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REKABENTUK PENGUAT TERAGIH PENGGABUNG KUASA WILKINSON 

KOMPONEN TERGUMPAL BERPRESTASI TINGGI 

ABSTRAK 

 

Perkembangan penguat kuasa jalur lebar adalah penting untuk teknologi radio pada 

masa depan. Penguat kuasa jalur lebar konvensional mempunyai produk gandaan-lebar 

jalur lebar yang terbatas berdasarkan transistor yang digunakan.  Penguat teragih 

mampu menangani masalah ini melalui gabungan kuasa output daripada pelbagai 

transistor. Walau bagaimanapun, penguat kuasa jalur lebar konvensional juga 

mempunyai jalur lebar yang terbatas. Tambahan peranti yang melebihi jumlah optimum 

akan meningkatkan get dan mengecilkan ‘drain line’, dan seterusnya akan 

mengurangkan prestasi kuasa. Di samping itu,  penguat teragih konvensional juga 

memaparkan kuasa dan kecekapan yang rendah disebabkan  gelombang berbalik 

daripada ‘drain line’.  Dalam projek ini, penggabung dan pelerai kuasa komponen 

tergumpal Wilkinson digunakan pada input dan output setiap penguat teragih untuk 

meningkatkan jalur lebar, kecekapan dan kuasa output daripada penguat teragih. 

Penguat teragih penggabung kuasa komponen tergumpal Wilkinson dan penguat kuasa 

jalur lebar konvensional direka bentuk. Prestasi penguat teragih penggabung kuasa 

komponen tergumpal Wilkinson dan penguat kuasa jalur lebar konvensional 

dibandingkan dengan mengunakan bilangan peranti yang sama, susun atur dan bekalan 

arus terus. Prestasi hasil ukuran peguat kuasa ini mempunyai jalur lebar dari 100 MHz 

sehingga 610 MHz dan dari 100 MHz sehingga 520 MHz dengan masing-masing kuasa 

output 26.25 dBm sehingga 29.56 dBm and 24.11 dBm sehingga 28.51 dBm. “Power 



 xix 

added efficiency” (PAE) bagi penguat teragih penggabung kuasa komponen tergumpal 

Wilkinson ialah daripada 26.2 % sehingga 36 % manakala PAE bagi penguat kuasa 

jalur lebar konvensional ialah daripada 20.5 % sehingga 26.5 %. Penguat ini 

difabrikasikan pada papan tercetak litar berketebalan 14 mil dengan pemalar dielektrik 

4.5.  Hasil ukuran daripada fabrikasi dibandingkan dengan keputusan simulasi dan 

didapati hampir dengan keputusan simulasi.   
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HIGH PERFORMANCE LUMPED COMPONENT WILKINSON POWER 

COMBINER DISTRIBUTED AMPLIFIER 

ABSTRACT 

 

The development of broadband power amplifier is critical for future radio technology.  

Conventional broadband power amplifier has gain-bandwidth product limitation based 

on transistor used. Distributed amplifier (DA) overcomes this limitation by combining 

output power from several transistors in additive fashion. However, conventional 

distributed amplifier has limitation in bandwidth as well. Adding devices beyond 

optimum number will increase gate and drain line attenuation and will degrade the 

power performance. Moreover, conventional distributed amplifier also exhibits low 

power and efficiency due to the drain line reverse wave. In this project, lumped 

component Wilkinson power combiner and splitter is used at the input and output of the 

distributed amplifier respectively to increase the bandwidth, efficiency and output 

power of a distributed amplifier. A lumped component Wilkinson combiner distributed 

amplifier and a conventional distributed amplifier have been designed. The measured 

performance of this novel lumped component Wilkinson combiner distributed amplifier 

had been compared with the conventional distributed amplifier using the same number 

of devices, layout and dc supply. These amplifiers have frequency range from 100 MHz 

up to 610 MHz and from 100 MHz to 520 MHz with output power of 26.25 dBm to 

29.56 dBm and 24.11 dBm to 28.51 dBm respectively. PAE of LC Wilkinson combiner 

DA is varies from 26.2 % to 36 % whereas PAE of conventional DA is varies from 20.5 

