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INTERAKSI  DI ANTARA FELDSPAR, MIKA  DAN KUARZA DENGAN 

PENGUMPUL YANG BERBEZA SEMASA  

PENGAPUNGAN BUIH 

 

ABSTRAK 

 

Sampel pegmatit dari Malaysia yang mengandungi feldspar, kuartza dan mika sebagai 

mineral utama telah dikaji. Peralatan XRF, XRD, mikroskop bijih, FESEM dilengkapi 

dengan EDX dan AAS telah digunakan secara menyeluruh dalam kajian pencirian. Jumlah 

feldspar dalam sampel telah ditentukan mengikut konvensyen feldspar dan didapati kira-

kira 61% feldspar (kebanyakannya adalah mikroclin), 27% kuarza dan 4% mika. 

Pemerhatian FESEM mendapati bahawa kuarza telah bersekutu dengan feldspar dalam 

julat saiz antara 10 hingga 1400 μm dan memerlukan pembebasan yang sepatutnya 

sebelum meneruskan pengapungan. Besi bendasing yang hadir sebagai partikel diskret 

terbebas dan yang bersekutu dengan kuarza dan feldspar telah dinyahkan oleh pemisah 

magnetik. Untuk tujuan pembebasan, sampel telah dikisar selama 17 minit dan diayak. 

Oleh itu, 80% daripada sampel itu telah terkumpul di dalam julat saiz -600 μm dengan 

90% telah dibebaskan.  Kelakuan pengumpul n-lemak 1,3-propanediamine-dioleate 

(duomeen TDO) terjerap pada feldspar dan kuarza atau coco amina pada mika, feldspar 

dan kuarza telah dinilai melalui potensi zeta upaya, sudut sentuh, Fourier mengubah infra-

merah (FTIR) dan pengapungan mineral tunggal (Hallimond tiub). Keputusan zeta upaya 

menunjukkan bahawa titik isoelektrik feldspar, kuarza dan mika adalah masing-masingnya 

1.80, 1.9 dan 2.0.  Penambahan dos  duomeen TDO dan coco amina secara beransur 

menjadikan sudut sentuh feldspar dan kuarza (dengan duomeen TDO) dan mika, feldspar 
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dan kuarza (dengan coco amina) meningkat yang meningkatkan sifat hidrofobik, tetapi 

menurunkan tenaga bebas dan komponen.  Lapisan mono duomeen TDO telah 

dibangunkan ke atas partikel feldspar apabila 1.2 ppm pengumpul tersebut yang digunakan 

pada pH 2, yang memberikan sudut sentuhan air Өwater = 90
o
.   Analisis FTIR telah 

dilakukan untuk menyiasat duomeen TDO terjerap pada feldspar dan kuarza manakala 

coco amina pada permukaan feldspar, kuarza dan mika antara rantau 3000-2800 cm
-1

 pada 

pelbagai dos dan pH.  Keputusan ujian pengapungan tiub Hallimond pada dos yang 

berbeza menggunakan duomeen TDO (feldspar) dan coco amina (mika) menunjukkan 

jumlah terendah perolehan kuarza  adalah pada pH 2, dan perolehan untuk kedua-dua 

feldspar dan mika meningkat bersepadan dengan dos pengumpul.  Pengapungan feldspar 

berskala meja menggunakan asid sulfurik (H2SO4) sebagai pengubahsuai dan jenis 

campuran pengumpul duomeen TDO telah dikaji. Di samping itu, pengapungan muscovite 

menggunakan pengumpul amina Coco juga disiasat, dan mendapati bahawa 79.09% 

feldspar telah ditemui dengan gred 86.18%. Parameter adalah zarah (-300 45) μm pH 2 

(H2SO4 pengubahsuai), peratus pepejal (20%), Aero 65 (90 g/t) , duomeen TDO (600 g/t) 

dan Aero 65 (90 g/t). Ketika untuk pengapungan mika, 90% mika telah ditemui dengan 

gred 75,38% pada pH 2, peratus pepejal (20%), Coco amina (170 g/t), pain minyak (150 g 

/t), diesel (150 g/t) dan saiz partikel (-600+45) μm. 
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THE INTERACTION OF FELDSPAR, MICA  AND QUARTZ WITH DIFFERENT 

COLLECTORS DURING FROTH FLOTATION  

 

ABSTRACT 

Malaysian pegmatite sample containing feldspar, quartz and mica as major minerals were 

studied.  XRF, XRD, ore microscope, FESEM equiped with EDX and AAS were 

extensively used in the characterization studies.   The amount of feldspar in the sample 

was determined follow the feldspar convention and found that at approximately 61% 

feldspar (majority is microcline), 27% quartz and 4% mica.   FESEM observation found 

that quartz was interlocked with feldspar in the size range between 10 to 1400 μm required 

proper liberation before proceed to concentration (flotation. Iron bearing presented as free 

discrete particle and interlock with quartz and feldspar was removed by magnetic 

separator.  For liberation purpose, the sample was ground for 17 minutes and sieved. 

