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PEMBANGUNAN DAN APPLIKASI MODEL PENGOPTIMUMAN 
BERLAPISAN BERDASARKAN PERKOMPUTERAN EVOLUSI 

 
 
 

ABSTRAK 
 

Thesis ini mempersembahkan satu model umum pengoptimuman berlapisan 

berdasarkan perkomputeran evolusi yang dapat menyelesaikan pelbagai masalah 

pengoptimuman berkaitan pelbagai keputusan, pelbagai resolusi, interaktif, hibrid dan 

pelbagai objektif telah dipersembahkan. Dalam model yang dicadangkan, tumpuan diberi 

kepada algoritma genetik (GA) dan pengoptimuman partikel (PSO) dalam mekanisma 

pencarian evolusi.  Asas model ini adalah pembangunan struktur wakil kod berlapisan yang 

menggabungkan idea-idea seperti strategi asing dan menjajah, theori skima, konsep hirarki 

dari jaringan semantic, dan perwakilan berpandukan rangka.  Berpandukan ilham yang 

diperoleh daripada pengevolusian pelbagai populasi, korelasi, strategi dan pembinaan 

berkaskad, dan cara-cara pengoptimuman, model umum pengoptimuman berlapisan 

berdasarkan perkomputeran evolusi (LECO) telah dibangunkan.  Pembinaan LECO 

menyokong pergabungan teknik pengoptimuman yang berlainan.  Kombinasi yang 

berlainan dari GA dan PSO dalam LECO dikaji untuk mendapatkan kombinasi yang paling 

sesuai untuk LECO.  Satu siri kajian yang mengandungi masalah panduan dan masalah 

sebenar telah dijalankan untuk mengkaji keupayaan, kebolehubahsuaian, dan keberkesanan 

LECO untuk megendalikan pelbagai jenis masalah pengoptimuman.  Selain daripada data 

panduan dan data sebenar, data perkembangan penyelidikan juga diguna bagi mengkaji 

kemampuan LECO.  Daripada keputusan yang diperolehi, GA-PSO LECO didapati 

berupaya untuk menyelesaikan masalah yang terdiri daripada pengoptimuman pelbagai 

keputusan, pengoptimuman parameter pelbagai resolusi dan pengoptimuman Pareto pelbagai 

objektif.  Struktur LECO yang membenarkan analisis pada lapisan tertentu menyokong 

pengoptimuman interaktif.  Secara keseluruhan, ciri-ciri struktur kod berlapisan yang dapat 

menunjukan warisan pengetahuan, mengasingkan perwakilan dalam lapisan, membolehkan 



 xvii

pencarian yang seimbang, dan berupaya untuk membataskan kawasan pencarian, telah 

menjadikan LECO satu model pengoptimuman yang umum dan berkesan. 
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THE DEVELOPMENT AND APPLICATION OF EVOLUTIONARY 

COMPUTATION-BASED LAYERED ENCODING CASCADE 
OPTIMIZATION MODELS 

 
 
 

ABSTRACT 
 

In this thesis, the research on a generic evolutionary-based layered encoding cascade 

optimization (LECO) model that is able to solve different kinds of optimization problems on 

multi-decision, multi-resolution, interactive, hybridized and multi-objective is presented.  In 

the proposed model, particular attention is given to genetic algorithm (GA) and particle 

swarm optimization (PSO) in the development of evolutionary-based search mechanism.  

The foundation of the proposed model is the development of layered encoding representation 

structure that integrates the ideas of divide and conquer strategy, schema theorem, and 

hierarchical concepts of semantic network and frame-based representation.  Then, based on 

the insightful mechanisms of the multi-population evolution, cascade correlation, 

architecture, and strategy, as well as optimization methods, the LECO model is developed.  

The architecture of the LECO endorses hybridization of different optimization techniques.  

Different combinations of GA and PSO in LECO are studied to investigate the most 

appropriate combination of evolutionary mechanism for LECO.  A series of empirical 

studies comprising benchmark and real-world problems is employed to assess the capability, 

flexibility, and effectiveness of LECO to handle different kinds of optimization problems as 

well as to be integrated with other heuristic techniques.  Besides the datasets given in 

benchmark and real-world problems, hypothetical data is also included to investigate the 

performance of LECO towards larger scale problems.  The experimental results 

demonstrate that GA-PSO LECO is able to optimize combinatorial multi-decision 

scheduling problem, multi-resolution parameter optimization as well as multi-objective 

Pareto optimization.  In addition, the LECO structure that allows particular layer to be 

easily analyzed and evaluated promotes interactive optimization whereby human 



 xix

intervention can be applied on layers for feature extraction.  In all, the cascade layered 

encoding structure that is able to show inheritance of information, separating representation 

into layers, enhancing balance global-local search, and narrowing down the search space 

makes the LECO model a flexible, generic, and powerful tool for optimization problems.   
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1 INTRODUCTION 

 

 

1.1 Preliminaries 

In the past decades, much attention has been paid to the philosophy of nature in the 

study of computational research and optimization.  The natural law of organism survival 

has brought to the increase of human curiosity towards the association of computer science 

with cognition, biology and psychology as a problem solving tool and optimization 

technique.  Artificial Intelligence (AI) is a field of research that encompasses computational 

techniques with human intelligence on reasoning, learning and perception.  

