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PENILAIAN DUA PROSEDUR MANN–WHITNEY YANG TELAH DIBUAT 

PENAMBAHBAIKAN 

 

ABSTRAK 

Pengujian ke atas persamaan min dua kumpulan yang tidak bersandar 

merupakan satu masalah inferens yang sering berlaku dalam bidang pendidikan dan 

psikologi. Antara ujian yang lazim digunakan ialah ujian-ujian klasik seperti ujian t 

dan ujian Mann-Whitney. Namun demikian ujian-ujian klasik ini mempunyai 

kelemahan kerana prestasi mereka bergantung ke atas anggapan-anggapan tertentu. 

Terdapat pelbagai ujian telah direkabentuk dengan tujuan mengurangkan kesan 

anggapan ke atas prestasi ujian. Oleh sebab itu, pemilihan satu ujian yang sesuai 

merupakan satu usaha yang rumit. Kajian ini ingin mempermudahkan pemilihan ujian 

dengan mengenal pasti ujian yang mempunyai prestasi yang menyeluruh dan/atau 

menyenaraikan syarat pemilihan untuk ujian-ujian yang lazim diguna pakai. Kajian 

ini menggunakan pendekatan simulasi berkomputer Monte Carlo untuk menjanakan 

data berasaskan keadaan eksperimen untuk menilaikan suatu kaedah 

pengubahbaikkan Mann–Whitney yang dicadangkan oleh Babu dan Padmanabhan 

(2002) bersama–sama dengan ujian–ujian alternatif yang lain. Keteguhan ujian–ujian 

ini akan dinilai berdasarkan ralat jenis I dan kuasa ujian. Keadaan eksperimen yang 

diubahsuai secara sistematik terdiri daripada gabungan pelbagai bentuk taburan, 

homogeneiti varians dan pasangan saiz sampel manakala ujian–ujian alternatif yang 

dikenalpasti ialah ujian Welch (1974), ujian Mann–Whitney , ujian transformasi 

Johnson (1978)  dan ujian transformasi Hall (1992). Hasil kajian mendapati dalam 

kalangan ujian–ujian yang dikenal pasti tiada yang menunjukkan prestasi terbaik 

merentasi semua kombinasi keadaan yang mungkin tetapi hanya prestasi terhad. 
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Kaedah pengubahbaikkan Mann-Whitney I didapati mampu memberi prestasi yang 

baik dan dapat mengekalkan ralat jenis I pada liputan kebarangkalian yang lebih luas. 

Pada masa yang sama, kaedah yang dicadangkan ini mampu memghasilkan kuasa 

ujian yang tinggi. Syarat pemilihan untuk ujian-ujian lain juga dipaparkan agar ia 

dapat digunakan sebagai langkah asas pemilihan dalam pendekatan adaptif. 
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EVALUATION OF TWO REFINED MANN-WHITNEY PROCEDURES 

 

ABSTRACT 

Testing for the equality of means across two independent groups is a common 

inferential problem especially in education and psychology. One of the most 

frequently used tests is either the classical t test or the Mann-Whitney test.  But these 

classical tests are not without flaws as their performance depends on underlying 

assumptions. A plethora of test statistics and procedures have since appeared, 

designed to be less sensitive to violation of the underlying assumptions. Hence 

selecting the appropriate robust statistical test will be tedious. This study intends to 

facilitate this by identifying broader robust tests and/or providing boundary conditions 

of popular statistical tests. This study adopts the Monte Carlo computer simulation 

which generates data under experimental conditions to evaluate the small-sample 

behaviours of the refinement procedures proposed by Babu and Padmanabhan (2002) 

and its 

 alternatives in terms of Type I error rates and statistical power. The 

experimental conditions that were systematically manipulated are multiple 

combinations of various distribution shapes, variance heterogeneity and group sample 

sizes. The alternatives are Welch’s (1974) test, the Mann-Whitney test, Johnson’s 

(1978) transformation of the Welch’s test and Hall’s (1992) transformation of the 