therefore 80% of the sample was accumulated in the fraction -600 µm with approximately 

90%  liberated.  The adsorption behavior of N-tallow 1,3–propanediamine-dioleate (duomeen 

TDO) on feldspar and quartz or coco amine on mica, feldspar and quartz was assessed 

through zeta potential, contact angle, fourier transformed infra-red (FTIR) and Hallimond 

tube.  Zeta-potential results showed that the isoelectric points of the feldspar, quartz and 

muscovite were 1.80, 1.9 and 2.0 respectively. By gradually adding duomeen TDO and 

coco amine, the contact angle of feldspar and quartz (with duomeen TDO) and  mica, 

feldspar and quartz (with coco amine) increased leading to enhance hydrophobicity, but 

with a decrease in its free energy and components.    Monolayer of duomeen TDO was 

developed on the feldspar particle when 1.2 ppm of the collector used at pH 2. This was 

indicated by the contact angle of water Өwater = 90
o
. FTIR was used to examine duomeen 
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TDO adsorbed on feldspar and quartz whereas coco amine on surfaces of feldspar, quartz 

and mica  between the region 3000-2800 cm
-1

 at various dosage and pH.  Hallimond tube 

flotation test results at different dosage of duomeen TDO (for feldspar) and coco amine 

(for mica) show the lowest amount of quartz floated at pH 2, and  recoveries for both 

feldspar and mica increased corresponding with collector dosages.  The optimum dosage 

of duomeen TDO and coco amine correlated with highest  feldspar and mica recoveries 

were 40 ppm and 60 ppm respectively.  Diesel promote the flotation selectivity of mica 

achieved the optimum at 30 ppm.  Bench scale feldspar flotation using sulfuric acid (H2SO4)  as 

a modifier and a mixed type of collector duomeen TDO were studied.  Besides, the flotation of 

muscovite using coco amine collector was also investigated, and found that 79.09% of 

feldspar was discovered with a grade of 86.18%.   The parameters were particle (-300+45) 

μm, pH 2 (H2SO4 modifier), percent of solids (20%), Aero 65 (90 g/t), duomeen TDO (600 

g/t) and Aero 65 (90 g/t). While for mica flotation, 90% of mica was discovered with a 

grade of 75.38% at pH 2,  percent of  solids (20%), coco amine (170 g/t), pine oil (150 

g/t), diesel (150 g/t) and particle  size (-600+45) µm. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

 The feldspars are a large group of closely-related, rock forming aluminosilicate 

minerals which contain varying proportions of potassium, sodium and calcium.   

Chemically, feldspar is a general term applied to the aluminosilicate mineral group 

combined with potassium, sodium, or calcium or a mixture of these elements.   The 

mineralogical composition of most feldspar minerals are described as  potassium feldspar 

(orthoclase and microcline, KAlSi3O8), sodium feldspar (Albite, NaAl Si3O8), and calcium 

feldspar (anorthite, CaAl2Si2O8).  The feldspar that contains more than 5% of the third 

component may be called ternary (Bolger, 1995; Rao, et al., 1995; Deer, et al., 2001). 

 

 Alkali feldspars (potassium and sodium feldspar-rich) are of economic importance 

and most are consumed in glassmaking and manufacturing of ceramics while calcium 

feldspar are less commercial.   In glass making, alumina from the feldspar improves 

product hardness, durability and resistance to chemical corrosion.   In ceramics, the alkalis 

in feldspar (calcium oxide, potassium oxide and sodium oxide) act as flux to lower the 

melting temperature of a mixture.    In the housing and remodeling markets, feldspar was 

used in glass fiber insulation, sanitary ware and tile (Roskill Information Services Ltd., 

1999; Gulgonul, et al., 2008).    
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 Malaysia’s ceramic and glass industries are flourishing sectors in the country.   In 

raw material terms this is excellent news for feldspar, quartz and clays producers who have 

seen a rapid rise in demand from their products in the last few years.   Even though 

Malaysia is endowed with suitable clays and silica, there are less workable feldspar 

deposits to be found in the country.   Feldspar is currently required by the ceramics 

industry has to be imported from Thailand, China, Australia and Turkey.  As such, in order 

to reduce our reliance on imported feldspars and to sustain the demand of this mineral in 

the domestic industries, the development of local feldspar production is needed. 