 

AI is defined as the study of mental faculties through the use of computational 

models (Charniak and McDermott, 1985).  Luger and Stubblefield (1993) claimed that AI is 

the branch of computer science that is concerned with the automation of intelligent behavior 

whereas Winston (1992) described it as the study of the computations that make it possible 

to perceive, reason, and act.  According to Padhy (2005), the development of symbolic 

representation in order to build formal structures capable of being solved by computers is 

one of the main directions of AI. 

 

The fundamental hypothesis of AI on knowledge representation and reasoning 

inspired the construction of intelligent systems.  Beside technical knowledge-engineering 

development of AI, the commercial reality of computers and improved technology makes AI 

a tremendous application to various fields such as factory automation, complex optimization, 

robotic control, engineering design and etc.  Current trends of intelligent systems enthused 

by the development of AI include expert systems, fuzzy systems, neural networks, 

evolutionary algorithms, and swarm intelligence. 
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Among all intelligent systems, evolutionary algorithm and swarm intelligence are 

two of the major contributions of AI in the search of optimization.  Optimization is an act 

of optimizing. It is described as the quantitative study of optima and methods of finding 

them (Wilde and Beightler, 1967).  According to Goldberg (1989), the most important goal 

of optimization is improvement.  Thus, even when the path to the ideal optimum is blocked 

or obscured, optimization theory often shows how existing conditions can be improved.  

 

With the idea that a population of candidate solutions could evolve to solve 

optimization problem using operators analogous to the natural genetic variation and 

selection, evolutionary systems has been studied by a number of computer scientists since 

1950s.  In the 60’s, evolutionary programming that was introduced by Lawrence J. Fogel 

and evolutionary strategies that was devised by Rechenberg and Schwefel are two well 

established evolutionary paradigms forming the backbone of evolutionary computation. 

Evolutionary programming represents candidate solutions as finite-state machines whereas 

evolutionary strategies process one individual along many generations incorporating concept 

of gene deletion and duplication (Fogel, 1962; Rechenberg, 1994; Schwefel, 1995; Zebulum 

et al., 2001).  Genetic algorithms (GAs) were conceived by John Holland and his fellow 

colleagues in the 1960s and 1970s.  In 1975, theoretical framework for adaptation under 

genetic algorithm (GA) was presented (Holland, 1975; Padhy, 2005).  In 1990’s, 

evolutionary algorithm was used to evolve computer program by John Koza introducing 

genetic programming as the fourth stream of evolutionary computation (Koza, 1992). 

 

The emergence of computational intelligence in optimization has led to the 

development of swarm intelligence based on collective behavior of decentralized and 

self-organized systems.  The expression of swarm intelligence was introduced by Beni and 

Wang (1989) in the context of cellular robotic systems.  Ant colony optimization (ACO) 

and particle swarm optimization (PSO) are two popular swarm intelligent systems.  ACO, 

invented by Marco Dorigo was inspired by ant colonies behavior whereas PSO, devised by 
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Eberhart and Kennedy was stimulated by the social behavior of birds flocking and fish 

schooling (Dorigo and Di Caro, 1999; Eberhart and Kennedy, 1995).  Both evolutionary 

computation and swarm intelligence are widely used meta-heuristic optimization algorithms. 

 

This section discusses briefly the growth of AI and the rising of cognitive techniques 

such as GA and PSO in the area of optimization.  The following section provides 

introduction to two major areas of AI: the representation and discovery of knowledge and 

hybridized intelligence.  The issues of multi-decision, multi-objective and interactive 

optimization problems and the value of representation structure and hybridized intelligence 

that motivated this research are discussed followed by a description of the research scope, 

research objectives, and the research methodology.  Finally, at the end of this chapter, the 

outline of this thesis is given. 

 

1.2 Knowledge, Representation and Search  

According to Feigenbaum and McCorduck (1983), the art of bringing the principles 

and tools of AI research to bear on difficult application problems requires expert knowledge.  

Knowledge representation is concerned with the choice of symbolical knowledge expression 

in computational system that the operational model is supposed to manipulate and reason 

with (Wrobel, 1994).  It is the part of AI that relates the way of thinking to the intelligent 

behavior which is crucial for both theoretical and practical successes.  

 

A number of knowledge representation schemes were discussed in Turban et al. 

(2005), e.g. production rules, semantic networks, and frames.  Production rules are 

represented in the form of condition-action pairs whereas semantic networks were composed 

by nodes and links focusing on the relationships between different concepts (Cox, 2001).  

Frame, on the other hand, is a data structure that provides structural representation of 

knowledge focusing on properties of certain objects.  
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In GAs, the matter of representation is raised in the issue of encoding.  The way a 

solution of a problem is encoded into a chromosome is a key issue in GA.  Encoding 

methods can be classified into binary encoding, real number encoding, integer or literal 

permutation encoding, and general data structure encoding (Gen and Cheng, 2000).  As for 

PSO, representation arises in the identification of structure for particles in which particles 

can be represented by array in D dimensions.  Dependent on the complexity of a problem, 

an appropriate encoding or data structure is required to capture the nature of the problem.  