Welch’s test. The findings of this study have demonstrated that there is no statistical 

test that is superior to the others in all test conditions. All the identified statistical tests 

and procedures are specified tests. However, the proposed Refinement Procedure 1 is 

found to be generally more robust as it is capable of producing broader probability 

coverage of maintaining the Type 1 error. Furthermore the Refinement Procedure 1 is 



xii 

comparatively a powerful test in conditions where it is appropriate. Recommendation 

for the other statistical tests and procedures are made based on their respective 

boundary conditions discovered in this study. Statisticians will be able to utilize these 

boundary conditions and incorporate them into an adaptive approach of selecting a 

more flexible and robust statistical test. 
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CHAPTER 1 

INTRODUCTION 

1.1 Rationale 

 
The two-sample statistical comparison is one of the most important 

procedures in hypothesis testing especially in educational and social behavioral 

sciences. Among the various statistical tests, the most often used procedure in 

obtaining small-sample inferences about the differences between populations 

especially difference in location is the t test. The two-sample t test is a test of the 

null hypothesis that two populations have the same mean, under the assumption that 

they are normally distributed with equal variances. Inferences from small-sample t 

test about the difference in their means are valid if the sampled populations deviate 

slightly from normality. On the other hand, when the sampled populations depart 

greatly from normality, then t test is invalid and inferences derived from the 

procedure are suspected. If non-normality is suspected, then there are two 

approaches that may be considered. They are firstly, transforming the data to 

promote normality and then performing t test or secondly, select a viable alternative 

test procedure (non-parametric test) which is insensitive or robust to the violation of 

normality. A robust test will maintain the actual Type I error rate closer to the 

nominal level of significance, α  even when the data do not conform to the test’s 

derivational assumptions and at the same time maintain the actual statistical power 

close to the theoretical power. 
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Transformation can be applied to correct problems of unequal dispersion. 

Transforming the samples to remedy non-normality often results in correcting 

heteroscedasticity, hence producing a comparable dispersion. A variety of 

transformations are available to be applied to a set of data depending on the 

particular type and degree of assumption violation that is present in the data. 

Transformations are usually chosen from the `power family’ and if such 

transformations can be found, the transformed data may be suitable for use with t 

test. Unfortunately, applying a suitable transformation to a data is not always a 

simple solution and has a number of limitations. Transformation involves changing 

the metric in which the data are analyzed, which may make interpretation of the 

result difficult if the transformation is complicated.  Conclusions are drawn based on 

the transformed scores, not the original observations.  

 

The second approach to handling non-normality entails the selection of a test 

statistics that is insensitive to the deviation of normality. Non-parametric tests are 

those that make no assumption about the distribution of the data. They are therefore 

more robust when the distributions of the data are not well behaved. In such a 

situation, the non-parametric Mann-Whitney test is commonly used for detecting 

differences in location or the central tendency between samples. Even though Mann-

Whitney test is a distribution free test, this test is only theoretically appropriate when 

the samples are drawn randomly from populations with the same second and higher 

–order moments. This is because the Mann-Whitney test is based on the assumption 

that the underlying populations from which the samples are derived are identical in 

shape which implies equal dispersion of data within each distribution. The shapes of 

the underlying population distributions, however, do not have to be normal. If the 
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underlying population distributions are different, generally 2
uσ  is the wrong standard 

error for the Mann-Whitney U statistic and this can result in relatively poor power 

and unsatisfactory confidence interval for p (Wilcox, 2003). The value p is the 

probability that a randomly sampled observation from the first group is less than a 

randomly sampled observation from the second. Therefore, the Mann-Whitney test 

is strictly a test of the null hypothesis that the populations are identical.  

 

Micerri (1989) concluded that out of the four hundred samples investigated, 

28.4% of the distributions in the education and educational psychological fields 

were relatively symmetric, and that 30.7% were extremely asymmetric. With the 

availability of many different parametric and non-parametric statistical tests for use 

under different assumptions, selecting the appropriate test will be difficult. 