 

 In 2006, feldspar is produced by 51 countries which account for about 32 millions 

tones of the world total.  The leading nations producing feldspar include Turkey, China, 

Italy, Thailand, Japan, United States and etc (Table 1.1).  However, world feldspar 

consumption totaled 13.9 million tonnes and is growing on average 2% per annum. Turkey 

is also the leading exporter, accounting for 33% of all exports by quantity, while Italy and 

the USA remain the leading importers.  In Asia, production of feldspar is worth over 

US$180 million (British Geological Survey, 2008). 
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Table 1.1: List of feldspar producers countries in 2006 mostly based on British Geological 

Survey accessed in July 2008 

Rank Country/Region Feldspar production (tones) 

1 Turkey 15,700,000 

2 China 2,500,000 

3 Italy 2,300,000 

4 Thailand 1,800,000 

5 Japan 1,067,684 

6 United States 800,000 

7 Spain 760,000 

8 France 670,000 

9 Czech Republic 650,000 

10 Mexico 487,000 

11 South Korea 459,209 

12 Iran 427,378 

13 India 411,807 

14 Poland 362,853 

15 Egypt 359,512 

16 Venezuela 350,000 

17 Vietnam 200,000 

18 Argentina 200,000 

19 Germany 170,728 

20 Brazil 167,332 

21 Russia 166,418 

22 Malaysia 160,000 

23 Portugal  142,358 

 Other countries 13,098,000 

 

 

 

1.2  Feldspar deposit 

 

 Feldspars are the most abundant minerals and generally feldspar can be found in 

igneous, metamorphic and sedimentary deposits around the world.       K-feldspar and 

albite are the main constituents of granitic pegmatites.  However,  pegmatite is a very 

coarse grained, intrusive igneous rock composed of interlocking grains.  Pegmatites are 

formed when the fluid stages of recrystallizing granite becomes concentrated in small 

liquid and vapor rich pockets that allow the growth of extremely large crystal.  Simple 

http://en.wikipedia.org/wiki/Feldspar
http://www.bgs.ac.uk/mineralsuk/commodity/world/home.html
http://www.bgs.ac.uk/mineralsuk/commodity/world/home.html
http://en.wikipedia.org/wiki/Turkey
http://en.wikipedia.org/wiki/Peoples_Republic_of_China
http://en.wikipedia.org/wiki/Italy
http://en.wikipedia.org/wiki/Thailand
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Spain
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Czech_Republic
http://en.wikipedia.org/wiki/Mexico
http://en.wikipedia.org/wiki/South_Korea
http://en.wikipedia.org/wiki/Iran
http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/Poland
http://en.wikipedia.org/wiki/Egypt
http://en.wikipedia.org/wiki/Venezuela
http://en.wikipedia.org/wiki/Vietnam
http://en.wikipedia.org/wiki/Argentina
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/Brazil
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Malaysia
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pegmatites contain only few exotic minerals whereas for complex pegmatites, may contain 

a wide variety of minerals such as beryl, apatite, fluorite, tourmaline, topaz, garnet, 

spodumene, scapolite and zircon.   Most pegmatites are composed of feldspar, quartz and 

mica with crystal size usually over 5 cm.  The occurrence of microcline and albite are 

varies, either microcline rich has low content of albite or albite rich has low content of 

microcline (Deer, et al., (2001).  

 

 Since the pegmatite is a very coarse grain, liberation of the feldspar, quartz and 

mica is not a concern because it occurs coarser than the product specification.  

Nevertheless, in other pegmatites where mineral substitution and alteration had taken place 

(due to alteration of hydrothermal fluid of the residual magma during crystal growth) had 

resulted in the rock to be finer grained.   Thus, the effect of alteration on mica also may 

subject to the depletion in aluminum content and increase in iron magnesium and silica 

content in mica molecular structure.    

 

 Typically, processing of feldspar depends on the mineralogy of the deposit.  In 

order to beneficiate the fine grain of feldspar, grinding processes are required at usually 

between minus 841 μm or minus 600 μm.   However, since the mica and quartz are not 

suitable to be separated from feldspar by using gravity and magnetic techniques due to 

overlapping of densities, the most suitable beneficiation method for feldspar separation 

should be done by froth flotation.  Usually separation of the three minerals is 

accomplished in three stages of flotation by using small mechanical flotation cells.   The 
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first stage recovers the mica, the second stage removes contaminating minerals and the 

third stage separates the feldspar from the quartz.    

 

1.3  Problem Statements 

 

1.3.1 Developing feldspar  resources  

 

 Malaysia needs to develop their resources to meet demand for local consumption.  

Demand for feldspar and associated minerals is forecast to increase on average at 5.5% 

(29.5 Mt) by 2012, with the main growth to be concentrated in Southeast Asia, Eastern 

Europe and Latin America.  To meet the adequate demand world resources of feldspar, the 

production is required to be raised by 38% over 2006.   Therefore, Malaysia should take 

part to play an important role for feldspar producer in future.  Nevertheless, to increase the 

feldspar production, the pegmatite itself should be no longer sold as aggregates.  In fact, 

the feldspar itself as well as mica and quartz will be more valuable if they can be separated 

and sell individually.   For instance, Table 1.2 shows the price of feldspar (finer size) per 

metric tonne in 2003 in the United States and Turkey is more expensive (above USD 50).  

By contrast, the price of crude feldspar grade of -10 mm, is much cheaper at USD 13 to 14 

per metric tone. 

