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KAJIAN PRINSIP PERTAMA KE ATAS STRUKTUR ELEKTRONIK 

REBEN-NANO GRAFIN DAN SALINGTINDAKAN DENGAN MUONIUM 

ABSTRAK 

Keputusan yang dilaporkan di sini adalah hasil penyiasatan teoretis ke atas 

sistem grafin. Dalam pemilihan kaedah penyiasatan, beberapa kaedah pengiraan seperti 

kaedah orbit molekul, pasca medan konsisten-kendiri, dan teori fungsi ketumpatan 

(dalam bentuk fungsi tulen dan hibrid) telah dipertimbangkan. Kaedah B3LYP 

merupakan kaedah yang paling sesuai untuk penyiasatan ini kerana kaedah-kaedah yang 

lain mempunyai masalah pencemaran spin dan masalah kecekapan. Untuk menentukan 

model yang sesuai bagi kegunaan pengiraan klaster orbit molekul, dua set model reben-

nano grafin telah dikaji, satu model dengan tepian zigzag dan satu lagi dengan tepian 

lengan-kerusi. Sifat-sifat elektronik dan geometri reben-nano grafin telah didapati 

mempunyai kebergantungan terhadap saiz reben-nano grafin tersebut. Analisis orbit 

molekul, ketumpatan spin, cas, dan jarak ikatan bagi model-model tersebut 

menunjukkan bahawa untuk saiz tertentu, ciri-ciri elektronik bagi model yang digunakan 

ini menghampiri ciri-ciri elektronik reben-nano grafin dengan panjang infinit. 

Untuk penjerapan muonium pada satah dasar reben-nano grafin, tapak yang 

paling stabil adalah kedudukan di mana muonium bersambung terus kepada atom karbon. 

Analisis interaksi antara muonium dan reben-nano grafin menunjukkan bahawa LUMO 

dan HOMO sistem adalah kebanyakannya sumbangan dari reben-nano grafin. Pada 

tapak yang paling stabil, ungkapan sentuhan Fermi untuk reben-nano grafin bertepi 

lengan-kerusi ialah 111 MHz dan 129 MHz untuk reben-nano grafin bertepi zigzag. 



xix 
 

Gandingan-gandingan anisotropik adalah kecil. Penemuan-penemuan hasil penyiasatan 

ini boleh dijadikan sebagai rujukan untuk menjalankan eksperimen yang menggunakan 

muonium untuk mengenalpasti jenis tepian untuk sesuatu reben-nano grafin. 
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FIRST PRINCIPLE INVESTIGATIONS ON THE ELECTRONIC 

STRUCTURE OF GRAPHENE NANORIBBON AND ITS INTERACTION 

WITH MUONIUM 

 

ABSTRACT 

The results reported here are from the theoretical investigations of the 

graphene systems. In selecting the suitable methods for use in the simulations, a few 

methods, ranging from molecular orbital, post-self-consistent field, and density 

functional theory (in the forms of pure and hybrid functionals) are selected. B3LYP 

emerged as the suitable choice for use in the investigations as other methods suffer 

from spin contamination and the problem of efficiency. In order to find the models 

that are suitable for use in molecular orbitals cluster calculations, two sets of 

graphene nanoribbon models, one with zigzag and the other the armchair edges were 

investigated. It was found that the electronic properties and the geometries of the 

graphene nanoribbons do depend on the size of the graphene nanoribbons. Analysis 

of molecular orbitals, spin densities, charges and bond lengths of the models show 

that for a certain size, the electronic properties of the models mimic those of the 

infinitely long graphene nanoribbons. For the adsorption of muonium on the basal 

plane of a graphene nanoribbon, the site where the muonium connects directly to the 

carbon atom is the most stable site. From the analysis of the interactions between 

muonium and the underlying graphene nanoribbons, LUMO and HOMO of the 

systems are mostly from the graphene nanoribbons. At the most stable site, the Fermi 

contact term is 111 MHz for armchair-edged GNR and 129 MHz for zigzag-edged 

GNR, while the anisotropic couplings are negligible. These findings can be the 

reference in performing experiment that use muon to identify the type of the edges of 

a graphene nanoribbons. 
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CHAPTER 1 

INTRODUCTION TO GRAPHENE 

 

1.1 Introduction 

The discovery of graphene, a two dimensional sheet of carbon atoms, has 

generated great interest in the scientific community. It was first obtained by 

mechanical exfoliation and originally categorized into a class of materials that should 

not exist because of thermal instability [1,2]. Since the successful separation of 

graphene sheets from the bulk graphite, research activities have been thriving in this 

area because of possible revelations of new knowledge in condensed matter physics 

and their potential applications. One of the possible applications of graphene is in 

nanoelectronics [3]. A few reviews on the electronic and structural properties of 

graphene have been published [3-7]. The Nobel Prize in Physics of 2010 was 

awarded to Andre Geim and Konstantin Novoselov for their experiments that led to 

the discovery of graphene.  

