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PENGURANGAN KELUASAN KALKULATOR SINDROM UNTUK

DEKODER BOSE-CHAUDHURI-HOCQUENGHEM YANG KUAT

ABSTRAK

Kod Bose—Chaudhuri-Hocquenghem (BCH) mempunyai penggunaan yang meluas
untuk memberi perlindungan ralat untuk berbilang ralat rawak dalam kod binari. Ini
merupakan faktor penting untuk menggunakan Kod BCH biasanya digunakan dalam
pelbagai aplikasi seperti “solid-state drives” (SSDs) dan sistem komunikasi gentian
optik berkelajuan tinggi, sistem komunikasi tanpa wayar. Operasi dalam dekoder BCH
boleh dirumuskan kepada 3 langkah: 1) mengira sindrom daripada kod diterima; 2)
pengiraan polinomial pengesanan ralat; 3) mengesan ralat daripada kod diterima.
Projek penyelidikan ini mencadangkan blok kalkulator sindrom yang cekap untuk
BCH (n = 255, k = 111, t = 18) dekoder dari segi penggunaan keluasan perkakasan.
Dalam seni arkitek blok kalkulator sindrom sebelumnya, semua sindrom ganjil perlu
dikira dengan pengiraan langsung yang memerlukan lebih keluasan. Dalam seni
arkitek yang dicadangkan, ciri-ciri Galois field telah dieksploitasi untuk mengira
sindrom ganjil dengan menggunakan kaedah operasi kuasa untuk menjimatkan
penggunaan keluasan. Seni arkitek yang dicadangkan adalah lebih baik dari segi
penggunaan keluasan berbanding dengan seni arkitek sebelumnya. Kesimpulannya,
dengan mengira sindrom ganjil indeks dengan operasi kuasa, 8% penjimatan keluasan

dicapai tanpa menjejaskan penggunaan kuasa dan frekuensi operasi.

viii



AREA REDUCTION OF SYNDROME CALCULATOR FOR STRONG

BOSE-CHAUDHURI-HOCQUENGHEM DECODER

ABSTRACT

Bose—Chaudhuri-Hocquenghem (BCH) codes have a widespread use to provide the
error protection for multiple random errors in a binary code. BCH codes is commonly
applied in various practical application such as advanced solid-state drives (SSDs),
high-speed fiber optical communications system and wireless communication system.
The operation in a BCH decoder can be summarized into 3 steps: 1) compute the
syndromes from the received codeword; 2) computing the error locator polynomial; 3)
locating the errors. This research project proposed an area efficient Syndrome
Calculator block of the BCH (n=255, k=111, t=18) decoder. In the previous SC block
architecture, all the odd-index syndromes need to be computed by direct calculation
which consume more area. In the current proposed architecture, Galois field’s property
is exploited to compute the odd-index syndromes by using power operation in order to
save the area consumption. This architecture is better in terms of area compared with
previous architecture. In conclusion, by computing the odd-index syndromes with
power operation, 8% area saving is achieved without compromising the power

consumption and its operating frequency.



CHAPTER 1

INTRODUCTION

1.1 Background

Error-correction codes (ECC) are techniques that provide the delivery of digital
data reliably over an unreliable communication channels. Many communication
channels are subject to noise and interference. Errors may be introduced from the
source to the receiver during transmission. Error detection techniques enable the
detection of such errors, while error correction allow restoration of the original data in
many cases. ECC have a widespread use in communication systems to recover errors
caused by poor environment. There are many types of ECC such as Hamming codes,
Bose—Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, turbo
codes and low-density parity-check codes (LDPC). Hamming codes is one of the
earliest ECC [1] [2] [3]. BCH codes and RS codes are among the most popular codes
due to their widespread use in current communication systems [1] [2] [3]. Turbo codes
and LDPC codes are relatively new constructions that can provide almost optimal
efficiency [1] [2].

BCH codes is one of the most commonly applied error-correction code in many
communication system. For instance, BCH codes applied to one of the standard that is
most common choices in Digital TV broadcasting system [4] [5]. Besides, BCH codes
is chosen to be implemented in Wireless Body Area Network (WBAN) for its low

power consumption advantage [6]. Recent years, BCH codes is applied to
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cryptographic hardware designs that need to store some high security information as
well. This because the occurrence of malicious attack increases drastically due to the
widespread usage of online activities globally [7].

