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PEMORFAN DAN TRANSFORMASI RUPA BENTUK
3D MENGGUNAKAN HIRISAN

ABSTRAK

Secara umum istilah ’Transformasi Rupa Bentuk’ bermaksud transformasi sebuah objek kepa-

da sebuah objek yang lain. Apabila transformasi rupa bentuk melibatkan dua buah objek iaitu

objek sumber dan objek destinasi, dan terdapat pelenyapan rupa bentuk objek sumber kepada

objek destinasi secara beransur-ansur, berterusan dan serentak maka transformasi rupa bentuk

ini dipanggil ’Pemorfan’. Kebanyakan algoritma transformasi rupa bentuk sedia ada meli-

batkan banyak campur tangan pengguna, tidak boleh diskalakan dengan rapi apabila bilangan

objek input lebih daripada dua dan tidak boleh diskalakan dalam persekitaran perkomputeran

selari dan teragih apabila diperlukan. Tesis ini menyentuh isu-isu tersebut dengan mencadan-

gkan algoritma pemorfan 3D yang novel menggunakan hirisan. Pada mulanya objek sumber

dan destinasi disusur, dan hirisan dijana daripada penyusuran berkenaan. Penyusuran data ter-

tentu mungkin menjana hirisan yang tidak semestinya selari antara satu sama lain. Bilangan

hirisan yang sama dijana bagi kedua-dua objek sumber dan destinasi. Sempadan kedua-dua

objek berkenaan diekstrak. Sempadan berkenaan kemudiannya disusur pada satah 2D dan di-

transformasikan kepada masing-masing satu awan titik kontur. Interpolasi awan titik kontur

sumber dan destinasi yang sepadan dilakukan, dan permukaan yang ditransformasikan dibina

semula.

Algoritma berkenaan cukup dinamik dan fleksibel kerana bilangan hirisan dan bilangan

penyusuran boleh diubah-ubah. Oleh sebab Kotak Pembatas Berorientasi (KPB) digunakan

untuk menentukan penjajaran objek berkenaan, algoritma berkenaan mengambil kira secara
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automatik kelengkungan/herotan di dalam sesebuah objek. Algoritma berkenaan melibatkan

paling sedikit campur tangan pengguna. Di samping mengikat konsep transformasi rupa ben-

tuk hanya antara objek sumber dan destinasi, kaedah berkenaan juga boleh diperluaskan kepada

konsep transformasi rupa bentuk yang melibatkan lebih daripada dua buah objek. Objek yang

berbeza boleh juga diadun dalam nisbah yang berbeza dalam output yang ditransformasikan.

Sebagai hasil sampingan kerja asas dalam transformasi rupa bentuk, satu algoritma yang novel

dalam pembinaan semula permukaan daripada hirisan juga dibangunkan. Kaedah berasaskan

hirisan berkenaan juga ditunjukkan dapat diskalakan dengan rapi dalam persekitaran selari/ter-

agih. Akhir sekali, ditunjukkan juga bagaimana mudahnya kaedah berasaskan sifat sepenuh-

nya boleh digabungkan dalam algoritma berkenaan. Kekompleksan algoritma berkenaan juga

dianalisis dan hasilnya menunjukkan prestasi yang lebih baik berbanding dengan algoritma

transformasi rupa bentuk yang lain.
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3D MORPHING AND SHAPE TRANSFORMATION
USING SLICES

ABSTRACT

Generally the term ‘Shape Transformation’ means transformation of one object into another

object. When shape transformation involves two objects i.e. source object and destination ob-

ject and there is gradual, continuous and simultaneous dissolvement of the shape of source

object to destination object, it is called ‘Morphing’. Most of the existing shape transformation

algorithms involve a lot of user intervention, do not scale well when the number of input ob-

jects is more than two and are not scalable in parallel and distributed computing environment

whenever needed. This thesis addresses the above-mentioned issues by proposing a novel 3D

morphing algorithm using slices. Firstly source and destination objects are traversed and slices

are generated from this traversal. Traversal of a particular data may generate slices which may

not be parallel to each other. Equal number of slices is generated for both source and desti-

nation objects. Boundaries of both objects are extracted. The boundaries are then traversed

on a 2D plane and are transformed into a cloud of contour points each. Interpolation of the

corresponding source and destination contour point clouds takes place and transformed surface

is reconstructed.