 

 In Malaysia, the Department of Minerals and Geoscience Malaysia has identified 

several feldspar deposits which have potential to be developed for production of feldspars.    

Some   of    the    significant   deposits   are  found  at  Bukit  Mor,  (Johor),   Tanah   Putih  
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Table 1.2: Price for feldspar metric per ton in 2003 (Potter, 2006; Industrial 

Minerals, 2008) 

Countries Particles size Purpose Price per metric ton 

(USD) 

 

United States 

 

 

 

-170 mesh to -200 mesh 

-200 mesh 

Ceramic grade 

sodium 

potassium 

 

66 to 83 

138 

 

-30 mesh 

-80 mesh 

Glass grade 

sodium 

potassium 

 

44 to 57 

94 to 99 

 

Turkey 

 

-63 microns 

-500 microns 

Glass grade 

sodium 

sodium 

 

75 to 80 

54 to 56 

- 10 mm Crude grade 13 to 14 

 

 

(Kelantan), Merapoh (Pahang), Gemencheh (Negeri Sembilan) and  in (Husin, et al., 

1998).   In Gemencheh, feldspar is produced in the form of pottery stone (Alimon et al., 

2004).    In Malaysia, the statistic for production and import of feldspar for the year 2008 

is shown in Table 1.3 where feldspar experienced an increased in production by 20% to 

457,377 tonnes, valued at 30 million compared with 358,585 tonnes in 2007.   This 

increased was due to high production from the three mines in Gua Musang (Industrial 

Mineral Production Statistic, 2008). 
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1.3.2 Upgrade local resources 

 

Although there are extensive deposits of feldspar in Malaysia, only few efforts 

have been made to systematically conduct beneficiation studies on them.  Malaysian 

feldspar producers only use minimal processing practice such as crushing, grinding, 

screening before exporting them.  Due to the presence of impurities such as iron oxide, 

mica and quartz which prevents their application in the high end products, the feldspar was 

sold at a very low price.  Presently, ceramic and glass industries in Malaysia rely large 

quantities of high grade imported feldspar as starting materials which are very expensive.   

Therefore the production of high grade feldspar from local resources shall meet demand 

for the most efficient techniques for their beneficiation. 

 

 

Year Production Import 

Quantity (tones) Value (RM) Quantity (tones) Value (RM) 

2005 117,180 4,034,172 309,234 30,371,928 

2006 142,358 9,079,040 113,411 31,804,934 

2007 358,585 29,934,720 130,819 24,000,231 

2008 457,377 about 30 million - - 

Table 1.3: Malaysian production and import feldspar for the year 2005 

 to 2008 (Industrial Mineral Production Statistic, 2008) 
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1.3.3 Alternative to HF flotation 

 

For the separation of feldspars from quartz, the froth flotation process has so far 

proved to be the most suitable beneficiation method.   However, in most cases feldspars 

are floated from quartz using long-chain alkyl amine surfactants as cationic collectors 

under highly acidic conditions generated by the use of hydrofluoric acid as an activator 

(Bolger, et al., 1995).   Since the reagent is not environmental friendly and causes health 

problem, another alternative should be examined to replace HF.   Therefore, mixed 

cationic/anionic collector (duomeen TDO) with sulfuric acid (H2SO4) was tested for the 

purpose to run bench scale feldspar flotation. 

 

1.3.4 Mica and quartz are equally valuable 

 

Mineralogical studies indicated that pegmatite rock from Bukit Mor, Johor 

composed of feldspar, quartz, mica and iron bearing minerals.  Therefore, feldspar itself as 

well as mica and quartz will be more valuable if it can be separated and sell individually.  

Feldspar is used in glass manufacturing & ceramic industries, mica is for electrical 

industries and quartz is used for glass industries. The mica has to be removed by flotation 

method whereas iron bearing minerals by magnetic separation.   
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1.3.5 Proper liberation  

  

 Analysis of representative individual feldspar by FESEM shows quartz 

present (disseminated on feldspar) and by feldspar convention calculation it was found that 

feldspar and quartz content are 88.7% and 2.3 % respectively.  In this case, liberation 

technique ought to introduce to the pegmatite sample.   However, if the size of particles 

are too fine, the separation between mineral particles will be very poor because the fine 

particles have a low inertia and therefore are easy carried away by liquid streamline 

around a bubble resulted (Somasundaran, 1979; Sivamohan, 1990).  Moreover, it would 

cause improper magnetic separation.   To achieve the proper  liberation size, it is needed to 

have comprehensive understand the fundamental aspects such the analysis of zeta 

potential, contact angle, FTIR and Hallimond tube before proceed to bench scale flotation. 