Therefore, the way to transfer thinking to computational intelligence is a vital task to be 

accomplished in order to assure successful knowledge representation, transmission and 

acquisition in optimization algorithms. 

 

The process of using computers to extract knowledge from data is called knowledge 

discovery.  Knowledge discovery was known as machine learning in the early 1990s. 

According to Roiger and Geatz (2003), typical knowledge discovery methods include 

inductive learning, neural computing, and GAs.  Inductive learning induce rules from 

existing cases with known results and store the rules in knowledge base for consultation 

whereas neural computing mimic the human brain, derive solutions to new problem using 

historical cases and store knowledge in the connection between artificial neurons.  GA 

employs the principle of natural process of evolution to gradually find the best combination 

of knowledge from known cases.  The basic operations of GA for discovering knowledge 

are reproduction, crossover and mutation.  

 

When solving optimization problems, the choice of appropriate solution searching 

approaches is important to enhance the finding of the optimum or improved solution.  

Search methods can be categorized as analytical, exhaustive and heuristic.  Analytical 

techniques use mathematical formula to derive optimal solution.  Exhaustive search 

considers all the alternatives in the search without guide while heuristic is an informed and 

guided method that uses rules and problem-specific knowledge in the search process. 
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Stochastic search is a heuristic search methodology that incorporates probabilistic elements 

in problem solving and machine learning (Spall, 2003).  

 

Evolutionary algorithms and swarm intelligence are heuristic search mechanisms 

that integrate the concept of survival-of-fittest and collective organism behavior respectively. 

These heuristic strategies are step by step procedures that repeat until a satisfactory solution 

is found.  Such a search is very much cheaper and faster than exhaustive search, and is able 

to find solutions near to the best ones. 

 

1.3 Hybridization  

All AI techniques have different spectrums of searching methodology, each with 

different advantages and limitations.  The booming applications of AI nowadays have led to 

the fusion of AI techniques to solve complicated and combinatorial problems, overcoming 

limitations of individual techniques. 

  

Each intelligent technique has individual computational properties that are 

particularly suited to some problems and not for others.  As mentioned by Goonatilake and 

Khebbal (1995), neural networks are good at pattern recognition but not good at explaining 

how they reach their decisions.  Conversely, fuzzy logic systems which are able to reason 

with imprecise information do well at explaining decisions, but they cannot automatically 

acquire the rules they use to make those decisions.  On the other hand, GAs are good in 

optimization.  However the property of randomize search do not always give the same 

result at the end of the run.  As for particle swarm algorithm, it consists of directional 

search that learns from the best solution, updating the distance between the best and the 

others.  

 

Many industrial applications and academic researches are solved using hybridization 

techniques.  For instance, a hybrid intelligent system of neural network and expert system 
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was developed by Kobe Steel Plant in Japan to control blast furnaces for making iron and 

steel (Otsuka et al., 1992).  Karr (1991) used GA to design fuzzy membership functions 

whereas Yoon et al. (1994) elaborated on the investigation of the use of GAs for training 

neural networks.  In Chambers (1995), a hybrid approach using neural networks, 

simulation, GAs and machine learning for real-time sequencing and scheduling problems 

was described.   

 

1.4 Problems and Motivation 

Optimization problems can be generally categorized as combinatorial multi-decision 

optimization, single and multi-objective optimization, multi-resolution optimization, 

human-machine interactive optimization and hybrid intelligence optimization.  Each of 

them encompasses different intricacies that make the task of problem solving challenging. 

 

In combinatorial multi-decision problems, optimization requires consideration on 

the impact of each alternative course of action because a decision made may have significant 

sequential effects over other decision.  Similar to multi-objective problems, almost every 

real-world decision involves multiple and conflicting objectives in which optimization is 

required to find a particular decision that could fulfill two or more objective functions.  The 

impact of one decision to other decision and the conflicting objectives of each decision make 

the process of optimization difficult.  The situation becomes more complicated when the 

problem consists of multiple constraints, resolutions and variables.  

 

In the 1990s, significant research interest has been paid to human-machine 

interaction problems in which human behavior and subjective evaluation are integrated into 

AI computation in optimization.  In human-machine interactive optimization, human 

fatigue and the mechanism of transferring human evaluation into mathematical and logic 

computation are the main concerns.  As for hybrid intelligence systems, it is important to 
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obtain advantages from the hybridized approach in which limitations of single intelligent 

technique is coped. 

 

The dilemmas of multi-decision, multi-objective, multi-resolution, interactive and 

hybrid optimizations motivated the development of a generic optimization model that is 

capable of handling different aspects of each optimization case.  The growth of AI and the 

inspiration to develop generic optimization model stimulate the research towards AI-based 

optimization tool. 

 

In the design of AI-based optimization model, the choice of knowledge 

representation and search method are the key to the achievement of problem solving. 

Therefore, the way to represent knowledge and mechanism of solution search should also be 

generic in order to develop a generic optimization model that could deal with different 

problem conditions.  

 

In knowledge representation, the design of representation structure has significant 

effect to the problem computation, analysis, visualization, search, and human-machine 

interface.  Often in multi-decision and multi-objective optimization, when the dimension of 

search increases considerably, the process of problem evaluation will become tedious.  