The algorithm is dynamic and flexible enough as the number of slices and the number of

traversals can be varied. As Oriented Bounding Box (OBB) is used to determine the initial

alignment of the object, the algorithm automatically takes into account of the curvature/dis-

tortion within an object to a certain extent. The algorithm involves the least amount of user

intervention. Instead of binding the concept of shape transformation only between ‘source’
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and ‘destination’ objects, the method is also extended to the concept of shape transformation

involving more than two objects. Different objects can also be blended in different proportions

in the transformed output. As a spin-off of the basic work on shape transformation, a novel al-

gorithm on surface reconstruction from slices is also developed. It has also been shown that this

slice-based method scales well in parallel/distributed computing environment. Lastly, the ease

in which fully feature-based method can also be incorporated in the algorithm is shown. Com-

plexity of the algorithm is also analysed and the result shows better performance in comparison

with other shape transformation algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Generally the term ‘Shape Transformation’ means transformation of one object into another

object. Shape transformation may involve only one object as through some manipulation, the

shape of an object can be changed [1]. Figure 1.1 shows how a box is deformed by user-defined

warping. When shape transformation involves two objects i.e. source object and target object,

and there is gradual, continuous and simultaneous dissolvement of the shape of source object

to its target, it is called ‘Morphing’. Shape Transformation can also be defined as incorporating

the overall characteristics of a number of different objects in one output or incorporating the

characteristics of different objects in different proportions in one output. Hence shape trans-

formation can involve more than two objects and morphing can be defined as a subcategory of

shape transformation when the number of objects is confined to two.

Figure 1.1: A box (a) Twisted and (b) Bent [1].

Starting from the late eighties numerous algorithms on shape transformation have been

developed. Shape transformation algorithms mainly fall into two major categories:
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1. Surface-based shape transformation and

2. Volume-based shape transformation.

In surface-based methods, data partitioning takes place along the surface of the object

whereas in volume-based methods data partitioning happens across the surface of the object.

Figure 1.2(a) illustrates data partitioning in surface-based shape transformation while Figure

1.2(b) illustrates data partitioning in volume-based shape transformation.

Figure 1.2: Data Partitioning in (a) Surface-based Shape Transformation and (b) Volume-based
Shape Transformation.

Surface-based shape transformation involves dividing the surface of both source and desti-

nation objects into a number of corresponding morphing patches ([2], [3], [4], [5], [6], [7], [8],

[9], [10], [11]). Surface-based approach uses user-defined control fields such as point fields

and line fields during transformation to map key features of the input objects. Surface-based

methods are important because of their ability to morph between objects of different types of

genus, but these methods also require a significant amount of user intervention. Another trou-

bling feature of surface-based methods is the problem of self-intersection. It cannot guarantee

that polygonal surfaces will not pass through each other, creating self-intersecting intermediate

result as found in [3]. Surface-based methods also do not extend well when shape transfor-
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mation involves more than two objects because of the need for excessive user intervention.

Requirements of too much interprocess communication have also made surface-based methods

totally inadaptable to parallel as well as in distributed computing environment.

Volume-based shape transformation modifies voxel values of a dataset. Volume-based

shape transformation can be as simple as cross dissolving method ([12], [13]) where no user

intervention is involved. Both datasets are just merged to get the intermediate output without

considering warping/distortion within the objects. The method firstly transforms volume data

from spatial domain to frequency domain, then interpolates the volume in frequency domain

and again transforms back to spatial domain.

User intervention is required when special care is needed to be taken such as warping

within a volume. Sometimes user-guided warp is applied on the input objects so that warping

is also exhibited in the transformed objects [14]. To take into account of warping in volume-

based shape transformation, equal number of disk fields is applied on each input object with

each disk having its own normal direction [15]. Shape transformation using ‘distance field’

method [16] or ‘level set’ method [17] measures the distance of each corresponding surface

voxels within a volume. Shape transformation using implicit functions [18] dissolves a 3-D

object into a number of 2D implicit functions. Lee et al. [19] use morphology-based scheme

to perform 3D volume morphing by creating morphological difference between source and

target objects. These methods involve a little or no user intervention, but at the same time

fail to take care of warping in a rigid body. Also when more than two objects are involved