Before the discovery of free standing graphene, the electronic structure of 

graphene layer has been the subject of a few theoretical calculations. The reason is 

that the large 3.35 Å layer-to-layer separation between adjacent layers of graphite 

minimizes the interaction between two adjacent layers, thus graphene layer can be 

taken as the first approximation of graphite. In 1947, Wallace calculated the band 

structure of two dimensional (2D) graphite using the tight-binding method, and 

found that 2D graphite is a semiconductor with zero activation energy [8]. This is 

followed by the theoretical works of Mrozowski [9], McClure [10], Slonczewski and 
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Weiss [11], and Painter and Ellis [12]. These are the pioneer works of theoretical 

calculations on two- and three-dimensional graphite. 

 Graphene is a zero energy gap semiconductor but when it is fully 

hydrogenated at both the basal planes, it becomes a semiconductor [13]. This 

predicted material, known as graphane [13], has been synthesized experimentally 

[14]. In another case, where the graphene sheet becomes semihydrogenated, that is, 

only one side of the basal plane is fully hydrogenated, the energy gap (0.46 eV) 

becomes smaller than that of graphane [15]. This material, coined as graphone, was 

demonstrated to be stable at room temperature and show ferromagnetism in the 

ground state [15,16]. 

Despite the impressive electronic properties and the high crystal quality, 

graphene does have its shortcomings. The lack of an energy gap in graphene layers is 

a hindrance to its potential usage as electronic materials. A few methods have been 

proposed to create an energy gap in the graphene structures. One method is by 

epitaxially growing graphene on a bulk substrate [17]. The gap obtained in this way 

is attributed to the symmetry breaking of the A-B sublattices when placed on a 

substrate. Using graphene in the form of nanoribbons is another way of obtaining 

energy gaps [18]. 

Since the investigations reported in this work utilised the cluster method, the 

edges on graphene are a big concern. Typically, there are two types of edges on 

graphene. One is designated zigzag, and the other is armchair. They are shown in 

Figure 1.1 (a). The electronic properties of these two edges are different, especially 

on graphene nanoribbons (GNRs). Recently, there have been suggestions of a third 

type of edge on graphene [19-24]. The new edge, as shown in Figure 1.1 (b) is 
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designated as reczag and is formed by the rearrangement of the hexagons in the 

zigzag edges into alternating pentagons and heptagons [23]. This edge is said to be 

more stable than the zigzag or armchair edges [23]. 

In the following parts of this chapter, the literature review on the 

experimental and theoretical studies on the electronics and structural properties of 

graphene systems that have been reported in the literatures will be presented. Also 

presented will be the fabrications and potential uses of graphene and graphene 

nanoribbons.  

 

 

 

Figure 1.1. (a) Fragment of a graphene showing the zigzag and armchair edges. The 

colours show the lattices of A and B. (b) Reczag edge that was proposed to be more 

stable than armchair and zigzag edge. The bond lengths and angle are taken from Ref.  

[19].         

Armchair edge 

Zigzag 

edge 

(a) 

(b) 
Reczag edge 
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1.2 Geometrical Properties of Graphene 

A graphene sheet can be viewed as a single layer of hexagonally arranged 

carbon atoms pulled out from the bulk graphite. It can be viewed as two lattices A 

and B arranged in alternating fashion, as shown in Figure 1.1(a) by two different 

colour schemes. A graphene sheet is not a perfectly flat structure. There is 

experimental evidence of ripples in suspended graphene sheets [25], and computer 

simulations suggest that the bonding between carbon atoms in graphene may be the 

cause for the ripples [26]. Based on the observation from images of transmission 

electron microscopy, it was proposed that graphene layers are not necessarily always 

rigid, flat and coplanar entities due to the dynamics of the bond lengths [27]. When a 

force is applied to the graphene sheet, the sheet will endure elastic and reversible 

deformation before it fractures [28,29]. There is no experimental observations of the 

C−C bond length in a graphene sheet. The value of 1.421 Å is the value of C−C in 

graphite [30].  