 

Moreover, for interactive and hybrid intelligence problems that involve intervention 

and interaction of the representation structure, the computation of the problem is 

complicated.  Thus, an appropriate representation structure that could simplify the problem 

analysis, allows human-machine interaction, promotes hybrid integration, and facilitates 

understanding of the structure, is required to accomplish a generic optimization tool.  

 

Besides representation structure, the mechanism of search is one of the main issues 

in optimization.  To ensure the effectiveness of search, the concept of global exploration 
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and local exploitation need to be implied in balance.  Exploration often refers to 

randomized global search whereas exploitation is more towards local search improvement. 

Too much exploration may slow down the search because available information (best 

available solution) may be improperly used (Dumitrescu et al., 2000).  On the contrary, too 

much exploitation may bring about premature convergence of the search.  As different 

optimization techniques consist of different searching limitations, the aim to obtain balanced 

global and local searches motivates the incorporation of hybrid intelligence techniques in the 

design of generic optimization model. 

 

In all, subjects that stimulate the ideas of developing a generic evolutionary-based 

optimization model can be highlighted as follows: 

 Different intricacies of different optimization problems have complicated the design 

of a generic optimization model.   

 Knowledge representation is the key to the successful interpretation of problem 

knowledge into expression that is capable to be reasoned by computation system, 

e.g. ease of analysis, visualization, data retrieval, etc.  A generic knowledge 

representation structure that is generally applicable to different optimization 

problems is inspired. 

 Search mechanism is vital in the design of an optimization model.  With the recent 

popularity of evolutionary-based optimization algorithms, a generic 

evolutionary-based optimization model that could incorporate generic knowledge 

representation structure, capable of optimizing problem with different intricacies, is 

enthused.     

 

1.5 Research Objectives 

In the previous section, issues of multi-decision, multi-objective, multi-resolution, 

interactive and hybrid optimization problems are discussed.  The development of a generic 

optimization algorithm in solving multi-condition optimization problems requires 
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development in generic problem representation structure as well as generic searching 

mechanism.  This research proposed a layered encoding representation structure and hybrid 

genetic algorithm and particle swarm approach to enhance knowledge representation and 

promote intelligent search of optimization problems.  The developed optimization model 

has been applied to case studies that consist of different optimization difficulties.  Where 

possible, comparisons are made with other conventional techniques to observe the 

applicability of the developed model.  The main objectives of the research are as follows: 

 to develop a generic optimization model to deal with multi-decision, multi-objective, 

multi-resolution, interactive, and hybrid intelligence optimization problems 

 to introduce the layered encoding representation structure as a generic knowledge 

representation in problem solving  

 to develop an evolutionary-based layered encoding cascade optimization model for 

solving various kind of optimization problems 

 

GA and PSO are integrated into the layered encoding optimization model to 

promote hybrid heuristic search mechanism in which the performance of different 

combinations of GA and PSO in using layered encoding structure is assessed.  Based on the 

three main objectives, the feasibility of layered encoding structure in allowing 

communication of solutions, incorporating multi-heuristic techniques, simplifying 

knowledge extraction, and endorsing balance global-local search is determined.  In order to 

investigate the applicability and capability of the proposed evolutionary-based layered 

encoding optimization model, simulated, benchmark as well as real-world case studies are 

carried out in this research.  Besides that, hypothetical data has also been generated for the 

assessment of the model's capability towards large scale problem.  Note that the term "large 

scale" refers to bigger size problem with more complexities.   

 

Different fields of case studies are taken to assess the performance of the proposed model in 

optimizing multi-objective, multi-resolution, interactive and multi-decision problems.   
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Multi-objective optimization is a process of optimizing two or more conflicting objectives, 

e.g. maximize the performance and minimize the cost of a manufacturing process (Sawaragi 

et al., 1985).  As for multi-decision optimization, it is related to multiple stage decision 

making for two or more sequential decisions that are interdependent (Bather, 2000).  

Interactive optimization, on the other hand, concerns human-machine interaction in which 

human integrates subjective evaluation into the computing process of optimization (Takagi, 

1998) whereas multi-resolution optimization refers to optimization with multiple parameter 

precision in this research. 

 

1.6 Research Scope and Approach 

The scope of this research is confined to the design and development of the layered 

encoding hybrid evolutionary model to solve general optimization problem of 

multi-decision, multi-objective, interactive and hybrid intelligence.  The capabilities of the 

proposed optimization model to handle large-scale and high resolution problems are also 

investigated.  Literature review is concentrated on the evolutionary search mechanisms of 

GA and PSO, as well as the evolutionary knowledge and problem representation structure.  

The study focuses on the potential of using layered encoding structure as the generic 

knowledge representation in the examined optimization problems.  The evolutionary 

mechanism is focused on GA and PSO whereby these two algorithms are used to integrate 

random and directional search in solving optimization problems.  Combinations of GA and 

PSO in different layers of the layered encoding structure are investigated.  In addition, the 

support of layered encoding structure towards hybridization and integration of 

multi-heuristic techniques is also demonstrated. 