 

 

1.4  Objectives of the study 

 

The objectives of this study are: 

  

• To characterize and evaluate the potential of upgrading the feldspar from 

Malaysian pegmatite rock which contains mica and quartz by froth flotation 

method.   
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• To evaluate the interaction between collectors adsorption on minerals surface in the 

flotation of pegmatite sample.  This can be identified through the effects of 

interactions between (i) N tallow 1,3 propylene diamine and N tallow 1,3 propane 

diamine dioleate collectors on feldspar and quartz (ii) Coco amine collector on 

mica, feldspar and quartz (iii) Effect of diesel on mica, feldspar and quartz 

incorporated with coco amine collector during flotation.  The tests were 

investigated in acidic conditions of pH by mean of zeta potential determinations, 

contact angles, single mineral flotation and fourier transformed infrared (FTIR) 

which then relates to single mineral flotation and thus to bench scale flotation. 

 

• To evaluate the flotation parameters of single mineral flotation of mica, feldspar 

and quartz  in Hallimond tube. 

 

•  To evaluate the flotation parameters of binary mixture of mica and quartz in 

 Denver cell using coco amine collector (cationic collector) 

 

• To develop a flotation technique of feldspar using non HF activator (H2SO4 acid) 

using mixed cationic-anionic collector by replacing HF with H2SO4 as an activator. 

 

1.5  Scope of work 

 

 Approximately two tones of pegmatite rock sample within the range of 20 cm to 25 

cm for this study will be crushed using jaw and cone crusher.  The crushed rock will be 
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ground to liberate the feldspar from other minerals of the ore and to prepare a suitable size 

in performing flotation test.  The characterizations of the sample will be determined by 

XRF, XRD, microscope, FESEM and AAS in order to decide the mineralogy characteristic 

and its content such as feldspar, quartz, mica and iron bearing.   Apart from that, magnetic 

separation for iron bearing minerals will also be run to get rid off iron content by double 

disk magnetic separator (DDMS) and wet high intensity magnetic separator (WHIMS).  

 

 Besides, the adsorption behavior of duomeen TDO on individual feldspar and 

quartz or coco amine on muscovite, feldspar and quartz will be assessed through zeta 

potential, contact angle, fourier transformed infra-red (FTIR) and single mineral flotation.  

The zeta potential will be carried out by Zeta plus for feldspar, quartz and muscovite as a 

function of pH as well as the effect of deionized water, diamine collector, duomeen TDO, 

coco amine and diesel on the mineral surfaces.  The contact angle measurement will be 

carried out by Kruss Tensionmeter K100 on feldspar and quartz surfaces after conditioned 

with diamine and duomeen TDO. The measurement will also be carried out on muscovite, 

quartz and feldspar after conditioned with coco amine. Based on the contact angle results, 

the interface energy will be calculated.  FTIR analysis will also be performed by Perkin 

Elmer Spectrum One on the similar samples in order to determine chemical bonds in the 

molecule. Thus, the relative adsorption of collectors on feldspar, muscovite and quartz will 

be accessed by the intensity of the adsorption band after conditioning with diamine, 

duomeen TDO, coco amine and diesel.  The adsorption behavior finally will be evaluated 

through single mineral flotation by means of Hallimond tube.   It involved feldspar, quartz 

and mica at several dosages of collector such as diamine, duomeen TDO, coco amine and 
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diesel.  Then, the optimum flotation parameters will be determined through the maximum 

recovery  for each mineral. 

 

 Finally, bench scale flotation tests will be carried out using binary mixture sample 

and ground non-magnetic pegmatite fraction sample by Denver cell.  The purpose of using 

binary mixture is to run mica flotation where coco amine and pine oil became its collector 

and frother respectively and will be assisted by diesel as promoter.  The ground non-

magnetic pegmatite fraction sample will be tested with HF acid as modifier, diamine as 

collector and aero 65 as frother for feldspar flotation.  As for comparison, the flotation test 

will also be carried out on the sample by using sulfuric acid (H2SO4) as a modifier,  

duomeen TDO as collector, and aero 65 as frother.  Each float (concentrate) and sink 

(tailing) products will be analyzed by XRF.  Based on the XRF results, the grade of 

feldspar and quart will be calculated by using feldspar convention technique.   

 

1.6 Overview of thesis 

 

 This thesis is addressed in five main chapters which commenced with introduction 

followed by literature review-general, methodology, results and discussion and conclusion 

and recommendation  

 

 Chapter One, introduces generally about pegmatite as a source of feldspar and 

mica,  world market the problem statement.   Chapter Two, gives an overview of igneous 

rock, pegmatite, feldspar group and mica group including their method of separation 
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process as well as describes the literature of flotation theory, then relates with the 

fundamental aspects to support the flotation process such as the role of electrical charge on 

the solid surface subjected to zeta potential; other than that adsorption of collector, 

micelle, contact angle, fourier transform infra red (FTIR) and ionization in aqueous 

solution.   Chapter three explains the methodology and experimental procedures carried-

out for sample characterization, grinding test, magnetic separation, single mineral 

flotation, binary mixture flotation and non magnetic pegmatite flotation (real sample).   