Apart from that, recent applications of data storage system such as advanced
solid-state drives (SSDs) are heavily rely on BCH code to correct the errors occurred
in the memory cell [8] [9]. High demand for increased storage capacity has resulted in
the introducing multi-level cell (MLC) from single level cell (SLC) to reduce the
production cost. However, MLC is experiencing higher error rate as compared to
previous SLC. BCH codes are added to detect and correct the error introduced in the
storage devices. High speed BCH decoding performance and high error-correction
capability are greatly demanded. Massive parallel BCH decoding is able to satisfy such
a high-throughput and high error correction requirement by paying the additional cost
to the area consumption. However, larger area resulted higher power consumption and
lower die utilization of the storage devices. Therefore, a strong and high performance
but yet small size of BCH decoder is required to overcome the issue. A BCH decoder
is considered strong if it can correct 5 or more errors [31].

BCH codes is popular for its capability to correct multiple random error in a
binary code. Also, BCH codes is known to be cost effective, reliable, flexibility and
most importantly its simplicity in implementation [10]. BCH codes are cyclic codes
which work under Galois Field (GF). The Galois fields or Finite fields’ theory defines
the properties of BCH codes. In general, development of a BCH decoder can be
summarized into three steps: 1) syndromes calculation (SC) from the received
codeword; 2) computing the error locator polynomial by using Berlekamp-Massey

algorithm (BMA); 3) finding the error locations by applying Chien Search (CS).



In this project, syndrome calculation from the received codeword is carried out
by the combination of direct computation and power operation in binary Galois fields.
The direct computation unit is comprising of p-parallel syndrome calculation unit
which process p-bit of codeword in an iteration. Power operation in binary Galois
fields unit consist of a series of XOR logic gates. For computing the error locator
polynomial, inversion-less BMA is chosen [11] to eliminate the complex calculation
of inverses in Galois fields. Lastly, for the sake of area consideration, the conventional

serial Chien Search [1] is selected to find the error locations.

1.2 Problem Statements

In order to increase the performance of the decoder, each sub-block of a BCH
decoder can be implemented with a large parallel factor. Several optimization schemes
have been developed for the Chien search to increase its performance as well as
reducing the area consumption [12] [13]. On the other hand, there are several
enhancement proposed by researchers to relax the complexity of a BMA design. For
example, BMA architecture proposed in [14] reduces the area consumption, while
BMA architecture proposed in [15] reduces the latency of the BMA block. In terms of
SC block, performance of calculation was improved by implementing the parallel
syndrome calculation unit in the SC block. This is to reduce the number of iterations
required to calculate all the syndromes.

Error correcting capability of BCH decoder is also affecting the area
consumption of the design. However, SC block is the one that mainly impacted

because more parallel syndrome calculation units required to calculate all syndromes.
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The SC block in [8] proposed to exploit Galois fields’ property to compute the even-
index syndromes from odd-index syndromes by power operation. Result shown
signification improvement of more than 50% of area reduction. One year later, the
same group of researchers proposed another innovation to further reduce the area
consumption around 10% - 20% by eliminating the duplicate calculation of the
common sub-expression (CSE) of GF multiplication [16]. Even though both of the
proposed architectures shrink the area consumption significantly, still the direct
computation syndromes are required for all of the odd-index syndromes.

The specific focus area of the project is a continuous research to develop a new
architecture to decrease the number of direct computation of the syndrome in the SC
block. This is to further reduce the area of an SC block for a strong BCH decoder while

not sacrificing its decoding performance.

1.3 Objectives

The objectives of the research project are as follows:
1. To propose a better architecture to reduce the area consumption of the SC block
of a BCH decoder without sacrificing its performance.
2. To implement the proposed architecture into a RTL and synthesize the design

to obtain the area report in order to justify the result.



1.4 Research Scope

The scope of this research project consists of:

1.

2.

Review of the previous state-of-the-art of the BCH SC block.

RTL implementation and simulation of the BCH decoder with the
proposed architecture of new SC block by using System Verilog (SV)
Hardware Description Language (HDL). The RTL design is verified by
using Synopsys VCS simulator.

RTL logic synthesis of the design for comparison in between the proposed
architecture and the previous BCH decoder. The logic synthesis process
is carried out by using Synopsys Design Compiler tools.

The proposed architecture mainly focus on the area optimization of the
SC block in a BCH decoder without compromising its performance and

power consumption.