% to 26.5 %. The amplifier had been fabricated on a 14-mil thick printed circuit board 
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(PCB) with a dielectric constant of 4.5. Measured results of the fabricated board have 

been found to be comparable to simulation results.  
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CHAPTER 1 
INTRODUCTION 

 

1.1 Background 

Current practice is to design single band two-way radios such as VHF (very high 

frequency) and UHF (ultra high frequency). However future technology is driving 

towards broadband two-way radio which gives freedom to select the operating 

frequency band. This will also enable user to communicate with wide range of people. 

For an example, in the US, the Virginia state police and Georgia state police use 

different radio frequencies which are 136 MHz (VHF) and 406 MHz (UHF) 

respectively. So, these two departments can’t communicate with each other. In order to 

communicate, Virginia state police needs to use UHF radio or Georgia state police 

needs to use VHF radio. Broadband radios are able to offer effective solution for this 

problem.   

 

The rapid development of broadband systems has created an increasing demand 

for use of wideband amplifiers.  No other amplifier currently can beat the wide band 

characteristic of the DA. Wide bandwidth, moderate gain and small delay of DAs make 

them an attractive choice for such applications. However, there are tradeoffs for these 

advantages. DA is suffering from low efficiency and low output power.  

 

The major challenge is to design high power, high gain, high PAE and 

broadband DA. Only few works have demonstrated high efficiency with DA topology 

while preserving reasonable gain. By tapering impedance at drain transmission line and 
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selecting the device for correct load impedance, dramatic improvement in PAE (almost 

twice higher then previously reported) can be achieved (Zhao et al., 2002 and 2003). A 

novel tapered drain line DA had been realized which improve the PAE by 11% to 24% 

across the 4.5 GHz and also exhibits significant improvement in output power (Shastry 

et al., 2006).  

 

Few publications have been published based on a technique to merge power 

combiner and DA in order to improve the large and small signal performance. Eric S. 

Shapiro has published novel power combiner traveling wave power amplifier design 

method to improve efficiency by reducing backward wave propagation at the drain 

transmission line (Shapiro et al., 1998). S. D’Agostino and C. Paoloni have published 

few publications by employing Wilkinson combiner or splitter (D’Agostino et al., 

1995), lange couplers (D’Agostino et al., 1994) and interdigital combiner or splitter 

(D’Agostino et al., 1995) at the output and input of the DA. The interdigital combiner or 

splitter was found able to improve the small signal and power performance of the DA is 

improved as compared to the conventional structure. In (D’Agostino et al., 1994), 

remarkable improvements in the output power, PAE, and small-signal gain are 

demonstrated by comparison with the conventional DA topology. From (D’Agostino et 

al., 1995), small signal gain and power performance has been increased.  

 

Microstrip Wilkinson power combiner and splitter design has been converted to 

lumped component Wilkinson power combiner and splitter by referring to work by 

Fernando Noriega (2002).  



 3 

1.2 Objectives 

The objectives of this thesis are listed below: 

• To demonstrate detail design methodology of conventional distributed 

power amplifier (conventional DA). 

• To demonstrate a lumped component Wilkinson power combiner DA 

(LC Wilkinson power combiner DA) design technique by employing 

lumped component Wilkinson power combiner and splitter at the output 

and input of the conventional DA respectively.  

• Stability analysis of novel DA using STAN (pole-zero identification 

technique).  

• PCB board fabrication and measurement of these two types of power 

amplifier using same device (Mitsubishi RF MOSFET, RD01MUS1), 

same bias voltage and same layout (for DA part) to compare their 

performance in terms of bandwidth and efficiency.  

 

1.3 Thesis Outline 

In Chapter 2, literature review is presented. It contains previous related research 

done by other researchers. Research on conventional DA, power combining techniques, 

LC Wilkinson combiner DA, and large signal stability analysis has been reviewed.  

 

Chapter 3 discusses briefly the design methodology of conventional DA and LC 

Wilkinson combiner DA. Measurement setup of PAE, gain and output power also 

discussed in this Chapter. 