Chapter four discuss the data analyses sample characterization, magnetic separation, single 

mineral and binary mixture flotation and the flotation of pegmatite sample.  Chapter five 

discuss the conclusion and recommendations for future work.   
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CHAPTER 2 

 

LITERATURE REVIEW  

 

2.1 Pegmatite 

 

 Pegmatite is a plutonic igneous rock generally coarse-grained ranges from 10 mm 

to 300 mm.   The grain size can range from less than 2.5 cm to more than a foot but rarely 

greater than 1 m.   Pegmatites range in size from small lens, one to a few meters in 

thickness, to large tabular bodies tens of meter thick and hundreds of meter long (Bates, 

1969; Karim, 1998; Anon, 2008).   K-feldspar and albite are the main constituents of 

granitic pegmatites and a certain number of other economic minerals. They occur 

frequently in association with granites and in some instances, there are also additional, 

often more exotic, minerals present (Bates, 1969; Karim, 1998; Deer, et al., 2001).     

 

 Pegmatite bodies occur as dikes, veins, or sills together with granite or syenite and 

this type of rock also have common minerals such as quartz, orthoclase feldspar, 

plagioclase feldspar and mica.   Where other minerals such as garnet occur they are the 

result of a secondary metamorphic process and others rock might contains tourmaline, 

beryl and others (Bates, 1969; Karim, 1998). 

 A pegmatite is in all cases dominated by some form of feldspar mica and with 

quartz.   Mineralogically, pegmatite are grouped into simple and complex types.  Simple 

pegmatites containing quartz, feldspar, biotite, apatite, garnet and monazite. The center 

http://en.wikipedia.org/wiki/Igneous_rock
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zones of complex pegmatites, however, may contain a wide variety of minerals such as 

muscovite, tourmaline, topaz, garnet, spodumene, scapolite, beryl, apatite, fluorite, zircon, 

and various rare minerals some limited to only a few localities in the world (Gwalani, et 

al., 1999).  

 Pegmatite may include most minerals associated with granite and granite-

associated hydrothermal system, granite-associated mineralization styles, for example 

greisens and somewhat with skarn associated mineralization.  Pegmatites crystallize during 

the last stages of injection of granitic magma.   The magmatic fluids are rich in water and 

cool extra slowly that crystal grow larger than usual.   Instead, the large crystals of a 

pegmatite formed in a magma that was extra rich in dissolved water. The water allowed 

the necessary elements to diffuse so fast to the sites of crystallization.   

 

 However, it is impossible to quantify the mineralogy of pegmatite because of their 

varied mineralogy and difficulty to estimate the modal abundance of mineral species 

which are only a trace amount.   This is due to the difficulty in counting and sampling 

mineral grains in a rock which may have crystals centimeters, decimeters or even metres 

across (Anon, 2004). 

 

 Pegmatite had been classified by Ginsburg et al. (1979) based to their depth of 

formation, mineralization and their relationship to igneous processes and metamorphic  

environment such as  mica bearing pegmatites, rare-element pegmatites and misrolitic 

pegmatites. 
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2.1.1 Feldspar  

 

 Feldspar is the most widespread important mineral group in the world, forming 

60% of the earth’s crust (Kauffman and Dyk, 1994).  It crystallized from magma in both 

intrusive and extrusive igneous rock and also present in many types of metamorphic rock 

and sedimentary rock.   It is used in glass manufacturing, in the production of ceramics, 

and in value added application such as fillers, and extenders in plastics, paint and rubber 

(Bolger, 1995).   Silica is often associated with the feldspars as quartz in pegmatic deposits 

and silica sand in feldspathic sand deposits.   Two properties of feldspar that make it useful 

for industrial applications are its alkali and alumina contents.   The sodium feldspar is 

preferred by many ceramic and glaze manufacturers as it exhibits a stronger fluxing 

property than potassium feldspar, which controls the degree of vitrification.   However, the 

refractoriness of the material increases with increased amounts of potassium feldspar in a 

ceramic body.    Potassium feldspar is often used in the manufacture of high voltage 

electrical porcelain.   The glass industries make use of the high alumina content of the 

feldspars as well as the presence of alkalis.   The ratio of alkali/alumina specifies its use 

for a given application (Gulgonul, et al., 2008; Roskill Information Services Ltd., 1999).    

. 

 All feldspars show good cleavages in two directions which make an angle of 90
0
, 

or close to 90
0
 with each other.    For physical properties, their hardness is about 6, specific 

gravity 2.56 to 2.77.   Colour: variable, but mostly white, cream or pink.  Zero potential 

charge occur between 1.4 to 1.6. 
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 Chemically, feldspar is a general term applied to the aluminosilicate mineral group 

combined with potassium, sodium or calcium, or a mixture of these elements.   They are 

described as potassium as potassium feldspar (orthoclase and microcline, KAlSi3O8), 

sodium feldspar (albite, NaAlSi3O8) and calcium feldspar (anorthite, CaAl2Si2O8).   The 

members of the series between KAlSi3O8 and NaAlSi3O8 are known as alkali feldspar.  