It is interesting to know when the C−C bond lengths in the graphene models 

used in simulations will have the C−C bond lengths in graphite. There have been a 

few studies performed to find the bond lengths of graphene models. A mathematical 

equation that predicts the bond lengths for certain edge bonds in hexagonal 

benzenoid hydrocarbons has been formulated by Morikawa et al. [31]. The prediction 

of the bond lengths of some small nanoflakes using this equation, which required the 

calculation of the Pauling bond order, ranges from 1.378 Å to 1.456 Å [31] . The 

results were verified by AM1 semiempirical calculations [31]. In other studies, using 

semiempirical methods and larger nanoflakes with D2h symmetry and different 

arrangements of the edges, it was shown that the bond length at the periphery of the 

nanoflakes deviated (contracted) the most from the ideal value of 1.421 Å [32-34]. 
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This result, that the edge deviates considerably from the ideal C−C bond, has also 

been obtained in the study of large graphene molecules with different symmetries, in 

a series of papers by Philpott et al. [35-39].   

Using the B3LYP/6-31G(d) level of theory, Moran et al. found that the 

internal C−C bond of geometry optimized for polybenzenoid hydrocarbons, with 

sizes equal to or larger than C48H24, will converged to about 1.43 Å [40]. In another 

paper, using a graphene fragment of C62H20, the lengths of the central C−C bonds are 

1.410 Å [41]. Using the AM1 theory, Dietz et al. found that the central C−C bond 

length is 1.42 Å for a 78-carbon hydrocarbon molecule [32]. A larger cluster with 

192 carbon atoms was reported by Tyutyulkov et al where the geometry was 

optimized using a semi-empirical method [33]. It was shown that the central C−C 

bond has a value of 1.41 Å [33]. Using the same semi-empirical method, the central 

C−C bond of a 216-carbon cluster with D2h symmetry were calculated to have a 

length of 1.43 Å [34]. Using Monte Carlo simulations to study the ripples of a 

graphene sheet, it was noted that the bond lengths ranged from 1.379 Å to 1.437 Å 

[26]. Large graphene molecules with zigzag and armchair (crenellated) edge have 

also been the subject of detailed studies [35-39]. The molecules in these studies have 

a symmetry of D3h (triangular) [35,36] and D6h (hexagon-shaped) [36-39]. For these 

large graphene molecules, there is a central zone that has all the bonds and angles 

found in the graphite plane (C−C is 1.42 Å, planar sheet) [35-39]. This result agrees 

with the one obtained by Stein and Brown in their study of large condensed 

polyaromatic hydrocarbons using the Huckel molecular orbital theory [42].    

Apart from the edges of graphene flakes, the edges of an infinite nanoribbon 

has also been studied. Tyutyulkov et al. [43] used semi-empirical methods to 

calculate the geometries for zigzag-edged GNRs and armchair-edged GNRs. For 
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zigzag-edged GNR, the bond length at the edges ranged from 1.374 Å to 1.412 Å, 

while the central bonds have length of 1.415 Å. For armchair-edged GNR, the edges 

have bond lengths of 1.347 Å and 1.393 Å. No clear internal bonds were defined 

because of the width of the armchair GNR used in this case. On the other hand, 

calculations utilising periodic boundary conditions showed that for zigzag-edged 

GNR, the bonds at the edges ranges from 1.404 Å – 1.407 Å, and the bonds at the 

inner edges ranged from 1.439 Å – 1.458 Å. All other bonds are close to 1.421 Å 

[44]. Thus from the values given, double bond is non-exist in infinite zigzag-edged 

GNR [44].  

To summarise, the C−C bond lengths at the edges deviate considerably from 

the value of 1.42 Å in graphite, regardless of the type of graphene. While no 

definitive conclusions can be made to the pattern of the bond lengths at the center of 

a GNR, the bond lengths at the center of small graphene nanoflakes depends on the 

symmetry, size, and type of edge of the finite-sized clusters, and will converge to 

1.42 Å, independent of the methods used. Only when large graphene molecules are 

used will a center region that resemble the graphite plane exists in the graphene 

models. 

 

1.3 Electronic Properties of Graphene and Graphene Nanoribbons 

Graphene has marveled scientists due to its peculiar electronic properties that 

promise great potential in the electronics industry [3]. When free standing graphene 

was found [1,2], subsequent experiments confirmed that the electrons that carry the 

charges behave as relativistic quasiparticles called Dirac fermions [45,46]. This 

charge carriers can travel submicrometer distances without being scattered and can 

travel as fast as 15000 
2 1 1cm V s 

[1,2,45,46]. This high mobility is due to the 
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structural purity and high resistance to changes in temperature or the presence of 

excess charge on the graphene sheet [47]. Recently, a much higher carrier mobility in 

excess of 10
7
 

2 1 1cm V s 
 was obtained from graphene layers decoupled from bulk 

graphite [48]. Other interesting properties of graphene are the quantum Hall effect at 

room temperature [46,49] and the nonzero minimum conductivity [45]. 