in shape transformation, these methods may fail to properly preserve the features of all input

objects in the transformed output. These methods may not also extend well when the number

of input objects is more than two, and may not be scalable in parallel/distributed computing

environment.
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From the above discussion, it is obvious that volume-based approach has got some ad-

vantages over surface-based approach though each approach has its own advantages. Volume-

based shape transformation involves less user intervention although in order to preserve the

rigidity within a volume, a certain amount of user intervention is needed. It is imperative that

we strive to develop a new 3D morphing algorithm which optimises user input, automatically

considers orientation/distortion of rigid body during morphing, preserves smooth transition be-

tween source and destination objecs, extends to the concept of shape transformation using more

than two objects and is adaptable to parallel/distributed computing environment in order to take

into account of faster generation of shape transformation sequences.

1.2 Problem Statements

From our survey we have found that

• Surface-based methods involve a lot of user intervention in comparison with volume-

based methods;

• Existing shape transformation algorithms do not consider the orientation/distortion in a

rigid body without user intervention;

• Most of the existing methods do not scale well as the number of input objects increases;

• Most of the methods are not extendible in parallel/ distributed computing environment.

Hence we are interested in designing a novel algorithm which involves the least amount of

user intervention and at the same time can take into account of the features of the input objects

i.e. warping/distortion whenever it is needed. The method should also be easily scalable as the

number of objects increases. Also in order to achieve faster generation of morphing sequences,

the method should be extendible in parallel as well as in distributed computing environment.
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1.3 Objectives

From our survey we have found that volume-based methods involve less user intervention.

Also from our observation we believe that among the volume-based approaches, slice-based

approach ([15], [18]) is more efficient and flexible than other approaches ([14], [17]). Orien-

tation as well as distortion can also be easily considered with slices as each slice can have its

own normal/orientation depending on how it is cut across. Slices also scale well depending on

the number of objects as well as their complexity. Hence our main objective is to design a new

3D morphing algorithm using slices which:

• optimises user input;

• considers orientation/distortion of rigid body during shape transformation;

• considers smooth transition between source and target during morphing;

• is dynamic and simple enough to be extendible to the concept of shape transformation

involving more than two objects;

• is adaptable to the parallel/distributed computing environment in order to take into ac-

count of realtime shape transformation;

• is able to work as a fully feature-based volume morphing algorithm with the incorpora-

tion of a little amount of user intervention.

Besides the above mentioned objective, we aim to investigate and develop any associated al-

gorithms such as an algorithm for surface reconstruction for our transformed output which

is more suitable for our approach rather than using any other existing algorithms for surface

reconstruction.

5



1.4 Research Scope and Limitations

We wish to highlight that we are in this thesis mainly concerned with designing a novel 3D

shape transformation algorithm which can automatically consider orientation/distortion in rigid

body to a certain extent. The proposed shape transformation method is a featureless volume-

based shape transformation method. Although this method is capable of automatically consid-

ering some features (orientation, distortion, empty spaces etc.) of both source and destination

objects and we have shown how feature-based shape transformation can also be incorporated

in our approach at ease, full exploitation of our proposed method on feature-based shape trans-

formation is recommended as one of our future work.

Among graphics properties, we have only considered ‘colour’ in our implementation. For

the sake of simplicity, other graphics properties such as ‘texture’ and ‘opacity’ have not been

considered in the implementation. It is asssumed that these graphics properties can also be

incorporated in the same way as ‘colour’ is incorporated during implementation.

Again, for the sake of simplicity, only linear interpolation has been used in our implemen-

tation during interpolation of source and destination objects and the result is found to be quite

satisfactory. Other interpolation techniques can also be considered in the implementation.

In our research, we also have designed a new method for surface reconstruction using slices.

This new method for surface reconstruction was mainly developed to reconstruct surface of

interpolated point clouds during morphing where accuracy during surface reconstruction is not

so stringent. However, this method has been tested on a number of complex objects and shown

to be quite sound as a standalone algorithm for surface reconstruction.
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1.5 Methodology

Our methodology consists of a number of steps. A flowchart of the methodology is given

in Figure 1.3. Firsly, an extensive literature review on 3D morphing is carried out and good

criteria for 3D morphing are identified. These criteria include:

• Less amount of user input;

• Smooth transition between source and target;

• Ease of implementation;

• Capability to consider distortion/orientation of the input objects and

• Ease of extendibility.