 

This research starts with an objective to develop a generic optimization model.  A 

thorough literature review is done on the various AI techniques which are widely applied by 

researchers to solve optimization problems.  Particular attention is paid to knowledge 
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representation and search mechanism of GA and PSO in extracting knowledge and 

increasing the effectiveness of optimization algorithm.  

 

Various knowledge representation schemes and structures are reviewed to 

understand the advantages and limitations in the development of optimization algorithms. 

The idea of conventional representation schemes and heuristic strategy of divide and conquer 

form the foundation of the proposed layered encoding structure.  The capability of the 

layered encoding structure to deal with different problem conditions is investigated.  

 

Hybridization of intelligent techniques is studied in an effort to comprehend the 

limitations that exist in the mechanism of optimization search.  GA and PSO approaches are 

combined with the proposed layered encoding structure to allow integration of both 

randomized and directional searches.  The proposed hybridized layered encoding model is 

implemented using MATLAB software.  

 

The flexibilities of the proposed model to handle different optimization problems are 

assessed.  As the research aims to develop a generic optimization model, different case 

studies are taken to observe the applicability of the proposed model.  General optimization 

problems that are targeted to be addressed in this research are multi-decision, 

multi-objective, multi-resolution, and interactive.  For hybrid intelligent problem, GA and 

PSO are hybridized in different combinations with layered encoding structure to study the 

most appropriate optimization model.  In addition to the application on benchmark and 

real-world case studies, a hypothetical experiment is also included to test the performance of 

the proposed model towards large-scale problem. 

 

In order to have a clearer illustration on the research flow, Figure 1.1 shows the 

overall flow of the research work.  The flow allows the research to be carried out 
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systematically.  The research is carried out in such a way to develop, to investigate, to 

analyze, and to compare.   

 

 

Figure 1.1  Flow chart of the overall work stages involved in the research 
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1.7 Thesis Outline 

The layout of this thesis is as follows: 

Following the introductory chapter, Chapter 2 begins with a literature review on GA 

and PSO as two widely used optimization techniques in AI.  Then, the recent trends in 

evolutionary algorithms are discussed.  Classical knowledge representation schemes, 

encoding structure and heuristic strategies for optimization search are reviewed.  

 

Chapter 3 presents the development of the proposed layered encoding structure and 

optimization model.  The underlying ideas of the formation of layered encoding structure 

using the concept of object-oriented knowledge representation, theory of schemata, and 

heuristic strategy of divide and conquer are described.  The aims and advantages of the 

designed layered encoding structure are also discussed.  Literature review on cascade 

strategy and multi-population evolutionary algorithms are given.  An evolutionary 

computation-based layered encoding cascade optimization (LECO) model inspired by the 

cascade strategy and multi-population evolutionary algorithm is developed.  

 

Chapter 4 describes the applicability of the proposed LECO model towards 

multi-decision optimization problems and presents the study of GA and PSO hybridization in 

different optimization layers of the proposed model.  Multi-decision case studies are used to 

investigate the applicability and to find the best combination of GA and PSO for improving 

the performance of the proposed model.  Initially, a side experiment is applied on a 

benchmark case study of thermal power generation scheduling to observe the most 

appropriate combination of GA and PSO for improving the layered encoding model.  Then, 

the model is tested on a high-mix-low-volume (HMLV) real-world semiconductor 

production capacity planning to validate the applicability to multi-decision real-world 

problem.  Based on the real-world case study, a set of hypothetical data is developed to 

evaluate the capability of the proposed model to solve larger scale problems.  
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Chapter 5 introduces GA-PSO layered encoding cascade optimization model to 

address the issues of multi-resolution and human-machine interactive problem.  The 

difficulties to solve problem with multi-resolution and human-machine interaction are 

discussed.  A side research is done on a simulated chemical process problem (Tennessee 

Eastman) to assess the ability of the layered encoding structure to cope with the 

representation of problem resolution.  Then, a practical case study on circuit design that 

involves high resolution variables and requires human-machine interaction is carried out. 

The optimization on circuit design is implemented using the Agilent Advanced Design 

System (ADS). The proposed model is compared with the other built-in optimizers in ADS. 

 

Chapter 6 reveals the ability of GA-PSO layered encoding model in handling 

multi-objective problem, finding Pareto trade-off and integrating other heuristic strategies.  

A test problem suite on knapsack problem is studied.  Conventional multi-objective 

evolutionary approaches are reviewed.  This chapter focuses on the search of Pareto 

optimum.  The proposed model is integrated with strategies such as hill-climbing and 

non-dominated spread lengthens heuristic.  The result is compared with other conventional 

multi-objective evolutionary approaches.  The spread of the generated Pareto front and 

hypervolume evaluation are used to assess the performance of the proposed GA-PSO model.  

 

Finally, Chapter 7 draws the conclusions and contributions of this research. 

Suggestions for future research are given at the end of this chapter.  

 

Appendices contain the related data and results used in this thesis. 
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2 LITERATURE REVIEW 

 

 

2.1 Introduction 

Today, biological motivated optimization and search paradigm have accelerated the 

development of optimization techniques and problem-solving tools.  Evolutionary 

algorithms and swarm optimizations are biological-based artificial intelligence techniques 

that are widely used in optimization problems.  The emergence of these techniques has 

invigorated research on population-based solution search heuristics. Knowledge 

representation and solution search paradigm are two important features to be studied in the 

development of population-based optimization model. 