 

1.2 Historical Development 

 

The occurrences of non-normal and heterogeneous variances are fairly 

common in real data. The comparison of the mean of samples from populations with 

unknown variances has been the subject of much discussion. Several articles, e.g. by 

Wetherill (1960), Pratt (1964) and Zimmerman (1998) have documented these 

theoretical shortcomings, which unfortunately, have not always been heeded.  

 

Wetherill (1960) investigated asymptotically the power and efficiency, as 

well as the level, of the t test and Mann-Whitney test. In his investigation, he 

permitted skewness as well as inequality of variances but required the two 

populations to approach one another as the sample sizes increased. 
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Pratt (1964) carried out a more comprehensive study on the effect of 

different population variances on the asymptotic levels of t test and of various non-

parametric tests. The level of these tests describes the asymptotic behavior of the 

true level for the test when the two distributions are not equal at nominal level, α . 

The level of a test or unit normal deviates, K  corresponding to α  is computed using 

both the ratio of the sample sizes and the ratio of their true variances. All these 

procedures were investigated asymptotically which meant that the difference of the 

sample means divided by an estimate of its standard deviation may be treated as unit 

normal under the null hypothesis in really large samples from any populations  

(provided they have finite variances).  

 

In his article, Zimmerman (1998) provided counterexamples to some 

commonly held generalizations about the benefits of non-parametric tests. The 

article is about a simulation study where the two assumptions of parametric 

statistical significance test, i.e. normality and homogeneity of variance, were 

concurrently violated. The findings reveal that non-parametric methods were not 

always acceptable substitutes for parametric methods when parametric assumptions 

were not satisfied. Multiple violations of assumptions can produce anomalous 

effects not observed in separate violations. 

 

It is therefore acknowledged that standard distribution free tests for two 

sample location problem require that the populations be of the same shape so as to 

maintain the nominal significance level under the null hypothesis. Subsequent 

efforts are focused on modifying these tests so that they can be used with fewer 

assumptions on the shape of their populations. Several procedures have been 
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proposed. As documented by Wang (1971), the first “exact” solution to the Behrens-

Fisher problems was given by Behrens and was extended by Fisher as a correct 

fiducial solution. Exact test is a test where all assumptions which the derivation of 

the distribution of the test statistics is based are met, as opposed to the approximate 

test in which the approximate maybe as close as desired by making the sample size 

large enough. Weerahandi (1987) developed an exact test to deal with statistical 

testing problems with nuisance parameter and also when it is difficult to find a non 

trivial test with some optimal properties. Tsui and Weerahandi (1989) introduced the 

concept of generalized p-value method which is useful for developing hypothesis 

test. Tsui and Weeranhandi (1989) also established that the generalized p-value 

method is numerically equivalent and computationally more efficient formula for the 

p-value.  

 

Welch provided an approximate degree of freedom solution as well as 

asymptotically series solution as an approximate t test for the problem. These two 

Welch’s tests are known as Welch APDF (Approximate Degree of Freedom) (Aspin, 

1948) and Aspin-Welch tests (Aspin, 1949) and are recommended only when the 

data are normal; sample sizes are small and variances heterogeneous. Yuen (1974) 

introduced the modification to the Welch’s test, incorporating trimmed means 

(involving censoring or removing extreme observations in the tail of the distribution) 

and Winsorized variances (replacing most extreme observation with less extreme 

value in the distribution). The rationale of substituting these robust measures of 

location and scale for the usual mean and variance, respectively in the Welch’s 

statistic is to ensure a test statistic that is insensitive to nonnormality can be 

obtained. When handling non-normal data due to extreme observations, the standard 
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error of the trimmed mean is less affected than the usual mean. Furthermore, the 

Winsorized variance compliments the corresponding trimmed mean as it is a 

consistent estimator of the variance of the trimmed mean. 

 

Keselman, Cribbie and Zumbo (1997) pitted several modified test with the 

usual Mann-Whitney test. The modified tests highlighted in the article are the two 

versions of the Yuen’s (1974) modification of the Welch’s test and a modified 

Mann-Whitney test (RSKEW) presented by Randles and Wolfe (1979). The article 

recommended the non-parametric approach particularly the usual Mann-Whitney 

test because it is more powerful. Furthermore, to benefit from the modified tests, one 

has to know the shape of the distribution. Subsequently, these modified tests are 

known as specialized tests, favoring only known distribution. For heteroscedastic 

data that cannot be normally transformed, then alternative tests which are more 

robust are viable options. 