At this stage some of the possible extensions of the algorithms such as possibility of in-

volving more than two objects in shape transformation and ease of parallel morphing are also

chalked out.

It is found that shape transformation using slices is more dynamic and adaptable in nature

than other shape transformation algorithms. In order to extract slices from a certain object, the

object needs to be cut across. Hence shape transformation using slices is able to exhibit the

properties of a volume-based method. Equal number of slices is generated from each object.

Slices may be parallel to each other or may have different orientations. Traversal of a data

along its longitudinal direction may generate slices which are differently oriented from each

other. This helps in considering the distortion in a rigid body to some extent. Hence our basic

implementation is a 3D morphing algorithm using slices which

• considers all the above-mentioned good criteria;
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Figure 1.3: Various Steps of Research Methodology.

• is dynamic enough to be extendible to the concept of shape transformation using multiple

objects;

• is scalable in parallel/distributed computing environment, and

• is extendible to feature-based volume-morphing algorithm.

The basic algorithm is on morphing which involves two objects i.e. source object and

destination object. The basic algorithm is implemented first. The implementation consists of

two steps: firstly very simple objects (objects without any hole or empty space) are considered

and later, this simple implementation is gradually evolved so that it can consider complex

objects (objects with holes, empty space or with any irregular configuration) too. Evaluation is
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performed by carrying out extensive testing on different kind of objects and by varying different

parameters to prove the flexibilty of the method. While implementing the basic algorithm, some

associated algorithms such as a slice-based surface reconstruction algorithm is also developed.

Later the basic algorithm is extended so that it can also work for shape transformation involving

more than two objects. In these cases evaluation is done in the same way as for the basic

algorithm. The basic algorithm, its extended version as well as other associated algorithm

are also evaluated empirically. Other possible extensions of the proposed algorithm such as

exploitation of the algorithm in parallel/distributed computing environment and incorporation

of fully feature-based shape transformation in our method are also explored.

1.6 Applications and Benefits of the Research

Volume morphing and shape transformation can be applied in a number of fields including en-

tertainment, industrial design, medicine and manufacturing. Nowadays morphing has become

an indispensable tool in 3D animation industry. When shape transformation involves more than

two objects, it can be used for creating special effect in synthetic model design. This can also

be useful in inventing a variety of shapes in ceramic industry as well as in designing perfume

bottles and other showpieces.

Shape transformation can also be applied in a number of areas in medical as well as geolog-

ical sciences. Shape transformation from slices can also be used in medical science for surface

recovery, reconstruction of joint in human body and volume calculation of human organs. In

geological field, shape transformation is useful in developing terrain model of a particular area

from a number of contours.
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1.7 Contributions

This thesis has three principal contributions. Firstly we present a novel volume morphing al-

gorithm based on slices. The speciality of the algorithm is that it involves less amount of user

intervention and at the same time this automated method can take into account of warping in

input objects to a certain extent. Initial orientation of the input objects plays an important part

of the method. Object can be oriented along any of the principal axes or can be oriented along

any of the directions of the eigen vectors or can be aligned along any particular direction in-

tially. Depending on this initial orientation of the input objects, a number of different morphing

sequences can be generated for the same input objects.

Our second major contribution is the development of a new surface reconstruction algo-

rithm while working for the construction of surface of morphed objects based on slices. Al-

though some heuristic approach has been adopted in the design, this method still works well as

a standalone algorithm for surface reconstruction of fairly complex objects.

Our third major contribution is the extension of the basic algorithm so that the number of

input objects can be more than two. Instead of binding the concept of shape transformation

between two objects, it has been tested on three or more input objects. In some cases the

overall characteristics of all the objects are blended in one transformed output and in another

case different objects are blended in different proportions in the transformed output.

Besides these three principal contributions, we also focus our attention on parallel morph-

ing. Our algorithm has been designed in such a way that it can scale well in parallel computing

environment as simple data structure of sliced body is suitable for both data as well as func-

tional partioning. Lastly we have shown how fully feature-based morphing/shape transforma-

tion can also be incorporated in our algorithm.
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1.8 Thesis Organisation

The remainder of this thesis is organised as follows:

• Chapter 2 provides a survey of existing work on morphing and shape transformation

which includes a comparison on the existing shape transformation methods.