 

This chapter introduces the basic mechanism of GAs and PSO.  The applications of 

GA and PSO in optimization are discussed.  Current trend of evolutionary algorithms and 

classical knowledge representation schemes are reviewed.  In addition, several popular 

heuristic strategies for improving global and local optimization search are studied.  

 

2.2 Genetic Algorithms 

The Darwinian concept of survival-of-the-fittest is the foundation of genetic-based 

mechanism such as evolutionary computation.  GA is a genetic-based mechanism which 

mimics the evolutionary process of a population of individuals (Yuen and Chow, 2009).  It 

is a numerical optimization algorithm and stochastic search method that was inspired by the 

Darwinian metaphor of natural biological evolution.  GAs were first invented by John 

Holland in 1960s and were developed by him and his associates at the University of 

Michigan in 1960s and 1970s (Holland, 1975).  

 

GA solves problem using the theory of natural selection and natural genetics.  It is 

a robust technique that is able to offer advantages in solution methodologies and 
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optimization performance in which no auxiliary information is required.  The GA searches 

a population of possible solutions stochastically using knowledge structure to represent the 

candidate solutions.  The search is guided by the objective or fitness function and is 

evolved using genetic operators such as crossover and mutation. 

 

An interesting survey of some GA practical works in search, optimization and 

machine learning has been conducted by Goldberg (1989).  According to Goldberg, GAs 

are computationally simple yet powerful in the search for improvement.  The ability to find 

optimal or near optimal solution without being limited by restrictive assumptions about the 

search space makes GAs a widespread optimization tool with applications in science, 

business and engineering (Fogel, 1995; Shin and Lee, 2002; Gen and Cheng, 2000; Zeng and 

Cheng, 2009).  

 

2.2.1 GA Terminology and Basic Mechanism  

As a biologically motivated intelligent technique, a number of GA’s technical 

vocabularies are borrowed from the biological terms.  For instance, GAs represent its 

candidate solutions as chromosomes.  The chromosomes are made of a set of characters, 

called genes.  Every gene corresponds to the inheritance of one or more characters.  The 

location of a gene at a certain place of the chromosome is known as loci or string position 

and the possible values or states of gene are called allele.  A combination of genes on each 

chromosome will dictate the structure of decision variable set within the solution.   

 

Continuing the genetic analogy, GA works on genotype and phenotype, or in other 

words, coding space and solution space.  Each genotype or a single chromosome represents 

a potential solution to a problem, which is known as its phenotype.  In GA, genotype is 

interpreted as the coded string which is processed by the algorithm, while the decoded set of 

parameters represents the phenotype.   
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As in biological system, GA combines chromosomes or candidate solutions 

(parents) to produce offsprings (children) in each algorithmic generation.  The chance for 

an individual or chromosome to survive in its present environment and to become parent that 

produce offsprings is very much dependent on its fitness.  An evaluation function or fitness 

function is used to rate the fitness of chromosomes (solutions) in GA.  The individuals that 

are selected for reproduction will undergo two important genetic operations using crossover 

and mutation to exchange the chromosome segments and maintain population diversity. 

 

The basic mechanism of GA can be summarized as follows: 

1. Initialize a population of chromosomes. 

2. Chromosomes evaluation based on fitness function. 

3. Generate new chromosomes by mating fittest chromosomes.  New chromosomes 

are produced based on certain selection rules (e.g. roulette wheel selection and 

stochastic universal sampling) and genetic operators (crossover and mutation). 

4. Delete less fit chromosomes of the population to make room for new members. 

5. Evaluate the fitness of newly generated chromosome and insert the best individuals 

into the population. 

6. Go to 3 until convergence or until a fixed number of generation is reached. 

 

2.2.1(a) Chromosome Encoding and Representation 

Chromosome encoding or chromosome representation is a key issue in GA needed 

to describe each individual in the population of interest.  The representation scheme 

determines how the problem is structured and also determines the genetic operators that are 

used.  The most commonly used GA representation is binary string encoding in which 

binary code is used as the alleles of a gene (decision variable) in a string-based structure. 

Despite the popularity of binary encoding, it is known to have severe drawback due to the 

existence of Hamming cliffs (Gen and Cheng, 2000).  Hamming cliffs are pairs of encoding 

that are having large Hamming distance in genotype space but belong to points of minimal 
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distance (Euclidean distance) in phenotype space (Ludvig et al., 1997).  For instance, the 

pair 0111111111 and 1000000000 are points in the phenotype space that neighboring each 

other but they are having maximum Hamming distance in the genotype space. 

 

Besides binary-coded GAs, real-number and integer encoding are receiving interest 

in many real-world industrial applications.  Investigation has been done on problem 

representation, and it has been shown that natural representation is more efficient and 

produces better solutions (Michalewicz, 1994).  Michalewicz (1994) compared real-valued 

and binary GA, and showed that real-valued representation is more efficient in term of CPU 

time, and it offers higher precision with more consistent results across replication.  An et al. 