 4 

Chapter 4 explains design steps of conventional DA and LC Wilkinson 

combiner DA in detail. Simulation results are also given in this Chapter. 

 

Chapter 5 contains layout guidelines and consideration which has been followed 

in the design to obtain measured results from fabricated board which is close to 

simulated results.   

 

Chapter 6 exhibits measurement results of large signal parameters for LC 

Wilkinson combiner DA and conventional DA and correlation analysis with simulation.  

 

Chapter 7 consists of conclusion and future work.  
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CHAPTER 2 
LITERATURE REVIEW 

 
 

2.1 Introduction 

Power amplifiers (PA) are the heart of the transmitter system. PA is responsible 

to amplify a signal to the desired power level to be delivered to the load. PA must 

deliver enough power so that the signal, after path loss, can still be detected by the 

receiver system.  

 

There are many types of amplifier available. However, only wideband amplifier 

is of interest for broadband application. The most popular and widely used broadband 

power amplifier in either discrete or monolithic technologies is the DA.  

 

2.2 Distributed Amplification 

The concept of traveling wave or distributed amplification has been around for 

over half century. The term “DA” originated in a paper by Ginzton in 1948 (Ginzton et 

al., 1948) However, the underlying concepts can be traced back to a patent by Percival 

in 1937 (Percival et al., 1937).  

 

DAs employ a topology in which the gain stages are connected such that their 

capacitances are separated, yet the output currents still combine in an additive fashion. 

Series-inductive elements are used to separate capacitances at the input and output of 

adjacent gain stages. The resulting topology, given by the interlaying series inductors 

and shunt capacitances, forms what is essentially a lumped components artificial 



 6 

transmission line as shown in Figure 2.1. The additive nature of the gain dictates a 
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relatively low gain. However, the distributed nature of the capacitance allows the 

amplifier to achieve very wide bandwidths. 

 

2.2.1 Theoretical Analysis 

2.2.1.1 Introduction 

Analysis of DAs is facilitated by the assumption of lossless transmission 

networks which are realized from ladder networks based on constant k low pass filters, 

and unilateral active devices. 

 

  The DA concept has been successfully applied to monolithic GaAs MESFET 

amplifiers at microwave frequencies in the 80’s for larger gain-bandwidth products. 

Ayasli have published design method of traveling wave amplifier based on an approach 

that approximates gate and drain lines as continuous structures (Ayasli et al., 1982). 

Similarly, Beyer developed a closed form expression for the gain that depends on the 

circuit’s propagation constants and the gate circuit cut-off frequency (Beyer et al., 

1984). Niclas has also developed a method based on the use of the admittance matrix 

employing the Y parameters of the transistor model in an amplifier with either artificial 

or real transmission lines (Niclas et al., 1983). This method allows the use of much 

more sophisticated model for the transistor developed from its measured S parameters. 

McKay proposed also a formulation based on a normalized transmission using matrix 

formulation (McKay et al., 1986). This technique yields insight into amplifier operation 

because it displays the traveling-wave nature of a DA. 
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2.2.1.2 Concept of Distributed Amplification 

 

 

 

 

 

 

 

 

Gain and bandwidth of an amplifier cannot be simultaneously increased beyond 

a certain limit (Wong., 1993). Figure 2.2 shows a simple band pass amplifier consisting 

of an active device and a resonant coupling circuit.  

The voltage transfer function of this amplifier can be written as (Wong., 1993): 

 

)(1
)(

0

0 ω
ω

ω
ω

ω
−+

−
=

jQ

Rg
A m

v     (2.1) 

 

gm is device transconductance, R, L and C are resistor, inductor and capacitor of 

the low pass filter, respectively. ω0 is the low pass filter cut-off frequency, ω is th 

operating frequency and Q is the quality factor. ω0 = 1/(LC)1/2 and Q = ω0RC. The 

maximum gain occurs at mid band and has a magnitude of gmR. The bandwidth, B is 

ω0/(2πQ). Hence, the gain-bandwidth product of the amplifier, Av0B, is given as 

(Wong., 1993): 

L
Vin Vout

CgmVin R

 

 

Figure 2.2: A simple band pass amplifier (Wong., 1993). 
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C
gBA m

v π20 =      (2.2) 

 

in Hz. 