• Chapter 3 firstly describes a brief overview of the basic algorithm and its various steps.

Then it describes the various steps of the basic algorithm in detail and also presents some

results and evaluation.

• Chapter 4 describes a new algorithm for surface reconstruction based on slices. This is

described and evaluated as a standalone algorithm for surface reconstruction.

• Chapter 5 extends the basic algorithm to incorporate more than two input objects in shape

transformation. It also provides some outputs from the implementation and evaluation

of the extended version.

• In Chapter 6, we discuss the ease of implementing parallel morphing and parallel shape

transformation with our algorithm. Ease of incorporating feature-based volume morph-

ing with our method is also discussed in Chapter 6.

• Finally in Chapter 7, we conclude this thesis and suggest some future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter discusses related work on shape transformation. We begin this chapter with a

classification on existing algorithms on shape transformation. As mentioned in the previous

chapter when shape transformation involves two objects, i.e. source object and target object,

and when a gradual sequence of transformation between source and target objects is generated,

it is called morphing. So whenever we use the term ‘morphing’, it signifies ‘shape transfor-

mation’ involving two objects. In this chapter, firstly literature review is carried out bearing in

mind that a morphing algorithm which possesses most of the characteristics of a good morph-

ing algorithm is to be developed. Existing morphing techniques are classified and reviewed,

and their strengths as well as weaknesses are identified. Then related work on shape trans-

formation involving more than two objects are considered. Surface reconstruction also plays

an important part in morphing. Hence existing algorithms on surface reconstruction are also

reviewed.

2.1 Classification

Depending on the various approaches, existing morphing algorithms can be classified into the

following categories:

1. Surface-based Morphing and

2. Volume-based Morphing.
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Surface-based morphing consists of continuous mapping of small pieces of polygonal sur-

faces of source object to those of target object whereas volume-based morphing modifies voxel

values of a volume dataset for smooth transition between source and target shapes. In surface-

based approach, data partitioning takes place along the surface of the object whereas volume-

based morphing cut the object into slabs, slices or blocks. This may cause the data to be

unstructured.

According to the control fields applied in morphing, morphing methods can also be classi-

fied as follows:

1. Cross Dissolving;

2. Field Morphing and

3. Mesh Morphing.

Cross dissolving method just merges the volumes. It does not require any control datasets.

In field morphing, key features of each object are defined using a set of control fields such as

point fields, line fields and disk fields. In mesh morphing, source and target datasets are first

subdivided into equal number of meshes and then mapped.

In the following sections, we have mainly tried to categorise the existing morphing algo-

rithms into surface-based approach or volume-based approach. Then while discussing each of

these methods, we identify whether it uses cross dissolving technique, field morphing or mesh

warping.
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2.2 Surface-based Approach

Surface based approach uses user-defined control fields such as point fields and line fields dur-

ing morphing process. The first step in surface-based approach is to establish correspondence

between each point of the source and target objects. Then interpolation technique comes into

consideration. Finally surface is reconstructed from the morphing patches.

Hong et al. [3] present the simplest surface-based morphing algorithm based on calculating

minimal dynamic distance between corresponding edges of source and target objects. ‘Minimal

Dynamic Distance’ is the distance between the vertices of the corresponding edges that can be

rearranged or reversed when necessary in order to find the minimum distance between the

edges. Linear interpolation is performed between the corresponding vertices. Lastly surface is

constructed by triangulation method. But where objects are a bit complex, this method fails.

Kent et al. [5] consider only star-shaped polyhedrons. A star polygon is a polygon for

which there exists a point i.e. ‘star point’ inside the object from which all other points are

visible. Correspondence between source and target objects is established by first projecting the

topology of both objects onto a unit sphere. Once both models have been projected, topologies

of both models are merged by clipping the projected faces of one object onto the projected

faces of the other. Each projected edge of one object intersects with the projected edge of the

other object (Figure 2.1). Corresponence between the vertices are established by finding the

intersection pairs. For interpolation purpose, linear as well as hermite interpolation technique

is used. After interpolation, facets are triangulated and surface reconstruction is performed.