 

Further efforts in handling heteroscedastic data focused on developing robust 

nonparametric tests that were intended to increase the ability of the standard 

nonparametric test to detect the difference between populations when the underlying 

distributions were asymmetrical. 

 

 Potthoff (1963) presented a conservative technique for utilizing the 

Wilcoxon test for the two-sample problem to test null hypotheses, like that 

encountered in the Behrens-Fisher problem. He recommended that no matter what 

the two populations were, the usual Wilcoxon test (Wilcoxon, 1945) with its 

variance ( ) mnnm 121++  replaced by 1/4[minimum(mn)], may be used to test the 
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null hypothesis of the equality of the medians of two symmetrical (continuous) 

distribution with emphasis that the populations are of the same form even though 

they have different or unknown scale parameters. On the whole, the test still works 

for testing the equality of the medians of any two symmetrical distributions. 

 

An approach to comparing groups based on median that currently seems to 

have practical value is the T statistics (Wilcox, 2003, page 252). In comparing two 

groups, the T statistics takes the form of  

2
2

2
1

21

SS

MMT
+

−
= , 

with M be the usual sample median from the respective group and 2S  is some 

estimate of the standard error of the sample median M . There are many estimates of 

the standard error of M that have been proposed.  Many of these proposed estimates 

have been studied and compared by Price and Bonett (2001). Subsequently, Bonett 

and Price (2002) approximated the null hypothesis of T with the standard normal 

distribution using an estimate of the standard error simply known as the Price-Bonett 

estimate. Wilcox (2003, 2006) suggested a similar strategy but rather than the Price-

Bonett estimate of the standard error, an estimator derived by McKean and Schrader 

(1984) was used. The McKean-Schrader estimate of the standard error of M is very 

simple. Initially, compute  

42
1

995.
nznk −

+
= , 

where k  is rounded to the nearest integer and 995.z  is the .995 quantile of a standard 

normal distribution. Next, the observed values are arranged in ascending order to 
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form )()1( nXX ≤≤L . Hence the McKean-Schrader estimate of the standard error of 

M is 

2

995.

)(1(

2 






 −+−

z
XX kkn  

Hettmansperger (1973) and Hettmansperger and Malin (1975) have also 

proposed similar conservative tests. The former paper suggested a conservative test 

based on Mathisen’s (1943) median test that requires no shape assumption of the 

populations but caution that a nominal 0.05 test can in fact be extremely 

conservative and thus the power of the test may be quite depressed. On the other 

hand, Hettmansperger and Malin (1975) have proposed asymptotically distribution-

free tests based on Mood’s (1954) median test. 

 

Fligner and Pollicello (1981) developed a closely related non-parametric test, 

the robust rank-order test (also known as Fligner-Pollicello test) to correct some of 

the theoretically shortcomings of the commonly used Mann-Whitney test. The 

robust rank-order test was much less sensitive to the population distribution 

assumptions and substantially outperformed the Mann-Whitney test when the 

sample sizes were small or very large. For medium-sized samples, the test was likely 

to give false positive results but this was more a shortcoming of the normal 

approximation than the test itself.  

 

Even though the robust rank-order test retained all the desirable properties of 

the original Mann-Whitney test statistic irrespective of the populations being 

identical or not, Feltovich (2003) discovered that there were disadvantages. First, 

when the population distributions are asymmetric, the test itself suffered from many 
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of the same problems as the Mann-Whitney test; it performed inconsistently and was 

sensitive to sample sizes. Second, even when the population distributions were 

symmetrical, little information is available about the distribution of the robust rank-

order test statistic (such as its critical values for some common levels of 

significance).   