(2009) mentioned that real-valued encoding can improve GA convergence rate as 

unnecessary decode and encode procedure can be avoided.  On the other hand, Wright 

(1991) claimed that the use of real-valued genes offers a number of advantages in numerical 

function optimization in which less memory is required to convert chromosomes to 

phenotypes.  Besides, there is also greater freedom to use different genetic operators to deal 

with real-valued genes.  

 

In addition to the encoding of alleles value using binary, integer, real-number, and 

floating point, encoding method can also be classified as one dimensional encoding and 

multi-dimensional encoding.  Though one dimensional encoding is widely used in many 

practices, multi-dimensional encoding structures are sometimes required to solve the 

complexity of many real-world problems.  For instance, Huang et al. (2007) used 

multi-dimensional encoding in fast packet classification whereas Michalewicz (1996) and 

Michalewicz et al. (1991) used matrix representation to construct a chromosome and solved 

linear and nonlinear transportation problem by designing matrix-based genetic operators.  

 

The data structure of solution representation in evolutionary algorithm by itself is a 

major research area.  Despite the existence of linear string and matrix-based representation, 
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there are more complex data structures such as finite state machine and parse tree 

representations.  Finite state machine are particularly useful in prediction or forecasting 

problems whereas parse tree representation are mostly used for mathematical expression in 

genetic programming.  The details of finite state machine and parse tree representation can 

be obtained from Zebulum et al. (2001).  

 

Besides the above mentioned representation method, specific encoding or data 

structure that is better suited to represent a solution may be used as the choice of encoding. 

The appropriate choice of encoding structure will have a major impact to the performance of 

evolutionary algorithms.  According to Dumitrescu et al. (2000), the use of specific 

encoding permits easy transfer of problem domain expertise into algorithm and specialized 

representation relies on the following ideas: 

 it uses specific data structures 

 it considers new appropriate genetic operators if needed 

 it ensures that genotypes encode feasible solutions 

 it ensures that the search operators preserve feasibility 

 

2.2.1(b) Fitness Function 

The fitness function is a performance measure or evaluation of chromosomes in the 

problem domain.  According to Dumitrescu et al. (2000), chromosome evaluation is 

necessary to control the progress of GA search and the fitness function depends on the user’s 

ability to encode the problem.  Fitness function may be a cost function, loss function, 

penalty function or objective function.  

 

In the case of a minimization problem, the associated fitness or objective function of 

the fittest individual will have the lowest numerical value.  The fitness function is usually 

used to convert the objective function value into a measure of relative performance fitness 

(De Jong, 1975), as shown in equation 2.1.  
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))(()( xfgxF                                                   (2.1)              

where f is the objective function, g is a function used to convert the value of the 

objective function to a non-negative number, and F is the relative fitness resulted from the 

function of g and f.  However, in certain cases, the objective function and the fitness 

function is synonymous. 

 

In general, fitness measure of a chromosome is independent of the fitness of the 

other individuals in the population.  However, it is possible to have an implicit fitness 

function whose value depends on all individuals in the population (Dumitrescu et al., 2000). 

For instance, an intrinsic adaptation (Packard, 1988) that ensures the co-evolution of the 

individuals (Kaufman and Johnsen, 1991) can be adopted. 

 

2.2.1(c) Penalty Function 

Coding space and solution space are two work spaces of GA, playing important role 

in fitness evaluation and selection.  One key issue associated with the mapping of these 

spaces is the issue of infeasible solutions in which the solution decoded from chromosome 

lies outside the feasible region of a given problem (Gen and Cheng, 2000).  The issue of 

infeasible solution is often yielded from the manipulation of genetic operator in constrained 

and combinatorial optimization problems.  

 

In GA, penalty function is the most common technique used to handle chromosome 

infeasibility.  The penalty function transforms a constrained problem into unconstrained 

problem by adding a penalty term into the fitness function to penalize solution that violates 

the constraints.  Penalty term can be integrated into evaluation function in two ways: 

addition form and multiplication form, as shown in equation (2.2) and (2.3) respectively. 

Addition form:  )()()( xpxfxeval                               (2.2)            

Multiplication form: )()()( xpxfxeval                              (2.3)    
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 where x represents a chromosome, f(x) represents the fitness function, p(x) 

represents the penalty term and eval(x) represents the overall evaluation function. 

 

Penalty method is different from the rejection method that discards all infeasible 

chromosomes.  It is used to keep a certain number of infeasible solutions to enforce the 

genetic search towards the optimal solution from both sides of feasible and infeasible 

regions.  As some infeasible solutions may provide useful information, penalty function 

does not simply reject all the infeasible solutions in each generation. 

 

2.2.1(d) Selection Function and Genetic Operators 

In GA, the selection function is the process of deciding the reproduction chances of 

a particular individual (Davis, 1991).  A probabilistic selection is performed based upon an 

individual’s fitness such that the better individuals have an increased chance of being 

selected to be reproduced into the next generation.  According to Gen and Cheng (2000), 

selection provides the driving force in GA, in which too much force terminate a genetic 

search prematurely whereas too little force will eventually slow down the evolutionary 

progress.  There are several selection techniques, two of the most commonly used 

techniques are roulette wheel selection (RWS) and stochastic universal sampling selection 

(SUS). 