However this method may fail when object is overly complex as inaccurate ordering of the pairs

of intersection points can generate improper result. Another shortcoming with this method is

that it only considers star-shaped polyhedral objects.
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Figure 2.1: Projection of One Object onto the Other Object [5].

Gregory et al. [2] establish correspondence between source and target objects by speci-

fying user-defined corresponding features for both source and target objects. Based on these

features, both source and target objects are decomposed into the same number of morphing

patches. Corresponding morphing patches are mapped to a 2D polygon and their topologies

are merged. From the merging of each pair of morphing patches, new morphed facet is gener-

ated. ‘Morphing trajectories’ are formed in between each feature pair and each of the merged

2D polygons is placed across that trajectory. When all the corresponding morphing patches

are merged, a morphed surface is formed. This approach allows a broad class of object to be

morphed, however user needs to outline the entire network.

Lazarous et al. [6] create a common parameterised mesh for both source and target during

sampling process. Firstly two axes are defined: one for each of the source and target objects

so that objects are star-shaped around the axes. Shape transformation is done by dividing each

object into three parts: two hemispherical end parts and one cylindrical middle part. Later these

three portions are converted into three sheets and vertices of both source and target objects

are projected onto the sheets in parametric domain. Sharp edges and conic points from each

object are adjusted onto the sheet. Interpolation of the corresponding vertices is performed
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in local coordinates. Vertices are linearly interpolated. Both axes of source and target are

also interpolated. For axes, linear interpolation is performed for the coordinates as well as

quaternion interpolation is performed for the rotation. Interpolated vertices are placed along

the radii of the interpolated axes and mapped. This method is capable of considering the warp

in rigid body.

Lee et al. [7] use a small set of user-defined point fields and line fields to establish primary

correspondence between source and target objects. Based on these control fields, a coarse-

grained base map is constructed for both source and target objects which is called ‘Base Do-

main’ (Figure 2.2). Base domains for both source and target are constructed by successive

removal of independent points while keeping the feature points intact. Next source base do-

main is projected onto target base domain and aligned with target base domain. Once source

base domain is mapped with the target base domain, any point in the orginal source object can

also be mapped to the target. Fine-grained mesh of original source and target objects is also

constructed. Then any point from fine-grained source mesh can be mapped to any point on

fine-grained target mesh through their base domains. This is done in a multiresolution fashion.

Next corresponding mapped points from source and target are interpolated and then a morphed

mesh is created.

Kaul and Rossignac [4] compute the Minkowski sum of both source and target objects for

interpolation purpose. This algorithm is based on a set of propositions such as: “Any face

generated from the Minkowski sum of two convex polyhedra A and B may be the Minkowski

sum of vertices of A with face of B, face of A with vertices of B, edge of A with edge of B”.

This proposition is depicted in Figure 2.3.

There are several other propositions. Minkowski sum combines the shape characteristics of

both source and target objects based on these fixed set of propositions. A pair of polyhedra is
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Figure 2.2: (a) Original Source and Target Objects and (b) Conversion of Source and Target
Objects to their Base Domain Using Point and Line Control Fields [7].

Figure 2.3: Minkowski Sum Combines the Shape Characteristics of its Arguments A and B
[4].

transformed by computing the weighted Minkowski sum and a morphing sequence is generated

by gradually scaling down one model from 100 percent to 0 percent while simultaneously

scaling up the other from 0 percent to 100 percent. This method works for convex objects only.

Also dependence on a fixed set of principles has made this algorithm a bit rigid.

Yan et al. [8] firstly decompose each object into isomorphic meshes on the basis of a se-

lected number of corresponding inner points. Then corresponding feature points are identified

and both objects are divided into several equivalent patches. Thus a two-level correspondence

is used to map source and destination objects. Each pair of patches are bijectively mapped. The
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deformation of an object is defined by its strain-field which can be derived from the object’s

displacement field or position field. Strain-field interpolation is used to map the corresponding

patches to avoid shape squeezing. But this method involves a lot of user input and does not

scale when shape transformation involves more than two objects.