As mentioned in the Introduction section, zigzag and armchair edges have 

different electronic properties. Mono-hydrogenated zigzag edges in graphene have a 

localized state known as the edge state [50,51]. It is due to the unsaturated   

electrons at the edge and they exist as a flat-band at the Fermi level in the band 

structure [50,51]. The existence of the edge state has been confirmed by first-

principle calculations [52]. The edge state is shown as a bright spots in scanning 

tunneling microscopy (STM) [53-55]. The existence of these edge states depends on 

the sequence of zigzag sites at the zigzag edge [51], and they decay exponentially 

towards the centre of GNR [50,51]. With the application of a magnetic field, 

modifications can be made to the edge states [56]. Conductivity at these edges is 

higher than those that do not have this edge state [57] and it is valid for both H-

terminated and non H-terminated edges [58]. This result is in line with those from 

energy considerations, where the armchair edge, which has no edge state, has energy 

which is lower by 0.2 eV/Å per edge atom as compared to the zigzag edge [59]. Thus, 

armchair edge is more stable than zigzag edge. Huang et. al. use the edge stress and 

edge energy in the study of the stability of graphene edges and found that for the case 

of the zigzag edge, these edge stress and edge energy depends only weakly on the 

width of the GNR [22].  

Theoretical and experimental studies show that the band gap of GNR varies 

inversely with the width [18,60,61]. Disagreements occurred in predicting the 
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metallicity of the zigzag-edged GNR and armchair-edged GNR. Tight-binding 

calculations have shown that zigzag-edged GNRs are always metallic [50-52,62-67], 

while first-principle calculations have shown that zigzag-edged GNRs are only 

metallic when both the edges have ferromagnetic (FM) configurations or no spin 

polarization at the edges [68]. Gap opening in the zigzag GNR is available only in 

the antiferromagnetic state [68]. Also, using tight binding calculations, armchair-

edged graphene nanoribbons were predicted to be metallic or semiconducting 

[50,51,65-67]. Only when the GNR width is 3M −1, where M is an integer, will the 

GNR is metallic [51]. However, results from first principles calculations showed that 

armchair-edged GNR always has a band gap, and the metallic state is unstable [69]. 

The causes for the existence of a band gap was given by Son et al. [18]. For 

armchair-edged GNR, it is due to the quantum confinement at the edges, while for 

zigzag-edged GNR, it is the magnetic state at the edges. The edge states at the zigzag 

edge can also show a phenomenon known as half-metallicity when an external 

electric field is applied [63,70-74]. 

The band gap of graphene nanoflakes are also subjected to investigations due 

to its potential applications in electronics. Using the tight-binding method to 

investigate the electronic properties of zigzag- and armchair-edged graphene 

quantum dots (GQDs), Zhang and Chang [67] reported that as the size of the GQD 

increases, the energy gap decreases. This result is similar to that of GNR. The 

decrease is faster in zigzag edge than in the armchair edge GQD (AGQD). The gap is 

zero when AGQD goes to infinity.    

The ground state of a zigzag-edged nanoribbon is the antiferromagnetic 

(AFM) configuration, based on predictions using quantum mechanics calculations 

[18,63] or a method known as the resonance-theoretic method [75]. The resonance-
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theoretic method [76,77] bypasses all the tedious quantum mechanical calculations in 

predicting the spin densities of graphene. The stability trend of the zigzag edges in 

infinite GNR and polyaromatic hydrocarbons (PAHs) is the same and has the 

following trend: AFM < FM < nonmagnetic [62,63,72,78]. In the AFM configuration, 

the spin densities are oppositely oriented at the two edges of the ribbon. The 

difference in energy between the AFM and FM state is 0.011 eV/edge atom [79]. The 

zigzag edge atom in the AFM configuration is calculated to have a Mulliken spin 

density of 0.33 [75]. This value is smaller than 0.471, calculated using first principle 

methods by Kudin [44]. Recently, Lin et al. showed that the ground state of 

armchair-edged GNRs does exhibit ferromagnetism [80]. Magnetism of the 

nanographene structure, which is due to the edge states at the zigzag edges, is 

resistant to edge defects and edge irregularities [81].      

A zigzag-edged GNR can be described by using the number of zigzag lines in 

a ribbon, denoted as n-zigzag-edged GNR. When n equals to 1, this corresponds to 

trans-polyacetylene [82] and is the basis of the zigzag-edged GNR. The change in 

the properties when the zigzag-edged GNR was constructed by adding successive 

trans-polyacetylene to the previous one was investigated by Jiang et al. [82] They 

investigated the ground state properties of n-zigzag-edged GNR, with n = 1, 2, 3, 4, 

and found that the ground state of the ribbons exhibit the AFM configuration for n = 

2 and above. Hod et al. showed that the minimum conditions for a graphene nanodot 

to show antifferomagnetism at the zigzag edges is the presence of three consecutive 

zigzag edges, and the width of the dot must be 1 nm or wider [74].       