 

Roulette wheel selection operates on the concept that the proportionate fitness of 

each chromosome should be reflected in that chromosome’s incidence in the mating pool 

(Yii, 2001).  Thus, each chromosome in the population has a probability of selection for 

crossover based on its relative fitness.  This technique provides the greatest probability of 

selection to the most fit members of the population.  

 

The expected occurrence (e) of a chromosome (i) in the mating pool is measured by 

dividing the fitness of a chromosome (f) with the sum of the fitness of all chromosomes in a 
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population (n).  Equation (2.4) and (2.5), respectively show the calculation of probability of 

selection, pselecti, and the formulation of expected occurrence in mating pool, ei.  The 

expected occurrence of a chromosome can affect the performance and diversity of a genetic 

search. 
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As the process of selection can be analogous to the spinning of a roulette wheel, this 

selection technique is called the roulette wheel selection.  Based on the relative fitness of 

each chromosome, the amount of space on the wheel allocated by each chromosome reflects 

its probability to be selected for mating.  The fitter the chromosome, the more the area on 

the roulette wheel that is occupied by that chromosome.  The pointer in a spin of the wheel 

decides the selection of an individual to undergo reproduction. 

 

Stochastic universal sampling (SUS) is a single-phase sampling algorithm with 

minimal spread as there is a limit for the number of times selecting a particular chromosome.    

Different from RWS, SUS uses N equally spaced pointers instead of single selection pointer. 

In SUS, N is the number of selection required.  The underlying idea of this approach is to 

maintain the expected number of copies of each chromosome so that these chromosomes are 

available for mating in the next generation. 

 

Besides selection function, the genetic operators in GA plays important role in 

chromosome reproduction.  They provide a basic search mechanism to create new solutions 

based on existing solutions in the population.  Two basic types of operators are crossover 

and mutation.  
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Crossover involves recombination of two preferentially chosen strings by 

exchanging the segments of the strings (Padhy, 2005).  Du et al. (2009) mentioned that 

crossover is a key operator to ameliorate a population.  Crossover produces new individuals 

that have some feature of both parents in term of genetic material.  It is a method whereby 

information for differing solutions can be combined to enhance exploration of new areas of 

the search space.  According to Morad (1997), the generated off-spring strings from the 

crossover process might have either higher or lower fitness values than the parent strings, but 

the selection process will ensure that higher fitness strings have higher probability of 

reproduction in the future generation.   

 

In general, crossovers occur on the pairs of individuals in a population under a 

certain probability called crossover probability.  The most commonly used crossover 

methods are single-point crossover and multiple-point crossover.  Table 2.1 shows the 

operation for single-point crossover and multiple-point crossover for binary string 

chromosomes. 

 

Table 2.1  Crossover operation in binary string chromosomes  

Type of Crossover Single-point Multiple-point 

Before Crossover 0011 | 011010    (parent  1) 

1100 | 010101    (parent  2) 

001 | 101 | 1010     (parent  1) 

111 | 011 | 0101     (parent  2) 

After Crossover 0011 | 010101     (child  1) 

1100 | 011010     (child  2) 

001 | 011 | 1010      (child  1) 

111 | 101 | 0101      (child  2) 

 

In addition to crossover operation, mutation is another genetic operator that is 

mainly used to maintain genetic diversity in the GA search.  Du et al. (2009) claimed that 

mutation is related to the efficiency of GA.  Mutation is a random process that alters one 

individual to produce a single new solution.  The process can be implemented by 
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incrementing or decrementing a locus, or perhaps replacing it with a randomly generated 

number. By randomly altering values on genomes, this operation helps to ensure a more 

complete coverage of the search-space.  As mentioned in Goldberg (1989), mutation acts as 

a safety net to recuperate good genetic material that may be lost through the evolutionary 

process of selection and crossover.  In GA, mutation is normally applied to the population 

with low probability.  Table 2.2 shows the mutation operation for binary string 

chromosomes. 

 

Table 2.2  Mutation operation in binary string chromosomes 

Before Mutation 1100101 | 1 | 001110 

After Mutation 1100101 | 0 | 001110 

 

2.2.2 Theory of Schemata   

GAs are highly nonlinear search algorithms that is difficult to predict its behavior 

when varying its parameters (Zebulum et al., 2001).  Therefore, the attempt to draw a 

precise mathematical model of GA has motivated the introduction of the schema theory by 

John Holland (Holland, 1975).  The schema theory provides information to guide a directed 

search for improvement. 

 

A schema can be viewed as a template that provides particular pattern at certain 

string position that matches a number of chromosomes with similarities.  The template 

consists of similar pattern of alleles at certain loci by neglecting some allele values.  

Considering general binary strings with binary alphabet (K=2), schema appends a “don’t 

care” symbol besides binary alphabets of 0 and 1.  The “don’t care” symbol is usually 

represented by an asterisk, “*”, as shown in Figure 2.1.  

 

In Figure 2.1, an example of schema for chromosomes with eight loci (L=8) is given.  

The schema samples all chromosomes having ‘1’ at the fourth locus and ‘0’ at the sixth locus.  