 

The second shortcoming of the robust rank-order test can be remedied by 

additional information concerning the distribution of the significance level. In his 

paper, Feltovich (2005) expand the number of critical values available to the robust 

rank-order test. Until now the usage of the robust rank-order test has been limited, 

partly due to the limited availability of exact critical values. These are available for 

small sample sizes. The first shortcoming, however, can only be completely 

overcome by looking at alternative statistical tests or techniques.  Subsequently, a 

refined procedure based on Mann-Whitney test was proposed by Babu and 

Padmanabhan (2002). This refined Mann-Whitney test actually consists of two 

procedures known simply as Refinement Procedure 1 and Refinement Procedure 2 

which highlighted the use of a resampling method namely bootstrapping. 

 

In developing and identifying a robust statistical procedure to handle 

comparison of unbalanced design, one has the option of selecting a central tendency 

measure that is robust in response to a variety of distribution shape. One such 

measure is the median (i.e. the 50th percentile). In comparison with mean and other 

central tendency of location (e.g. trimmed means), median performs well as a point 

estimator because it reduces the impact of outliers (Wilcox, 1997, 1998). In many 

instances, the median is less subjected to sampling variability and provides a 
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measure of central tendency that is closer to the bulk of the data as compared with 

the mean. Outliers can dramatically influence the variability of the data. They can be 

responsible for the heterogeneity of variances between two or more samples. In 

addition, outliers can have a dramatic impact on the value of a sample mean. Median 

is resistant to outliers, hence it is expected that the median test would provide a 

highly robust inferential test in response to varying distributional characteristic. The 

proposed refined Mann-Whitney test evaluates the sample differences with respect 

to their median values.  

 

In the refinement procedures, the hypothesis testing is done using bootstrap, 

which is similar to that of randomization tests. The refinement procedures here used 

resampling with replacement (bootstrap) instead of the usual replication of data by 

all possible combinations in the randomization tests. The adaptation of bootstrap 

hypothesis test in the refinement procedures eliminates the question of data 

randomness and the concern regarding the population distribution. When 

determining whether two samples; sample X of size m and sample Y of size n, have 

been drawn from population distributions with the same central tendency, the usual 

Mann-Whitney test can only be employed if the populations are symmetrical. Under 

the null hypotheses the Mann-Whitney test implies the γ  = ( )ii YXP ≤  = 0.5 and 

hence ( ) =UE 0.5mn even when their scales, Xσ and Yσ  are unequal. If the 

symmetrical assumption is violated, then the value of γ  differs from 0.5 and its 

value depends on the unknown distribution function of the populations. In such a 

case, the Mann-Whitney statistics, U is not centered correctly at 0.5mn. 

Consequently, the performance of the Mann-Whitney test displays a huge variation, 

depending on the distribution assumption; in some cases, it is conservative, in 
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others, extremely liberal. To overcome this, the refinement procedures center 

( )mnU  at a bootstrapped estimator γ̂  = ( )ii YXP ≤  and also employs the bootstrap 

percentile method to obtain critical values for decision making. 

 

As acknowledged earlier, existing procedures used to handle the Behrens-

Fisher problems relied on the theoretical distribution of its population, which was 

usually met by a large-sample size. Therefore in this refined Mann-Whitney test, we 

incorporate bootstrap procedures when faced with situations where the population is 

ill defined or when one is skeptical about the underlying theoretical distribution. In 

short, through combination of a robust point estimator (i.e. the median) with a 

flexible inferential procedure (i.e. bootstrapping), the refinement procedures are free 

of mathematical assumptions and this makes it a good alternative when confronted 

by Behrens-Fisher problems.  But the refinement procedures also have their share of 

shortcomings. Refinement Procedure 1 and Refinement Procedure 2 produced 

contradictory outcomes with the former being conservative test and the latter as a 

liberal test as reported by Babu and Padmanabhan (2002).  