Banerjee and Bhattacharyya reported, within the of B3LYP/6-31G(d,p) level 

of theory, that in nano-graphene, the molecular orbitals at the zigzag edges are more 

conspicuous than those at the armchair edges [83]. In the same paper, using Mulliken 
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population analysis, it was also reported that the partial charges on the zigzag edge 

carbon atoms ranged from −0.30 to 0.19, and for armchair edges, the charges ranged 

from −0.17 to 0.08. Charge distribution for graphene models has also been reported 

by Ruuska and Pakkenen [84]: by performing the Mulliken population analysis on 

the wavefunction obtained at HF/6-31G(d) level, the charge at the central carbon 

atom was shown to be nearly neutral. For large graphene molecules, with a width of 

a few nanometers, the charges and spin densities attenuated monotonically from the 

edge to the center [35,36]. The same trend is also observed for spin densities in 

zigzag-edged GNRs [44]. 

So far, no study of charge distribution of GNR has been reported. Also, there 

has been no emphasise on GNR with armchair edges. This may be due to the fact that 

the edge state is absent from edges of this type, thus the lack of magnetism for 

armchair-edged GNR. But with appropriate doping, armchair-edged GNR are shown 

to exhibit ferromagnetism [80]. The dopings to armchair-edged GNR are to tune the 

charge carriers to a certain concentration. With this finding, both zigzag-edged GNR 

and armchair GNR shows magnetism, albeit with different scenario. 

 

1.4 Identification of Graphene 

In an early paper by Novoselov et al. [2], it was pointed out that the isolation 

of graphene sheet is not an easy task, as it is time consuming and difficult to locate 

the single layer of graphene from the substrate. As of today, a few standard 

microscopy methods are used, together with other approaches which are mentioned 

below. The findings that zigzag-edged GNR shows edge states and a potential 

candidate for electronic devices also necessitates methods that can identify graphene.  
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Identification of the edges of graphene nanoribbons, either as zigzag-edged 

GNR or armchair-edged GNR have been performed by employing the scanning 

tunneling microscopy or atomic force microscopy [53-55,85-89], or a combination of 

both [90]. A video on how the edges are formed is also available [21]. It was also 

proposed that the specific edges can be determined by the spectra of the bright 

exciton state of the optical absorption [91] or using Raman peaks [44]. Also, 

refractive index was suggested as a means to identify the graphene flakes on a three-

layer system “graphene-thin film-silicon” by passing a light beam through the system 

[92]. Another way to identify graphene is to use total colour difference method [93]. 

This method offers a rapid and accurate way to identify graphenes without 

destroying it [93].  

In this work, a method is suggested to identify the edges of a GNR by 

exploiting the hyperfine interactions between the nucleus of a muonium and the 

conduction electrons from graphene. The approach is different from the hyperfine 

interactions between the nucleus of isotope
 13

C and the conduction electrons, as have 

been performed by Yazyev [94] and Fisher et al. [95] in their studies of spin 

decoherence time in graphene systems. In Yazyev‟s work, first-principle methods 

and a few small graphene flakes were used [94]. Apart from the non-zero isotropic 

hyperfine coupling constants, Yazyev found that the spin of the conduction electrons 

and the local atomic structure affects the hyperfine interactions in graphene. 

Furthermore, the hyperfine constant is weaker and more anisotropic than those 

heavier elements in the solid state environment [94]. Using a bigger graphene model 

in the shape of a quantum dot, Fisher et al. [95] reported that the isotropic hyperfine 

constant is zero when the graphene size is extended to its limit, and the contributions 

of the hyperfine constants arise from the anisotropic hyperfine interactions. Thus the 
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results of these reports do not agree with each other. The results show that the main 

contribution of the hyperfine interactions between the muonium and conduction 

electron at the center region is the Fermi contact term, while the anisotropic terms are 

negligible. Furthermore, the hyperfine coupling strengths in zigzag-edged GNR and 

armchair-edged GNR are different. The detail analyses are given in Chapter 5. 

 

1.5 Adsorption on Graphene and Graphene Nanoribbons 

 Before the discovery of the graphene sheet, theoretical calculations involving 

graphene layers interacting with other species were performed to get a clearer picture 

of the reactions, for instance, oxidation and gasification. To model adsorption on 

graphene using first principles calculations, many sizes and configurations of 

graphene has been used [96-104]. 