Those are in the series between NaAlSi3O8 and CaAl2Si2O8 as the plagioclase feldspar 

(Deer, 2001).  Members of both of these feldspar groups are given ternary system as 

shown in Figure 2.1.  

 

 The chemical compositions of feldspar in this ternary system are generally 

expressed in terms of molecular percentages or Or, Ab and An; for example Or20Ab75O8, 

and hyaloplane, (K,Ba)(Al,Si)2Si2O8, are relatively rare.    Any feldspar containing more 

than 5% of the third component may be called ternary.   Anorthoclase is albite containing 

up to one-third K feldspar.   The plagiclase feldspar (albite) and calcium feldspar 

(anorthite) lie at opposite ends of an isomorphous series (solid solution series). 

 

 Composition W, Al (Al, Si) Si2O8, a continuous three dimensional network of SiO4 

and AlO4 tetrahedra with positively charged mono- and /or di-valent cations in the 

interstices of this negatively charged network.    W = Na, K, Ca (and rarely Ba).   Feldspar 

can be divided into number of compositional series which is shown in Figure 2.1.   The 

division of the sodium-calcium feldspars into oligoclase and is arbitary.   There is also an 

important lower temperature form of potassium feldspar (K,Na) Al Si3O8 microcline. 
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 The unambiguous characterization of a feldspar requires a knowledge not only of 

the chemical composition but also of the structural state of the species.   The structural 

state, which refers to the Al and Si distribution in tetrahedral sites of the framework 

structure, is a function of the crystallization temperature and subsequent thermal history of 

a feldspar.   In general, feldspar that cooled rapidly after crystallization at high temperature 

show a disordered Al-Si distribution (high structural state).   Those that cooled very slowly 

Figure 2.1:  Nomenclature for the plagioclase feldspar series and high-temperature 

alkali feldspars (after Deer et al., 1963). 
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from high temperatures or those that crystallize at low temperatures generally show an 

ordered Al-Si distribution (low structural state). 

 

2.1.1.1  Chemical structure 

 General formula for common feldspars, is XAl(1-2) Si(3-2) O8 . The X in the formula 

can be sodium, Na and/or potassium, K and/or calcium, Ca. When the cation in the X 

position has a positive one (+1) charge such as with sodium or potassium, then the formula 

contains one aluminium and three silicons ions. If the formula contains the positive two 

(+2) cation calcium, then the formula will contain two aluminiums and only two silicon 

ions. This substitution keeps the formula balanced, because aluminium has a charge of 

positive three (+3) and silicon has a charge of positive four (+4).  Basically, the more 

calcium in the crystal, the more aluminium that will be needed to balance the charge. For 

example, in the plagioclase structures the amount of tetrahedral Al varies in proportion to 

the relative amount of Ca
2+

 and Na
+
 so as to maintain electrical neutrality; the more Ca

2+
, 

the greater the amount of Al
3+

.  

 Silicons and aluminiums occupy the centers of interlinked tetrahedrons of SiO4 and 

AlO4. These tetrahedrons connect at each corner to other tetrahedrons forming an intricate, 

three dimensional, negatively charged framework as illustrated in Figure 2.2.  The cations 

that represent the X in the formula sit within the voids in this structure.   
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 For general chemistry aspect, replacement of the surface monovalent cations by 

hydrogen occurs under the most mild acid conditions (Sekuli, et al., 2004).  Ahmed, et al., 

(2004) suggested that selective leaching of aluminium from silicate lattice takes place 

below pH 4.0.    

 

2.1.1.2  Mineral descriptions 

 Feldspar minerals can be subdivided into two common groups; potassium feldspar  

namely orthoclase and microcline, whereas plagioclase feldspars comprise of albite and 

anorthite.  In between sodium and calcium, the other feldspars of the plagioclase series are 

oligoclase, andesine, labradorite and bytownite. They are composed of suitable proportions 

of sodium and calcium with an increasing percentage of calcium begining from mineral 

Figure 2.2: Framework silicate structure (after Manser, 1975). 
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oligoclase to bytownite, turning completely into calcium feldspar (anorthite). A rock 

containing only plagioclase feldspars is called anorthosite (Kauffman and Dyk, 1994). 

 

(a) Potassium feldspar 

 

 Potassium feldspar is a generic name for three very closely related minerals: 

orthoclase, sanidine and microcline. These three Feldspar minerals have equal physical 

properties. They are all composed of the same elements, but their crystal structure slightly 

differs. It is sometimes impossible to tell apart one of these minerals from another without 

x-ray analysis. Because of this, all these three minerals may be simply called potassium 

feldspar.    

 

(i) Orthoclase feldspar 

 

 Orthoclase (KAlSi3O8) is named of Greek for straight fracture because two 

cleavages are at right angles to each other.  Orthoclase is a polymorph of other minerals 

that share the same chemistry, but have different crystal structures (Anon, 1995).  