 

1.3 Purpose of the Study 

 

The standard statistical tests for two sample location problem were designed 

to test the null hypothesis when the populations were identical. Their usage for 

testing a broader type of null hypothesis similar to that encountered in the 

generalized Behrens-Fisher problem required very restrictive assumptions regarding 

the populations. 
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The primary purpose of this study is to investigate the Type I error and the 

power properties of several identified statistical tests that may be appropriate for 

testing a broader type of null hypothesis with fewer assumptions on the variances 

and distributional shapes of the populations. The findings of this study will provide 

researchers with useful information about the boundary conditions and the utility of 

the selected statistical test procedures. The robust statistical test highlighted in this 

study is a refinement of the conventional Mann-Whitney test. These Mann-Whitney 

refinement procedures or simply called as Refinement Procedures comprise of two 

procedures namely Refinement Procedure 1 and Refinement Procedure 2. The 

secondary purpose of this study is to review the performance of these new 

procedures in handling problems of unequal variances and different shapes of the 

populations.  

 

1.4 Criteria and Strategy Employed In the Study 

 

The two criteria generally employed to evaluate the performance of a 

statistical test are the robustness and the power of the test.  The robustness of a 

statistical test is the ability of the test to maintain its Type I error rate. Hence, for a 

statistical test to be robust, the test’s actual significance level must remain very close 

to the nominal significance level. 

 

As for the power of the statistical test, this is an equally important criterion 

that will indicate how effective the test is in detecting treatment differences which in 

actual fact existed. The power of a statistical test can be viewed as the probability 

that a decision made is correct. 
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Armed with these two criteria, the validity of a statistical test can then be 

evaluated and compared. Both the null and non null experimental test with various 

study conditions can be modeled through Monte Carlo simulations. The study 

conditions are usually distributional assumptions that the statistical test is expected 

to be appropriate. These extreme conditions are usually conditions that violate the 

assumptions of the statistical test. The proportion of rejections by the statistical test 

is then tabulated. Under the null condition, this proportion of rejections is an 

estimate of the Type I error rate for the given experiment and is recorded as α̂ . 

When the non null conditions are modeled, then this proportion of rejections will 

represent the empirical power of the experiment. 

 

The choice statistical test will be the statistical test that maintains its α̂  

within an accepted interval of α  based on Bradley’s (1978) criterion and its 

empirical power closer or higher than that of the predetermined power rate. A more 

elaborate discussion on the Monte Carlo evaluation procedure adopted in this study 

will be disclosed in Chapter 3. 

 

1.5 Implication of the Study 

 

The results of the evaluation, which is incorporated in Chapter Four, will 

provide some idea of the strength and weakness of the selected statistical tests. The 

result will also review the relative performance of the modified tests with the 

standard statistical test and whether it is worth the initiative. It will also help 

researchers to determine which statistical test they should adopt under specific 

conditions of concern. 
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1.6 Limitation of the Study 

 

In comparing two groups we adopted the approach of comparing robust 

measures of location and scale.  Despite this, there is very little attention focused on 

global comparisons of two distributions. The basis of global comparisons is that if 

two distributions differ, they might do so in many complicated and interesting ways 

that might not be reviewed by the difference between the single measures of location 

or scale (Wilcox, 2005).  This approach in which the entire distributions might be 

compared is called shift function. This was basically developed by Doksum (1974, 

1977) and also Doksum and Sievers (1976).  Shift function measures how much the 

control group must be shifted so that it is comparable to the experimental group at a 

particular quantile.  

 

In situation, where there are two different distributions with equal means and 

variances, it will be more appropriate instead to adapt the shift function approach by 

comparing the quantiles of the two groups. This situation usually arises if the two 

distributions differ and are skewed in the opposite direction. The distributions 

considered in this study are from similar distribution skewed in the same direction.  

 

1.7 Organization of the Thesis 

 

In brief, Chapter One provided an introduction of the study which included 

the rationale, historical development, the purpose, significance of the study, criteria 

and strategy proposed and finally the limitation of the study. Chapter Two 

introduces the review of literature of the two sample problem, test description and 
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the evaluation of the test’s robustness and power. Chapter Three proposes the 

research method and testing framework in this study. This chapter also outlines the 

procedure of generating and manipulating selected distributions based on various 

violations of test assumptions. Chapter Four presents the findings and results of the 

Monte Carlo simulation study of the robustness and power of the two sample tests. 