 In theoretical studies, adding hydrogen atoms to the edges of graphene 

systems is done for two purposes. One is to passivate the dangling bonds, and the 

other is to obtain a uniform sp
2
 hybridization across the graphene sheet. This type of 

edge with monohydrogenation is known as Fujita‟s edge [50]. Another method of 

hydrogenation is to put a methylene group at the zigzag edge and create Klein‟s edge 

[105] (or beard edge [106]) and the edge carbon will have sp
3
 type of hybridization. 

These two types of terminations are shown in Figure 1.2. Both Fujita‟s and Klein‟s 

edges will also have edge states. Apart from the hybridizations at the edge carbon 

atoms, the difference between mono- and di-hydrogenation lies in the existence of π 

orbital edge states at different regions of the wavevectors, [62] and there are no 

bonds that has double bond character in monohydrogenated GNR [44]. For the 

adsorption on the basal plane, the established view is that the hydrogen atoms prefer 

the direct-bonding site to the carbon atom. A few calculations agreed with this view 
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[104,107]. Yazyev and Helm considered the hydrogen adsorption in their study of 

magnetism due to defects in graphene [108]. A single hydrogen atom that was 

directly attached to carbon atom at the basal plane displaced upward the carbon atom 

[108]. The neighbouring carbon atoms of this carbon atom were also uplifted slightly 

[108].  

 Apart from hydrogen, adsorptions using other atoms have also been studied. 

When fluorine atoms were adsorbed on the basal plane of a graphene sheet, covalent 

bonds will be formed between the fluorine and carbon atoms [109]. The π-state at the 

adsorbed carbon site will be destroyed, thus there are no π-state at the fluorinated site 

[109]. Adsorption at a Klein‟s edge using fluorine atoms at the zigzag edges also has 

resulted in sp
3
 hybridizations [44]. But for fluorine atoms, only Fujita‟s edge show 

magnetism [110]. Also, the ground state of Klein‟s edged GNR showed 

antiferromagnetism at a larger ribbon width compared to those that have Fujita‟s 

edge [44]. For metal adatoms on the basal plane of graphene, elements from group 1-

3 will bond ionically to the carbon atom, while transition metals with d valence 

electrons will have covalent bonding [111]. It was pointed out that among these 

elements, Pd shows magnetism [112]. For lithium, it‟s a donor with respect to 

graphite, as it donates electrons to graphite [113]. It was argued that cation-π 

interaction was responsible for the Li-graphite bonding [113], instead of the 

existence of gaps of frontier orbitals in the substrate model [100]. 

When molecules are adsorbed on graphene sheet, the type of interactions 

between the molecules and graphene sheet depends on the type of molecules. For 

example, nucleobases have no chemical bonding to the graphene plane, only weak 

attractions [114,115]. This is attributed to the molecular polarizability that induced 

attractive forces between the molecules and the graphene sheet [114,115]. Another 



 

 

14 

 

view is that the „bonding‟ is due to the electron exchange and correlation effects 

[115]. N2 [97] and O2 [116] molecules are also adsorbed weakly on the basal plane. It 

was argued that this is caused by the arrangement of carbon atoms at the site of 

adsorption [97]. 

 Since the edges of GNR is a candidate for building block for future electronic 

devices, the edges are subjected to various substitutions in order to alter the 

electronic properties to suit one‟s needs. It was shown that NH2 termination at both 

edges of the zigzag-edged GNR can change the conductivity from semiconducting to 

metallic [117], while terminating zigzag-edged GNRs with ketone or ether will also 

make the ribbon metallic [68]. But it was reported by Hod et al. that edge oxidation 

with ether group is unstable with respect to hydrogen edge [70]. The phenomenon of 

half-metallicity can be induced at a lower electric field when the zigzag-edged GNR 

is edge-oxidized with hydroxyl and lactone [70].     

From the results involving adsorption at the basal plane, it can be seen that 

species with single atoms are more easily adsorbed to the basal plane of graphene 

sheet compared to molecules. Although terminating graphenes‟ edges with species 

other than hydrogen can be used to modify the electronic properties of GNRs, it may 

be technologically challenging to oxidize the edge of the GNR evenly with the same 

species of atoms. The robustness of the predicted properties also needed to be studied 

using more realistic GNRs, which includes defects and impurities.   
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Figure 1.2. Klein and Fujita‟s edge along the zigzag edges of a graphene fragment. 

 

1.6 Fabrication of Graphene and Graphene Nanoribbons 

As pointed out by Geim [4], graphene is not a standard surface nor a standard 

molecule, so it is receiving little attention from professional chemists. Another 

probable reason for this scenario lies in the complexities in obtaining this material. 

Up to now, there has been a few methods to fabricate sheet (or sheets) of graphene. 