Huang et al. [9] use the above-mentioned two-level correspondence between source and

target. For embedding and merging of both corresponding patches in a 2D plane, a novel

technique called ‘Structures of Minimal Coverage’ is used to avoid self-intersection or fold-

overs. Figure 2.4(a) shows the case where no intersection happens on projection of a morphing

patch onto a 2D plane whereas self intersection takes place on projection of the patch onto a

2D plane in Figure 2.4(b). ‘Structures of Minimal Coverage’ classifies the position of edges of

source patches according to the overlay of the starting and the ending points of the edges on

the target patches and vice versa to avoid fold-over or self-intersection.

Figure 2.4: (a) No Self-intersection and (b) Self-intersection on Projection of a Morphing Patch
onto a 2D Plane (Adapted from [9]).

Later a better version of the above work was chalked out where instead of embedding/merg-

ing, some operations like vertex removing, vertex splitting and edge swapping are performed

to dynamically add or remove vertices among the corresponding morphing patches and hence

to generate a smooth and gradual connectivity from the source object to the target object [10].

This method can only consider convex polyhedral objects and does not scale well for shape
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transformation involving more than two objects.

Parent et al. [11] describe shape transformation process from contours. In this method

both source and target objects have equal number of contours. Correspondence in established

by ray-firing: two points are assumed to be corresponding if they are intersected by the same

ray. Before ray firing, each shape is mapped to its convex hull first. Each convex hull is then

mapped to a unit square by scaling the hull so that its bounding box coincides with the square.

Corresponding vertices are matched on the basis of having the minimum distance between

them. If a vertex has more than one correspondence, all of its correspondences are visited

first to find out the "best match" which is found out by comparing distances. For the rest of

the vertices, new vertices are inserted into the contour which has less number of vertices. At

the end of preprocessing, each corresponding contour has unique match for its vertices. After

correspondence processing, the shapes are averaged by averaging corresponding points. Three

types of averages can be found: the mean, the median and the mode. To process more than

two shapes, a base contour is chosen which has got the maximum number of vertices. Then the

"base contour" is mapped with the other corresponding contours in the same way as described

above. This method only applies to simple objects and it requires too much user intervention

especially for correspondence preprocessing.

2.3 Volume-based Approach

The simplest volume-based approach is the cross-dissolving method [12] which involves no

control fields. This method at first transforms volume data from spatial domain to frequency

domain by Fourier transform, then linearly interpolates volume in frequency domain and again

transforms back to spatial domain. To enhance the smoothness of the in-between volumes,

Fourier transform has been used by gradually removing high frequencies of source model,

interpolating over to the low frequencies of the second model and smoothly adding in the

19



high frequencies of the second model. However, Fourier transform does not localise in spatial

domain. In order to have a smooth transition, voxel values of the entire volume are modified

according to the distance of the nearest iso-surface.

The above-mentioned problem can be alleviated by Wavelet transformation [13], which

localises both in frequency and spatial domain. Hence decomposition and reconstruction pro-

cesses are carried out in a multi-resolution fashion so that frequency can be adjusted to the

desired level. Different interpolation schedules are applied at different resolution resulting in

smooth approximation of intermediate model between source and target. Figure 2.5 shows the

difference between Fourier and Wavelet transforms through graphical representation.

Figure 2.5: Graphical Representation of Fourier (Left) and Wavelet (Right) Transforms [20].

However, both methods have difficulties in specifying slightly complex geometric transfor-

mations such as object rotation. By relying on the frequency information, the methods would

also have difficulties while associating with some scalars such as colours, opacities and tex-

tures. This problem can be alleviated by applying warping before interpolation as found in

[14]. Firstly pairs of corresponding feature elements of both source and target volumes are

identified by the user. Feature element pairs can be defined as pairs of points, segments, rect-

angles, boxes and so on. If necessary, user-defined warp is applied on the feature elements of

source object and vice versa to resemble each other. Next the warped source and target volumes

produced from the original source and target volumes are blended either by linear or non-linear
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cross dissolving method. The flowchart of this process is depicted in Figure 2.6. This method

has been exploited in distributed computing environment [21], but too much communications

are required among the processors.

Figure 2.6: Data Flow in Feature-based Volume Morphing (Adapted from [14]).