This chapter contains the characterization of Type I error and statistical power for 

each test across multiple violations. Chapter Five summarizes the findings and 

discusses both the relative strengths and implications of the tests. Recommendations 

are also made for each test with regard to its general and specific robustness. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Organization of Chapter 

 

This chapter presents a review of literature related to this study. It includes a 

review of the two–sample test under the non-directional alternative hypothesis in 

Section 2.2. Section 2.3 contains the description of the statistical tests which will 

include test assumptions, test procedures and their sampling properties. Section 2.3 

also contained literature related to the performances of these tests. The statistical 

tests identified for investigation in this study are Welch’s test, Mann-Whitney test, 

Johnson’s transformation, Hall’s transformation and the two proposed refinement 

procedures, RF1 and RF2. 

 

 The objective of this study is to investigate the robustness and statistical 

power of these statistical tests in conditions such as sample size combinations, 

variance ratios, and various degrees of skewness and kurtosis of the populations. 

Section 2.4 presents a framework on the evaluation of these statistical tests in terms 

of Type I error rates and statistical power. Section 2.4 also presents related literature 

regarding the standard for statistical significance employed in the testing procedure.  
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2.2 The Two-Sample Problem 

 

 Statistical tests have been developed to permit comparisons regarding the 

degree to which qualities of one group of data differ from those of another group. 

Each statistical test is based on certain assumptions about the population(s) from 

which the data are drawn. If a particular statistical test is used to analyze data 

collected from a sample that does not meet the expected assumptions, then the 

conclusions drawn from the results of the test will be flawed. The statistical 

comparison to determine the difference between two samples usually starts with the 

formulation of a null hypothesis, 0H  to the effect that both samples come from 

identical populations against the alternative, 1H  which indicates a difference 

between both samples. The test procedures that follow suit are influenced by the 

alternative hypothesis of the two-sample problem being contemplated. 

 

R. A. Fisher proposed a method for testing a hypothesis which is related to 

the maximum likelihood estimators. The likelihood ratio test is a statistical test with 

a likelihood ratio test statistic denoted as Λ, in which the numerator corresponds to 

the maximum probability of an observed result under the null hypothesis. The 

denominator of the likelihood ratio corresponds to the maximum probability of an 

observed result under the alternative hypothesis. The value of Λ can be used to make 

decision between the null hypothesis and alternative hypothesis. If the distribution of 

the likelihood ratio corresponding to a particular null and alternative hypothesis can 

be explicitly determined, then the ratio Λ can be directly used to form decision. 

Unfortunately, the likelihood ratio method does not always produce test statistic 

with known distribution. The remedy will be then to transform the likelihood ratio 
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into log-likelihood ratio. For a large n, the transformed log-likelihood ratio – 

2log(Λ) has approximately a 2χ distribution with rro −  degrees of freedom. When 

determining the degree of freedom, or  denotes the number of free parameters in the 

parameter subset specified by the null hypothesis and r  denotes the number of free 

parameters specified in the parameter space. Hence, the likelihood ratio procedure 

provides a general method of developing statistical test. Many common test statistics 

such as Z-test and F-test can be phased as log-likelihood ratios. The likelihood ratio 

test requires that the distribution of the sampled populations must be known 

otherwise the likelihood functions cannot be determined and the method cannot be 

applied.  

 

 The goal of a hypothesis test is to decide, based on samples from 

populations, which of the two complementary hypotheses is true. Therefore these 

hypotheses must be formulated in terms of some reasonable easily interpreted 

measure of difference. Let the first sample consists of m independent observations; 

m21 X,,X,X K  on a random variable X with distribution ( )XG  and the other sample 

with n independent observations; nYYY ,,, 21 K  on Y  with distribution function ( )YH . 

The two-sample problem involve pitting the null hypothesis, ( )XG = ( )YH  against 

the alternative hypothesis, ( )XG ≠ ( )YH . The alternative hypothesis must be 

formulated in terms of some reasonable easily interpreted measure of difference. 