Orthoclase is a common constituent of many igneous rocks and is often found in huge 

masses in pegmatite vein, granites and granitic gneisses.    Orthoclase is used in the 

manufacture of porcelain and as a constituent of scouring powder.   Adularia (from 

Adular) is essentially potassium silicate; when pearly and opalescent it is called 

moonstone and is used in jewelry.   These opalescent varieties are known to be an 

intergrowth of orthoclase and albite.   The medium to high temperature, monoclinic 

polymorph of KAlSi3O8 with a partially ordered structure, may form by slow cooling of 

http://www.minerals.net/mineral/silicate/tecto/feldspar/orthocls.htm
http://www.minerals.net/mineral/silicate/tecto/feldspar/microcln.htm
http://www.minerals.net/glossary/terms/c/crysstrc.htm
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sanidine which is a glassy kind of orthoclase (Simon and Schuster, 1978).   Physical 

properties of orthoclase is shown in Table 2.1. 

 

 

Minerals Color Specific 

Gravity 

Hardness Crystal 

system and 

habbit 

Cleavage Observation 

Orthoclase 

KAlSi3O8 

Colorless, 
white, grey, 

flash red, 

rarely 
yellow or 

green 

2.5-2.63 6 Monoclinic; 

prismatic 

crystal, 

Often they 
are 

elongated on 

the a -axis, 

parallel to 
{010} also 

granular 

massive  

 

Perfect 
{001}; 

good 

{010} at 
right 

angle 90
o 

An important 
tectosilicate mineral 

which forms 

igneous rock and 
metamorphic 

 

 

(ii) Microcline 

 

 Microcline (KAlSi3O8) is an important igneous rock-forming tectosilicate mineral.   

It is a potassium-rich alkali feldspar.   Microcline typically contains minor amounts of 

sodium.   It is common in pegmatite vein, granites and granitic gneisses.  Microcline forms 

during slow cooling of orthoclase; it is more stable at lower temperatures than orthoclase.   

Sanidine is a polymorph of alkali feldspar stable at yet higher temperature.   Microcline is 

generally characterized by cross-hatch twinning that forms as a result of the transformation 

of monoclinic orthoclase into triclinic microcline (Hussin, 1992). 

 

Table 2.1: Physical properties of orthoclase (after Wan Hassan, et al., 1995). 

 

http://en.wikipedia.org/wiki/Silicate_minerals
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Igneous_rocks
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 Microcline may be chemically the same as monoclinic orthoclase, but because it 

belongs to the triclinic crystal system, the prism angle is slightly less than right angles; 

hence the name microcline from the Greek small slope.   It is a fully ordered triclinic 

modification of potassium feldspar and is dimorphous with orthoclase.   Microcline is 

identical to orthoclase in many physical properties; it can be distinguished by x-ray and 

optical examination; viewed under a polarizing microscope, microcline exhibits a minute 

multiple twinning which forms a grating like structure that is unmistakable (Hussin, 1992).  

The structure of microcline is schematically illustrated in Figure 2.4.  Cations are 

presented by K
+
 in microline.   The anionic centers are the polar groups, i.e ]≡Si-OH while  

non-polar siloxane groups as ]≡Si-O-Si≡[ (Demir, et al., 2003).  Physical properties of 

microcline is shown in Table 2.2 (Al Mashoor, 1990).  

 

 

 

 

 

 

Figure 2.3: The structure of microcline (after Demir et al., 2003) 
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Table 2.2: Physical properties of microcline (after AlMashoor, 1990). 

Minerals Color Specific 

Gravity 

Hardness Crystal 

system and 

habbit 

Cleavage Observation 

Microcline 

KAlSi3O8 

White to 
pale yellow, 

more rarely 

red or green  

2.56 6-6.5 Triclinic; 
similar to 

orthoclase 

Perfect 
{001}; 

good 

{010}at 
nearly 

right 

angle at 

89.5
o 

Similar to 
orthoclase but 

doesn’t show 

polysynthetic 
twinning striation 

or perfect grid at 

{010} 

 

 

(b) Plagioclase feldspar   

 

 Plagioclase is the most abundant mineral of most basalts, ocuring both as 

phenocryst and in the groundmass.  Sodium feldspar presented as albite and anorthite.  The 

sodium feldspar albite (NaAlSi3O8) and the calcium feldspar anorthite (CaAl2Si2O8) form 

an isomorphous series from pure albite at one end and pure anorthite at the other, the 

molecules being completely miscible with each other.   The members of this series are 

known as soda-lime (or lime-soda) feldspars, and as a group are called the plagioclase 

feldspars.   Always present are striations, fine parallel lines, resulting from minute multiple 

twinning which is never seen on orthoclase or microcline (Deer, 2001). 

 

More or less, four intermediate plagioclase feldspars are recognized between albite and 

anorthite (as shown in Table 2.3) based on variation in the amount of sodium and calcium;  