15 Thesis outline

This thesis consists of five main chapters.

In chapter 2, an overview of the BCH codes and its properties is presented and

Galois Fields will be discussed. Next, the general BCH encoder and decoder are

discussed. Then, the conventional architecture of the SC block and several

enhancements that have been proposed by other researchers on Syndrome Calculation

are discussed here as well.



Chapter 3 discuss the methodology of this research project in detail. First of all,
the proposed architecture of designing a small SC block is explained. Next, the details
design flow of the proposed architecture is described. The design languages that used
to implement the RTL and the tools that used to simulate and synthesis the design are
presented as well. The RTL architecture of the proposed SC block is explained in detail
and the comparison in between proposed method and the previous architecture are
presented. Subsequently, the test bench that used to verify the functionality of the
design is discussed. Lastly, the flow that used to justify the performance of the
proposed architecture is explained.

In chapter 4, the simulation results of the RTL design are presented and
discussed. Next, the logic synthesis results are analysed and discussed in various aspect
such as area consumption, power consumption and maximum operating frequency.
The simulation results and logic synthesis results are summarized in this chapter as
well.

Last but not least, chapter 5 gives the conclusion regarding the overall research.
Discussions and recommendations for future works on this project are highlighted as

well.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides some basic concepts for better understanding of this
research. First of all, it is important to identify and understand the goal of this research.
Related researches on BCH code and current existing design architectures are
described in this chapter. This chapter begin with the basic introduction of ECC. Next
basic concept of Galois Fields that define the properties of BCH codes will be
presented. Subsequently, the overview of the BCH codes and its properties will be
discussed. In continuation with that, the conventional architecture of the SC block of
a BCH decoder and several enhancements that have been proposed by other

researchers on SC block are discussed as well.

2.2 Error correction codes (ECC)

Digital communication systems are very common in our daily lives. The most
common examples include cell phones, digital television, and digital radio and internet
connections [1]. Each of these examples are generally fits into a common digital

communication system block diagram as shown in Figure 2-1. The block diagram



shows two types of encoders and decoders, there are source encoder and decoder
together with channel encoder and decoder.

Source encoder converts the information source bit sequence into another bit
sequence with a more efficient representation of the information. This operation is
more often called compression. The source decoder is the encoder’s counterpart which
recovers the source sequence.

The function of the channel encoder is to protect the source sequence bits to be
transmitted over a noisy channel. The encoder converts its input into an alternate
sequence that provides immunity from the various channel impairments. On the other
side, the role of the channel decoder is to retrieve compressed sequence bits that input
to the channel encoder regardless of the presence of noise, distortion, and interference

in the received word from the channel output.

Source Channel
Source >
encoder encoder
Transmitting
channel
L Source Channel
Destination |« < «
decoder decoder

Figure 2-1 Basic digital communication system block diagram

There are huge number of channel coding techniques for the error prevention.
There are two main basic techniques namely automatic request-for-repeat (ARQ)

schemes and forward-error-correction (FEC) schemes [1]. In ARQ schemes, the



function of the code is simply to detect whether the received word contains any errors.
A request will be generated for retransmission of the same word from the receiver back
to the transmitter if a received word does contain one or more errors. This type of codes
are said to be error-detection codes. In FEC schemes, the code is capable to correct the
error detected through a decoding algorithm. The codes for this approach are said to
be error-correction codes (ECC).

ECC mechanism is implemented in two inverse operations, encoding and
decoding operation. The former operation is carried out by adding redundancy bits to
the message or information bits to form a longer binary sequence called codeword.
This operation is called encoding operation. The second operation is to retrieve the
message bits by excluding the redundancy bits from the received codeword. The
redundancy bits is often called parity check bits.

In block coding, an information sequence is segmented into message blocks of
fixed length. Each message block consists of k message bits and there are 2% unique
messages. At channel encoder, each input message sequence of k message bits is
encoded into an n-bits codeword with n > k. Each codeword are one to one mapped
to each message. Since there are 2% distinct messages, there are 2% unique codewords
as well.

The codeword is more commonly represented in the form of (n, k) block code.
There are n — k parity check bits that are added to each input message sequence by
the channel encoder. The purpose of adding parity check bits is to provide the
codeword with the error detecting and error correcting capability. These parity check
bits do not carry any new information. The ratio, R = k/n is called the code rate,
which is interpreted as the average number of information bits carried by each

codeword bit.