 

This limitation may never be surpassed by an optimization of external circuit 

elements. Any increase in gain will be offset by a reduction of the same amount in the 

bandwidth (Wong., 1993). 

 

Obviously this gain-bandwidth limitation cannot be overcome by connecting 

devices in parallel because both the transcoductance and the capacitance will be 

multiplied by the same amount so that their ratio remains the same. 

 

Considering a network theorem first proposed by Bode in 1945, an upper limit 

to the gain-bandwidth product could be found. The theorem states that given an 

impedance function Z(ω) and defining a + jb = log Z, where a and b are functions of ω, 

then (Wong., 1993): 

 









≤









−∫ C
da

ccc
ω

π
ω
ω

ωω
ω 2log

2/1
)(1

0
22

  (2.3) 

 

with the equality sign holding when (Wong., 1993): 
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( ) 1
22

2
1 −





 +−= CjZ c ωωω   (2.4) 

 

where C is(Wong., 1993): 

 

Zj
C

ωω
1lim →∞=    (2.5) 

 

and implies that the impedance Z becomes capacitive in the high-frequency limit, where 

capacitance is denoted by C. 

 

Now, considering an active device with an output termination of Z(ω), which 

accounts for the intrinsic shunting elements inherent to the output characteristics of the 

active device, stray capacitance, and other additional passive circuit elements 

introduced to form the coupling circuit, the voltage gain related to a on a logarithmic 

scale is (Wong., 1993): 

 

agZgA mmv +=+= loglogloglog   (2.6) 

 

where gm is the transcondutance of the device. 
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Since the weighted sum on the left-hand side of Equation 2.3 is maximum when 

Z is given by Equation 2.4, for which a=log(2/Cwc), it follows that the maximum 

uniform gain in logarithm is given as (Wong., 1993): 

 

c
m C

gGain
ω
2loglog +=    (2.7) 

 

over the frequency range from 0 to ωc. On linear scale, the maximum uniform gain 

becomes 2gm/Cωc. 

 

For a given C, gain can be increased by choosing a small ωc, however, the 

product of |Z(0)| and ωc remains the same with a value of 2/C, hence the maximum 

gain-bandwidth product obtainable from this amplifier can be obtained as 

(2gm/Cωc)(ωc/2π)=gm/πC in hertz. 

 

This important result was first arrived at by Wheeler (1939) and mathematically 

shown by Bode (1945) and Hansen (1945) by means of analytic function theory and 

potential analogy.  

 

The required Z(ω) that maximizes gain-bandwidth product of the device is given 

in the above discussion in Equation 2.4. This impedance can be realized by a low pass 

constant k-filter terminated with a full-shunt at the diving point, as shown in Figure 2.3. 
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The impedance Z(ω) has a constant magnitude from zero frequency to ωc. Since 

this network is infinite, truncating this network and terminating by an m-derived half 

section followed by a resistor could approximate this infinite network. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Realization of Z(ω) for maximum uniform gain (Wong., 1993). 

 

2.2.2 Image Parameter Method  

L L L 

C/2 C/2 C C C 

Zπ 

Z(ω) 

Vin 

GmVin 

 

 

Figure 2.4: Artificial transmission line (Wong., 1993). 
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The image parameter method applied to the DA since it consists of a cascade of 

identical two-port networks forming an artificial transmission line. The cascaded two 

port network is shown in Figure 2.4.  

When considering signal transmission and impedance matching in cascaded 

two-ports, each two-port should operate with the appropriate impedance terminations so 

that the maximum power transfer takes place over the prescribed bandwidth. Such 

condition can be met by terminating the two-port with a pair of impedances known as 

image impedance so that the impedance appears the same when one looks into either 

direction of each port as shown in Figure 2.5. Those impedances can be expressed as 

1iZ  and 2iZ .  