Modifications to these methods are directed to producing graphene that is suitable for 

large scale industry applications. A few recent review papers that include the 

fabrication and ways to obtain graphene sheets are available [4,5,118].   

Graphene monolayer was first successfully obtained from experiment by 

using mechanical exfoliation, a process that involves the repeated peeling off of 

graphite layers from highly-oriented pyrolytic graphite [1]. This method provided a 

simple way to obtain high quality graphene monolayer, as can be seen from the 

devices fabricated in this way [2], but it is not viable for industry-scale applications 

because it is time consuming. Modifications to this method do show some promise in 

large-scale production. For example, the approach that first bonds bulk graphite to an 

insulating substrate, and later the graphene layers are cleaved off to leave only single 

Klein‟s edge 

Fujita‟s edge 
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or few layer graphene on the substrate [119]. Another method is exfoliation in liquid 

phase [120]. Also, it was shown that exfoliation of graphite oxide upon sonication in 

water produces graphene sheets [121]. Other methods in obtaining the graphene 

monolayer are available, such as chemical vapour deposition, chemical methods and 

thermal decomposition of substrates. A review of the methods used to obtain 

graphene sheets is given by Choi et al. [118]. 

As for GNR, the way to produce nanoribbons must include the ability to 

control the type and the smoothness of edges and the width of the nanoribbons, as the 

electronic properties of GNR are very much depended on the geometry of the ribbon. 

A few methods are used to produce GNR. In scanning tunneling microscope  

lithography, the microscope tip is used to etch the desired pattern of GNRs [89]. It 

was reported that this method can narrow the width of the GNR down to 10 nm (for 

armchair-edged GNR). This method provides good stability and reproducibility. For 

comparison, the smallest width of GNR by electron-beam lithography is ~50nm 

[61,122]. Another method that can produce GNR is the chemical vapour deposition 

(CVD) method [88]. Using this method, the smallest width of the GNRs fabricated is 

~20 nm. But this method does not really directly produce single GNRs, as the 

produced GNRs are between 2 to 40 layers. The rough zigzag and armchair edges of 

GNRs obtained by using this method can be smoothen by using a process known as 

Joule heating [90]. GNRs can also be synthesized chemically. Li et al. manage to 

obtained sub-10 nm GNRs by deriving the chemically exfoliated graphite flakes 

using solution-phase sonication [123]. Analysis on the GNRs obtained this way 

showed that the GNRs are pristine and are of high quality. 

The fabrication of large scale graphene and GNRs are essential for the 

fabrication of electronic devices at the industry scale. Thus it is of paramount 
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important to derived ways that can clearly produce the geometries of the graphene 

and GNRs that one desired, and also meet the industry‟s requirements. Based on the 

works stated above, it is clear that there are some promising developments in this 

area.   

 

1.7 Potential Uses of Graphene 

Many devices have been associated with graphene because of the excellent 

electronic, structural, and mechanical properties it possessed. For example, the value 

of ~1.0 TPa for single sheet of graphene makes it, up to now, the strongest material 

[28]. There are also many other desirable properties as mentioned in Section 1.2. The 

applicability of graphene in nanoelectronic devices show promises in replacing the 

existing technologies in the near future. With the graphene sheets, carbon-based 

electronics are presented with innovative devices. This short review is not meant to 

be an exhaustive review on the devices based on graphene as the inventions based on 

graphene are progressing very rapidly. 

Graphene nanoribbons can function as the building blocks of superconducting 

transistors [124,125]. The role of graphene in this device is to support the flow of the 

supercurrent between two superconducting materials. Field effect transistors have 

also been incorporating graphene, especially those that has a band gap, like GNR 

[123,126,127] and bilayer graphene [128]. The desired features for using graphene 

included high current on/off ratio, that is, a parameter to determine how fast a 

transistor can be switched on and off, and the high current density.     
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Hydrogen storage is another interesting potential application of graphene 

sheet. It was reported that calcium atoms which were adsorbed on graphene sheet can 

act as a medium for hydrogen storage [129,130]. The fact that each adsorbed calcium 

atom can accommodate 4 to 6 hydrogen molecules makes these kind of systems a 

high capacity hydrogen storage [129,130]. Another atom that has the same role as 

calcium on graphene is paladium atom [131]. Adsorption of hydrogen atoms directly 

onto the surface of graphene is also another possible way of storing hydrogen [132]. 

The energy barriers of hydrogenation and dehydrogenation in this method show that 

it is reasonable to predict graphene as a potential medium for hydrogen storage [132]. 

This prediction is justified as there are reports regarding the full hydrogenation and 

semihydrogenation on the basal plane of graphene [13-15].    