By definition [3] a binary (n, k) block code of length n with 2% codewords is
known as a linear (n, k) block code if and only if the 2% codewords form a k-
dimensional subspace of the vector space, V,, of all the n-tuples over the field GF(2).
In another word, it may be seen that in a binary linear code, the modulo-2 sum of any
pair of code words generate another codeword.

There are many types of ECC such as Hamming codes, BCH codes, RS codes,
turbo codes and LDPC codes. BCH codes is one of the most popular codes for current
applications for its capability to correct multiple random error in a binary code,
effective, reliable, flexibility and most importantly its simplicity in implementation
[10]. BCH codes are cyclic codes which operate under Galois Field (GF). The Galois

Field’s theory defines the properties of BCH codes.

2.3 Galois Field (GF)

Galois field also known as finite field. It is the fields that contain finite numbers
of elements. Galois field play an important role in the construction of error-correction
codes that can be efficiently encoded and decoded. The set of integers, {0, 1, ...,p - 1},
forms a finite field GF(p) of order p under modulo-p addition and multiplication, where

0 and 1 are the zero and unit elements of the field.
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2.3.1 Properties of Galois Fields

Some of the useful properties of a Galois field [1] are:

e All elements in GF are defined on two binary operations which are addition
and multiplication.

e Both addition and multiplication operations are commutative, associative,
and distributive.

e The result of the binary operation must be an element in the GF.

e The identity element of addition operation is called the “zero” element,
such thata + 0 = a for any element a in the field.

e The identity element of multiplication is called the unit element, such that
a * 1 = a forany element a in the field.

e Forevery element “a” in the GF, there is an inverse of addition element “b”
such thata + b = 0.

e For every non-zero element “a” in the GF, there is an inverse of
multiplication element “b” such that ab = 1.

e Subtraction can be defined as addition of the inverse whereas division can

be defined as multiplication by the inverse.

2.3.2  Binary field GF(2)

The simplest Galois field is GF(2). Its elements are the set {0, 1} under modulo-

2 addition and multiplication. Addition and subtraction are the same. The addition and

11



multiplication operation of two elements, A and B in GF(2) are shown in Table 2-1

and Table 2-2 respectively.

Table 2-1 Modulo-2 addition of two elements, A and B in GF(2)

Table 2-2 Modulo-2 multiplication of two elements, A and B in GF(2)

2.3.3 Extended Binary Field GF(2™)

The Galois field GF(2™) contains GF(2) as a subfield and is an extension field
of GF(2). Let us suppose g = 2™, for any positive integer m, a Galois field GF(q) with
g elements can be constructed based on the prime field GF(2) and the primitive element,
a of the GF(q). The power of a are from a° to a?2 and zero element from the GF(q).
It is given that,

a?™ 1= %=1 (2.1)

Since addition and subtraction in GF(q) are the same, therefore,

12



zm

a? "14+1=0 (2.2)
Construction of Galois field GF(q) elements is based on irreducible primitive
polynomial denoted as p(X) with degree m, this polynomial need to be a factor of
X2™=1 4 1[3]. For example, in GF(2%) the factors of X7 + 1 are:
XT+1=X+DX3+X*+DX3+X+1) (2.3)

For both of the polynomials of degree 3 are primitive and irreducible that can be chosen.
Let us choose the polynomial shown in equation (2.1).

p(X)=X3+X%+1 (2.4)
Let us suppose the primitive element a be the root of the primitive polynomial. By
substituting « into equation (2.4),

pl@)=a®+a?+1=0 (2.5)
Rearranging equation (2.5), the equation can be represented as equation (2.6),

a’l=a’+1 (2.6)
The other non-zero elements of GF(2°) can be computed as:

at=axad=ax(a*+1)=a*+a=(a’+1)+a=a’+a+1 (2.7)

ab=axat=ax(a’+a+1)=a+ a’+a=a+1 (2.8)
a=axa’=ax(a+1)=a’+a (2.9)
a’ =axab=ax(a’*+a)=a’+ a’=1= a° (2.10)

All the eight elements in GF(2%) can be computed by the primitive polynomial
chosen from equation (2.4), are {0, a®, at, a2, a3, a*, a®, a®}. All the elements
starting from a* to «® are presented function of a°, a® and a? which are called the

basis of the Galois field.
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2.3.4  Representation of Galois Field Elements

The elements in GF can be represented in three different forms namely power
representation, polynomial representation and vector representation. Let a be the
primitive element of GF(2%) and the primitive polynomial is given by equation (2.4).
The elements in GF(2) can be represented in three different forms as shown in Table

2-3.