 

The image impedance may also be expressed as (Wong., 1993): 

 

 

 

Figure 2.5: A two-port network terminated by its image impedance. (a) Image 
impedance at port 1 (b) image impedance at port 2 (Wong., 1993). 
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C
A

D
BZZZ ocsci == 111     (2.8) 

 

A
D

C
BZZZ ocsci == 222     (2.9) 

 

where 1scZ  and 1ocZ  are the impedances appearing at port 1, with port 2 short circuited 

and open circuited, respectively, and likewise for 2iZ . If the network is symmetrical, 

1iZ  and 2iZ  become identical, known as characteristic impedance and is denoted 0Z .  

 

Figure 2.4 shows the case of an infinite number of identical networks connected 

so that at each junction either “end 1s” are connected together or “end 2s” are connected 

together. Because the way the infinite chain of networks in Figure 2.4 is connected, the 

impedance seen looking left and right at each junction are always equal, hence there is 

never any reflection of a wave passing through a junction. Thus, from the wave point of 

view, the networks of the Figure 2.4 are perfectly matched. The image impedance iZ  

for a reciprocal symmetric two-port is defined as the impedance looking into port 1 and 

2 of the two-port when the other terminal is also terminated in iZ  (Matthaei et al., 

1964).  
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To achieve an impedance match over a broad range, the load and source 

impedance must be transformed into the image impedance. Otherwise, the gain 

response will not flat as function of frequency. The low pass m-derived half section 

shown in Figure 2.6, serves this purpose well (Beyer et al., 1984). The impedance 

looking into the gate and drain line when transformed by the m-derived section is 

approximately constant over a broad range of frequencies. The m-derived impedance 

matching network provides a big improvement of the variations over the broadband 

frequency. It can also be used to match directly to .50Ω=oZ  Constant-k and m-derived 

filters are classic examples of filters designed from the image point of view (Wong., 

1993). 

 

2.2.3 Two-Port Theory 

Large signal model of Silicon RF Power MOSFET as showed in Figure 2.7 

published by Paolo Fioravanti et al., is used to model RD01MUS1 (Fioravanti et al., 

2007). Cgd is gate to drain capacitance, Cgs is gate to source capacitance, Cds is drain to 

 

 

Figure 2.6: Low pass m-derived half section (Wong., 1993). 
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source capacitance and gm is device transconductance. The device is assumed to be 

unilateral so Cgd is neglected.   

 

 

The DA could be broken down into two main lines: the drain line and the gate 

line as shown in Figure 2.8. The lines are assumed to be terminated by their image 

impedances at both ends. 

 

 

 
 
 
 
 
 
        |<-    θd     ->| 
              (a) 
 
 

Gate

Source

DrainCgd

CdsCgs gmVgs

 

 

Figure 2.7: Silicon RF power MOSFET bilateral large signal model (Fioravanti et 

al., 2007). 

 

Ld/2 Ld Ld Ld Ld 

Cd Cd Cd Cd 
ZoT ZoT 
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    |<-      θg        ->| 
               (b) 

 

Figure: 2.8: An ideal DA (a) Drain line (b) Gate line (Wong., 1993). 

 

The two lines are coupled through the action of the transconductance. Signals in 

the drain line are induced by the signals in the gate line (Beyer et al., 1984). The voltage 

at a node k of the gate line can be written as (Beyer et al., 1984): 

 

           gk
g
oT

g
o

ingk e
Z
ZVV θπ )2/1( −−=             (2.10) 

 

At the corresponding location on the drain line, a current Ik will be induced with a value 

of (Beyer et al., 1984): 

 

      gkmk VgI −=                (2.11) 

 

By superposition, the voltage developed across ZoT on the drain line can be written as 

(Beyer et al., 1984): 
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2
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Substituting for the value of Ik from Equation 2.11 in Equation 2.12 yields (Beyer et al., 

1984): 

 

              ∑ −−−−= )(2/)(

2
gdddg kNd

oT
d
og

oT

g
omin

out eeeZZ
Z
ZgVV θθθθθ

π
π     (2.13) 

 