Electromechanical resonators made from graphene sheet are highly sensitive 

to force and charge. This feature makes it an ideal resonator to act as mass, force, and 

charge sensors [133]. Another characteristic of graphene sheet also makes it an ideal 

choice for ultrasensitive sensors. Since graphene is an electronically low-noise 

material, the change of resistance when a molecule is adsorbed on the basal plane of 

graphene sheet is detectable. Thus graphene sheet can be used as sensors that are 

capable of detecting individual gas molecules [134].  

Apart from the applications discussed above, graphene has also been 

predicted to show applicability in other areas. The remarkably high thermal 

conductivity of graphene sheet (5000 Wm
-1

K
-1

 for suspended graphene [135] and 

600 Wm
-1

K
-1 

for substrate supported graphene [136] at room temperature) has 

positioned this material as a candidate in heat conduction and thermal management 

systems [135,137]. Graphenes can be incorporated into capacitors as electrodes 

because of the low electrical resistance and a large surface area of graphene, where 
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with these characteristics, the energy density of the capacitors can be increased [138]. 

The spin polarizability of the edge state of zigzag-edged GNR is suitable to act as a 

memory device with the application of a voltage [139]. Graphene sheet can be used 

as a spin valve structure to act as a medium for spin transport between electrodes 

[140]. Application of graphene in lasers have also been reported [141], as well as in 

liquid crystal devices as transparent conductors [142], as current nanoswitches to 

control current flow [143], and as frequency multipliers for signal generation [144]. 

Graphene is a remarkable material that has shown high usage versatility. Exploration 

of the potential uses of graphene has sprung up surprises so far, and it is believed that 

the surprise will be continued in the future. 

 

1.8 Problem Statements and Scopes of Work  

A few topics were studied in this work. The molecular orbitals cluster 

approach were applied to a few clusters with zigzag-edged and armchair-edged 

GNRs. The variation of the bond lengths and charge distributions of GNRs as the 

GNRs are expanded within the same symmetry were examined. Detail analyses were 

performed on the frontier orbitals, spin densities, charges, and bond lengths as the 

size of the molecules are systematically increased are also being investigated in order 

to find the suitable and adequate models that can represent the properties of infinitely 

long GNR. The results from this part are useful for future investigations. This is of 

interest since GNRs are positioned as electronics building blocks as they possess 

band gap [18,60,61]. Also, it is of interest to find the trend of the bond lengths in a 

graphene sheet, especially at the edge and at the center, because these are the two 

most possible regions that adsorption of foreign atoms will occurred. The models 

suggested here, which has certain widths and lengths, can be used as a standard in the 
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investigation of the electronic and structural properties of GNR-derived systems, for 

example, adsorption at the edge or the basal plane. With this, it is hoped that the 

ambiguities when comparing results obtained using clusters of different sizes can be 

discarded.   

As the ground state of electronic configuration of a graphene sheet is not 

necessarily a closed shell singlet, the actual spin multiplicity of a graphene sheet 

cannot be overlooked. The right value of a spin multiplicity will determine the 

correctness of the wavefunction, and it is an important input parameter in a quantum 

chemistry calculations. But for open shell calculation, a phenomenon known as spin 

contamination will arise. It is beneficial to get a clearer picture the consequences spin 

contamination occurs in the electronic calculations of graphene systems.  

The final topic studied is to find reference data that can be used in identifying 

the type of edges of a GNR. A few methods of identification based on optical 

approaches have been proposed, as summarized in Section 1.4. The study performed 

here would add an elegant method in this identification. The prediction, based on the 

results of hyperfine interactions, can be used as a reference to design experiments 

that use muonium in identifying the graphene edges, without destroying it. This is 

based on the study of the attachment of muonium on the basal plane of GNRs on two 

types of edges, zigzag and armchair. 

The calculations presented here only involve single-layer graphene, with the 

hydrogens terminating the dangling bonds at the edges. First principles molecular 

orbital calculations were employed in this project. This method is adequate in 

predicting the geometrical and electronic properties of nanostructures, and it is 

believed that this also applies to graphene nanostructure. The procedures will be 

available in the subsequent chapter. 
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1.9 Research Objectives 

Based on the problem statements in Section 1.8, the objectives of this research are 

1. To study the electronic structure of graphene. 

2. To determine the optimum quantum mechanical method (QM) to study the 

electronic structure of graphene. 

3. To obtain appropriate models for graphene nanoribbons (GNR). 

4. To study the most probable site of muonium attachment and the possibility of 

using muonium hyperfine coupling constants in identifying the different types 

of edges in GNR.  

Of all the four objectives listed, objective 2 were discussed in Chapter 3, while 

objective 3 was reported in Chapter 4. Chapter 5 contains the discussions on 

objective 4. 
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