Instead of using point, line or box control fields in 3-D volume morphing, user-specified

disk field can also be used [15]. A disk field is established with a centre point ‘c’, a normal

vector ‘N’ and a radial vector ‘R’. Pairs of corresponding disk fields for source and destination

objects in local cylindrical coordinate are used to control the distortion from a source volume

to a destination volume. Later the corresponding coordinates are transformed back to the Eu-

clidean space. All kind of transformation i.e. translation, scaling (1D, 2D, 3D), rotation and

skewing are performed in disk space. The normal vector ‘N’ of an inbetween disk field from

a pair of starting and finishing disk fields is obtained by linear interpolation of the lengths of

normals and their inbetween angles. Figure 2.7 shows the use of disk field on a particular 3D

object. Parallelising of this method is also mentioned as possible future work [15].

Payne et al. [16] calculate ‘Distance Field’ of input objects. A distance field, or a distance

volume, is a volume dataset where the value stored at each voxel is the shortest distance to the

surface of the object being represented by the volume. The value of the distance field is consid-

ered ‘positive’ inside the object, ‘zero’ on the surface and ‘negative’ outside the object. Once
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Figure 2.7: Use of Disk Fields on 3D Object in Volume Morphing [15].

distance field is created for both source and target objects, correspondence between distance

values are established and distance values are interpolated using linear interpolation method

or boolean operation. Payne et al. [16] also introduce the concept of averaging a number of

objects (more than two) using boolean operators but no implementation was carried out.

Breen et al. [17] divide the surface of each object into a number of levels (iso-surface).

Both source and target objects can be defined as ‘level-set’ of distance values. Firstly, source

volume is initialised so that its furthest level set approximately aligns with that of target object.

User-defined warp can be applied at this stage on both source and target objects. Connection is

established between the way in which points on the surface moves. Every point on the source

surface moves in the direction of the normal at that point with a velocity proportional to the

signed distance at that point in 3-D space from target surface. Those part of source that are

outside of the target contracts whereas the inside part moves in the direction of surface normals

and expands (Figure 2.8). Parallelising of this level-set method of morphing was also suggested

as possible future work.

Shape transformation using variational implicit function [18] is also an improved version of

‘Distance field’ method but here implicit function is created for both source and target objects
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Figure 2.8: Movement of the Source Object ‘A’ along its Surface Normals to Fit the Target
Object ‘B’ [17].

with distance values, surface normals at those distance points as boundary constraints. Firstly,

equal number of 2D implicit functions are created for both source and target objects from their

distance values and surface normals as boundary constraints. These functions are created at

particular interval along the height of source and target. Each pair of corresponding implicit

functions are interpolated resulting in a function that takes on ‘0’ at zero-value constraints and

positive in the direction of normal constraints (Figure 2.9). Later, surface is reconstructed con-

sidering all these constraints from all of the interpolated functions creating a single 3D implicit

function. Intermediate shapes are generated by interpolating corresponding 2D implicit func-

tions only. Warping is another degree of control that may be added to shape transformation

technique. Variational interpolation in implicit function creates plausible function values in

places between boundary constraints.

In morphology-based volume morphing, firstly morphological difference between source

and target objects is created [19]. In Figure 2.10, morphological difference is represented by

regions ‘I’ and ‘II’. Next dilation operation is applied only to the morphologically different part

i.e. regions ‘I’ and ‘II’ instead of the entire volume space. Lastly erosion-based interpolation

is performed to interpolate regions ‘I’ and‘III’ and regions ‘II’ and‘III’. But this method is a bit
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Figure 2.9: (Left) Pairs of Boundary and Normal Constraints Defined as Circles and Pluses and
(Right) Resulting Variational Implicit Function as a Height Field (Adapted from [18]).

rigid and does not consider the curvature in rigid body. This method will not scale well when

shape transformation involves more than two objects. In this case this method may result in

undesirable outputs.

Figure 2.10: Morphological Difference between Two Images is Defined by Regions I and II
while Region III is the Overlapping Region [19].

2.4 Shape Transformation Involving more than Two Objects

Very few work have been carried out on shape transformation involving more than two objects.

As mentioned earlier, Parent et al. [11] first introduced the concept of averaging more than two

objects. But implementation was carried out on some simple objects only. Pasko et al. [22]

use boolean operators for blending a number of objects with the help of a third object defined

as ‘Bounding Object’ (Figure 2.11). Bounding object helps in generating control portions

within the input objects which are to be blended. Blending is performed by using set-theoretic

operations such as intersection, union and difference in control portions of the input objects.
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