Table 2-3 GF(2®) generated by the primitive polynomial p(X) = X3 + X2 + 1 over

GF(2)
Power representation Polynomial Vector representation
representation a?, al, a®
0 0 000
1 1 001
al at 010
a’ a? 100
as 1+ a? 101
at 1+a+ a? 111
a® 1+a 011
a® a+ a? 110

2.4 BCH Code

In coding theory, the BCH codes form a class of cyclic codes that are able to
correct multiple random errors. BCH codes were discovered by Hocquenghem back in
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1959 [17], and independently discovered by Bose and Chaudhuri in 1960 [18]. BCH
codes are specified in terms of the roots of their generator polynomials in finite fields.
For any positive integer m >3 and t < 2™~1, there exists a binary BCH code with the

following parameters:

e Block length: n=2M"-1
e Number of parity-check digits: n—k < mt
e Minimum distance: d=>2t+1

e Error correcting capability t

This BCH code is capable of correcting t or fewer random errors over a span
of 2™ — 1 transmitted code bits. It is called a t-error-correcting BCH code. Figure 2-2
shows the typical BCH encoding and decoding operation. The encoded BCH
codewords, v(x) were sent to the receiver via a transmitting channel subject to noise
and interference. The received BCH codewords, r(x) with error at the receiver were
stored in the buffer temporary. At the same time, the received codeword were fed into
the BCH decoder to locate the error, e(x) injected into the original encoded codeword.
Finally, the error located is XOR’ed with the received codeword that stored in the

buffer to retrieve the original encoded codeword.
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- Decoder
Encoder Noisy
Channel
Syndrome Error location
-+ t—v(x) (5 ) » v(
m(x) (%7 (x) \T/ r(x) Computation %S(x)ﬁ polynomial %c(x){ Root search %e(x, (x)—>

g(‘X) E(‘X) " Buffer

m(x) : message polynomial, m-bit

g(x) : generating polynomial, m*t-bit

v(x) : code word polynomial, n-bit
v(x)=m(x)g(x)

e(x) : error polynomial, n-bit

r(x) :received polynomial, n-bit
r(x)=v(x)+e(x)

S(x) :syndrome in GF(2"), 2T*M-bit
S = (51,5, -.,S21)
S;=r(a), S;= r(az), o Sy = r(az)

o(x) : error location polynomial, (T+1)*M-bit
1+ 03X+ 00X +... + oxX'

Figure 2-2 Typical BCH encoding and decoding operation

24.1 BCH Code Construction

Construction of a t-error-correcting BCH code begins with a Galois field
GF(2™):
e Leta be a primitive element in GF (2™).
e The generator polynomial, g(x) of the t-error-correcting binary BCH code
of length 2™ — 1 is the smallest-degree polynomial over GF(2) that has

the following 2t consecutive powers of « as its roots.

e g(x)hasa,a? a3, ..,a? and their conjugates as all of its roots.

glal) =0for1<i<2t (2.11)
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e Foril<i<2t, letg;(x) be the minimal polynomial of a‘. Then g(x) is
given by the least common multiple (LCM) of ¢, (x), p,(x),..., P+ (x),
that is:

9(x) = LCM{p1(x), p2(x), ..., P2:(x)} (212)

e [Ifiisaneveninteger,jisanoddintegerand k > 1, and ican be expressed
asi = j2¥. Thena = (a’) 2'is a conjugate of a’. Therefore,

@i(x) = @j(x) (2.13)

e Generator polynomial can be simplified as equation given by:

g(x) = LCM{@,(x), p3(x),..., 92e-1(x)} (2.14)

The degree of g(x) is at most mt, That is, the number of parity-checks digit,

n — k, of the code is at most equal to mt.

