation is highlighted over recombination (Whitley, 1994). The 

encoding used in an individual is a list of real numbers.  

 

2.4.4 The Evolutionary Programming (EP) 

Evolutionary Programming (EP) is similar to ES (Minhat, Musirin & Othman, 2008). 

Nelson, (1995) stated that EP is a robust optimization technique. EP was first introduced 

by Fogel, Owens, and Walsh in 1966 (Eiben & Smith, 2003; Blum & Roli, 2003Minhat 

et al., 2008). The difference between the EP, GA and ES is that no recombination 

operator appears in the EP. It relies on mutation as variation operator. The selection 

mechanism is a mixture of tournament selection and truncation selection. 

 

Since this research focuses on the GA, further detail of this algorithm is discussed in 

the following sections. 

 

2.5 GA Overall Process 

The overall process of GA is very similar to the overall process of EA. GA is an 

iterative procedure. As a population based approach, GA deals with a group of solutions. 
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A solution candidate is referred as a chromosome and a population consists of a group of 

chromosomes. This solution will be evaluated by a fitness function (Marczyk, 2004). 

These chromosomes will then undergo crossover and mutation to produce new offspring 

which will then form a new population. Then the GA process is repeated until a 

termination condition stops this iteration (Beasley et al., 1993; Sipper, 1996). The 

general procedure of GA is outlined in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

Fig

 

 

 

 

 procedure GA;  

 { 
t = 0; 
initialize population P(t); // initialize population with random          

                                       // solutions 
evaluate P(t);                  // evaluate each individual 
until (done) )   // repeat the following processes until termination    

                                   // condition is satisfied 
{ 

t = t + 1; 
parent selection P(t);   // select parents randomly 
recombine P(t);           // pairs of parents 
mutate P(t);                // the resulting offspring 
evaluate P(t);             // new individuals            
survive P(t);              // individuals for the next generation 

}   
} 
ure 2.2: GA (Spears, De Jong, Back, Fogel & De Garis, 1993; Jones, 1998) 
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