Assuming that phase synchronization is applied by adding a parallel capacitance 

to the devices at the drain line, then θd = θg, and the voltage gain could be written as 

(Beyer et al., 1984): 

 

                 θN

d

d

c

m
v e

C
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ww
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−=

22 /12
             (2.14) 

 

Under matched conditions, the signal in the gate line propagates only in one 

direction. However, waves do propagate in both directions in the drain line. The voltage 

at the load on the left is a superposition of backward traveling waves which give rise to 

a highly frequency dependent signal given by (Beyer et al., 1984): 

 

                    
)sinh(
)sinh(

/12 22 θ
θθ Ne

C
L
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gVV N

d

d

c
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−

−
−=          (2.15) 

 

Power gain of a DA could be expressed as (Beyer et al., 1984): 
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2.2.4 Admittance Matrix 

The basic circuit of a DA can be represented by four-port as shown in Figure 2.9 

(Niclas et al., 1983). Equivalent circuit in the Figure 2.9 can be constructed by replacing 

the transistor by its two port representation with the current source ki .  

 

 

 

Figure 2.9: Four-port representation of the elementary DA circuit (Niclas et al., 

1983). 
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From Figure 2.9, matrix Equation which relates to the voltage and current can be 

derived as (Niclas et al., 1983): 
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where (Niclas et al., 1983):  

 

             kFkkk AAAA 21=               (2.18) 

 

[A1k] and [A2k] represent matrix of input and output links respectively (refer to Figure 

2.9). [Afk] is represents the MOSFET admittance matrix. Matrix equation as below can 

be constructed by cascading n elementary circuits and terminating the idle ports with RG 

and RD (the gate and drain loads respectively) (Niclas et al., 1983): 
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where (Niclas et al., 1983): 
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The insertion gain is the ratio of signal power delivered to the load by the circuit to the 

signal power delivered directly to that load. The insertion gain can be expressed as 

(Niclas et al., 1983): 

 

C
CYGain 2

02=               (2.21) 

 

with (Niclas et al., 1983): 
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The above mentioned solution expresses the gain of the DA in general form. Since for 

DA, the load and input impedance are the same (50 Ω), insertion gain and transducer 

gain also will be the same.  
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2.2.5 Coupled-Wave Analyses 

Analysis in section 2.2.3 by James B. Beyer is based on unilateral device 

models. However, certain aspects of the amplifier and its characteristics cannot be 

adequately explained by the unilateral active device model such as input-output 

isolation. A more completed model required to explain these characteristics. This lead 

to bilateral coupling between input (gate) and output (drain). This can be called as gate 

drain capacitance (Cgd). The equivalent circuit model must be accurate over the 

frequency band of interest in order to obtain accurate description of DA characteristics.  

 

 

 
Figure 2.10: Elementary section of a bilateral DA. The variables bn and an represent 

the scattering waves (Moussa et al., 2003). 
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The normalized transmission matrix approach was invented by McKay (Mckay 

et al., 1986). This theory applies to general class of DA with discrete sampling points on 

the gate line which couple to discrete excitation points on the drain line. Si Moussa 

(2003) extends this concept by considering the bilateral case obtained by including the 

Cgd of the device.  

 

Using the scattering formalism, the wave quantities as shown in Figure 2.10 are 

given by (Moussa et al., 2003): 
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where 
naV , 

nai , 
nbV and 

nbi are the voltages and currents at section n. The ‘a’ and ‘b’ are 

portrayed the waves on the gate and drain line, respectively. Characteristic impedance 

of the gate line and drain line is given by 
g

Z0 and 
d

Z 0 .  

Since (Moussa et al., 2003) 
nn aa VV =

+1
, 
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The transfer matrix [M] defined as [M] = [G-1/2][TN][G1/2] is given by (M. Si Moussa 

et al., 2003): 

 

  in
N

out WGTGW ]][][[ 2/12/1−=               (2.30) 

 

where (Moussa et al., 2003):  

 

   T
iiiii babaW ][ −−++=               (2.31) 

 

Where T denotes the operator transpose, Win and Wout are the input and the output 

vector, respectively (Moussa et al., 2003):  
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