2.4.2  Syndrome Calculation (SC)

Suppose a code polynomial v(x) of at-error-correcting BCH code, r(x) be the
corresponding received polynomial and e(x) be the error pattern:
e The received polynomial is r(x) given by:
r(x) = v(x) + e(x) (2.15)
e The syndrome of r(x) which consists of 2t syndrome components is given
by:
S = (81,5, ,Sy) = r-HT (2.16)
e For1 <i < 2t,the i*" syndrome component is given by:
S;=71(a)) = 1o + rat + rpa?l, 4+ rym_pa@" (2.17)
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e Since a,a? a3, ..., a?" are roots of each code word polynomial, v(a') =
0 for 1 <i < 2t. From equation (2.15) and equation (2.17), the it"
syndrome component can be expressed as equation (2.18)
Si=e(a)for1<i<2¢ (2.18)

If r(x) is divided by the minimum polynomial ¢;(x) of a':

o Since ¢;(a') =0, then S; = r(a’) = b;(a?) for 1 < i < 2t. We have:
r(x) = a;(x)p;(x) + by(x) (2.19)

where b;(x) is the remainder with degree less than that of ¢;(x).

2.4.3  Computation of Error Locator Polynomial

Suppose the error pattern, e(x) contains v errors at the locations j;, jz, -, ju,
where 0 < j; <j, < <j, <n:
e Then the error polynomial, e(x) is given by:
e(x) = x/t +x)2 + -+ x)v (2.20)
e 2t syndrome components, Sy, Sy, -+, Sa;:
Si=e(@) =a’t+ a2+ -+ ak,

S, = e(a?) = (a1)” + (al2)” + -+ (al?)”,

Spe = e(@?®) = (@) + (a2)" + - + (ai)” (2.21)
e For 1<1 <wv, define , = a’t. 2t syndrome components can be
expressed in the similar form below:

S =p1+ B2+ + By,
18



S, = ﬁ12 + 322 + et ﬁvza

Sy =Bi”" + B + 4 B (2.22)
Define the error-location polynomial, o(x) of degree v over GF(2™) that
has B, %, B, ++, By~ * (the inverses of the location numbers By, 8o, -+, By)
as roots:
o(x) =1+ Bx)(A+ Byx) - (1 + Byx) = 05 + 01X + - + g,x¥ (2.23)
where,

oo =1,

o1 =P1+ B2+ + By,

0y = P1B2 + B1Bz + -+ + Bu-1Bv,

03 = P1B2B3 + P1B2Ba + - + Pv—2Bv-1Bv

0y = B1B2PB3 *+ Bv-2Bv-1Bv-
The inverses of the roots of error-location polynomial, o (x) give the error-
location numbers.
From equation (2.21) and equation (2.22), 2t syndrome components,
S1,8,,+++,8,; can be expressed in terms of the coefficients of the error-
location polynomial, g, 04, -+, 0y,:
S1+0, =0,
Sy + 0151 + 20, =0,

53 + 0'152 + 0_251 + 30'3 = 0,

SU + 0-151;_1 + 0-251;_2 + .- O-U_lsl + vo, = 0,
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Sp+1 +01S, + 058,14 + 0,15, + 0,5, =0, (2.24)

e Above identities is called Newton identities.

In general there will be more than one error pattern for which the coefficients
of its error-location polynomial satisfy the Newton identities. To minimize the
probability of a decoding error, the most probable error pattern for error correction
need to be found. Finding the most probable error pattern means determining the error-
location polynomial of minimum degree whose coefficients satisfy the Newton

identities. This can be achieved iteratively by Berlekamp—Massey (BM) algorithm.

2.4.4  Berlekamp-Massey Algorithm (BMA)

Berlekamp-Massey algorithm [19] [20] is an algorithm that will be used in
BCH decoder to find the error-location polynomial, o (x) iteratively in 2t steps:
e For1 <k < 2t,thealgorithm at the k-th step gives an error-location
polynomial of minimum degree as below:
c®(x) = 0,® + g, ®x + -+ + g, Pxlk (2.25)
where coefficients satisfy the first k Newton identities.

e (k+1)th step error-location polynomial, o *+V (x) is given by:

o ® V(%) = 6O (x) + dpd; ' x* i@ (x) (2.26)
where
did; T xk i@ (x) is the correction term
dy is the kth discrepancy dip = Sp41 +

0198, + 0,8y + - + Ulk(k)5k+1—lk
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d;”? is inverse of ith discrepancy
i is the step prior to k which is ¢ (x) such that
the ith discrepancy, d; # 0 and i — [; has the largest value.
l; is the degree of ¢ (x)
Steps of using BM algorithm for finding the Error-Location Polynomial of
a BCH Code:
o Initialization:
» For k=-1,set 6VX)=1d_;=1,1_,=0and —1—
I, =—-1.
= Fork=0,setc@X)=1,dy=5;, [, =0and0—1, = 0.
o Step 1: If k = 2t, output ¢™ (X) as the error-location polynomial
o(x); otherwise go to Step 2.
o Step 2: Compute d;, and go to Step 3.
o Step 3 If dp,=0, set c**V(X)=0c®(X) ; otherwise, set
c® D (x) = 6 ®(X) + dpd; " x* oD (X). Go to Step 4.
o Stepd:k < k+1.Goto Step 1.

The BM algorithm can be executed by setting up and filling in the

following table 2.4:
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Table 2-4 BMA execution table

Step | Partial solution | Discrepancy | Degree | Step/degree difference
k s (X) dy li k=l
-1 1 1 0 -1
0 1 S1 0 0
1 o@D (X) dq ly 1-14
2 a@(X) d, L, 2—-1,
2t c@xy | - | |

Based on the above BM algorithm, an interesting pattern k-th step solution will
be observed. The solution ¢*~V(x) at the (2k—1)th step of the BMA is also the
solution o) (x) at the 2k-th step of the BMA:

o@(x) = gC@k-D(x) for1 <k <t (2.27)

Consequently, for decoding a binary BCH code, the BM algorithm can be

simplified as follows:

e Steps of using Simplified BM algorithm for finding the Error-Location
Polynomial of a BCH Code:

o Initialization:

= Fork=-1/,, set D (x) =1, d_i =1 11, =0and

2t/ -1, = -1
= Fork=0,setc@X)=1,dy =S5, l[p=0and0— 1, = 0.
o Step1: If k = t, output ¢™® (X) as the error-location polynomial o (x);
otherwise go to Step 2.
o Step 2: Compute dy =Syp1+ 0,08 +0,08,,_ + -+

01, Syx41-1, and go to Step 3.
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o Step 3 If dpy=0, set c**V(X)=0c®(X) ; otherwise, set

ok V(X)) = 6®(X) + dpd; " X2¢-Da@(X). Go to Step 4.

o Stepd:k < k+1.Goto Step 1.

e The simplified BM algorithm can be executed by setting up and filling in

the following table 2-5:

Table 2-5 Simplified BMA execution table

Step | Partial solution | Discrepancy | Degree | Step/degree difference
k a®X) dy L 2k — 1,
—Y% 1 1 0 -1
0 1 S 0 0
1 ALI09) dy L 2—-1
2 @00 d, L 4 -1
t cOX) | | e e

It can be noticed that from either the conventional or simplified BMA, the

evaluation of the correction term in each iteration required GF inverter. However,

designing a GF inverter and running it at each iteration consume extra logic and impose

additional delay in the calculation. Therefore, the inversion-less BMA [21] was

introduced and several improvements [11] [14] [15] were proposed by researchers to

eliminate the GF inverter that relax the complexity of the BMA design.
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2.45  Chien Search (CS)

After the error location polynomial is obtained, the error locations are found
by finding the all the roots from the error location polynomial. The error location is
the power of alpha from each of the roots found.

Consider error location polynomial, o(x) in equation (2.28).

o(x) = 09 + 01x + 0,x% + -+ + g,x" (2.28)

One method to find the roots is evaluating o (x) with each non-zero element in
GF(2™), (1,a,a? a3, ... ,a?"~2). However, this will require a lot of variable
multiplication and addition.

The Chien Search algorithm observed that:

e Letd, = g(a), then

o(a) = oy + oyt + az(ai)z + -+ av(ai)t (2.29)
o(a’) = Ao+ Ari+ Agi + -+ Ay (2.30)
o(a'*t) = oy + o2ttt + az(ai“)z + -+ a,,(ai“)t (2.31)
o(a'*t) = gy + o1(a')at + Uz(ai)zaz + -t Uv(ai)tat (2.32)
o(ai*t) = 2g; + Ay at + Ay 0% + - + A at (2.33)

e From equation (2.29), (2.30), (2.31), (2.32) and (2.33), it can be observed
that:
Aj,i+1 = Aj’iaj (234)

If ¥¢_04;; = 0, then ' is a root. For each of the a, i will be the bit location

of the received codeword that contains error.
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