 

Among such measurement of difference, one of the simplest and most easily 

interpreted is the difference in location of distribution that is otherwise identical. 

This measurement of difference models on ( ) ( )xXFXG θ−= and 
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( ) ( )yYFYH θ−=  where the c.d.f. F is continuous and is symmetrical about the 

origin. Thus the parameter ∆  expressed as yx θθ −=∆ , represents a shift in location 

between the two distributions.  xθ  and yθ  represent the medians of the distribution 

of ( )XG and ( )YH  respectively, or equivalently as yx µµ −=∆  where, provided 

they exist, yµ  and xµ  are means of ( )XG  and ( )YH . If there is a difference 

between the two population distribution functions then that difference is reflected 

and realized in a difference in the location of the distribution. Hence in the location 

problems, the null hypothesis can be reformulated as 0:0 =∆H .  

 

A statistical test is generally conducted by means of a test statistic for which 

the probability distribution is determined on the assumption that the null hypothesis 

is true. This assumed distribution is known as null distribution of the test statistic. 

Hence, when calculating the test statistic, which is purely a function of data, its 

probability distribution should be calculated under the assumption that 0H  is true. 

The usual assumptions of the null distribution are that it is normal or at least 

symmetrical and homoscedastic. The test will suffer from distorted Type I error and 

loses its statistical power when the data is not normal and/or when heteroscedasticity 

is present. 

 

For example, the usual t statistic for small sample test is calculated based on 

the pooled variances, applicable for moderately large samples and when the sampled 

populations which are approximately normal. The t statistic is of the form 
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1σ̂  and 2

2σ̂  being the two sample variances (Sincich, 1993). 

 

This t statistic is still valid when testing for the difference in the means of two 

populations even though the variances of the sampled populations are unequal 

provided the sample sizes are the same. In cases where the sample sizes and 

population variances are not equal, an approximate test for the difference in the 

means of the populations can be performed by modifying the degrees of freedom 

associated with the t distribution.  

 

When conducting statistical test, the decision on the choice of parametric or 

non-parametric test is perhaps one of the oldest fundamental analysis decision 

confronting researchers in the field of psychology and education. Making the right 

choice is of utmost importance because its implication will affect both statistical and 

substantive inference. Despite the implications of this important decision, many 

researchers unerringly employ tests by overlooking or violating assumptions of the 

test. With the advent of the computer and subsequently more powerful computer, the 

computer is used to simulate various samples of distributions. These simulated 

distributions are then systematically manipulated so as to examine the sensitivity of 

standard parametric and nonparametric test to varying degrees of violations to the 

assumptions of these standard tests. Further more the versatility of the computer 
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simulation enables the possibility of examining multiple violations to the 

assumptions commonly encountered. 

 

 This study will seek a robust testing procedure based on the ability of the 

statistical test to maintain its Type I error and at the same time a powerful test in the 

face of assumption violations. 

 

2.3 Statistical Tests Description 

 

When the required assumptions for the usual parametric test are violated, 

there are alternative strategies for the testing procedure. The usual strategies are 

robust procedures, non-parametric tests and resampling procedures (see Figure 2.1). 

The tests described in this section are the common tests for each strategy and this 

research seeks to identify a general robust test to handle the Behrens-Fisher 

problems. A statistical test is considered robust if it is not affected by violation of 

assumptions that justify it. 

Robust Statistical Test  Initiative

1. Robustified Tradisional Procedure 2. Non-Parametric Procedure Resampling Procedure

• Separate-Variance Test  Welch’s 
(1947) Test

• Yuen’s (1974) Modification
• Johnson’s (1978) Transformation
• Hall’s (1992) Transformation

• Mann-Whitney Test

• Mann Whitney Refinement (Babu 
& Padmanadhan, 2000)

• Statistics in 1 and 2 without their 
sampling distribution 

 

Figure 2.1: Robust test initiative 
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2.3.1 Robustified traditional procedures. 

 

Robustified tests are based on parametric test statistics in which the estimates 

of the parameters like means or standard deviation are replaced by robust estimates 

like trimmed means and Winsorized variances. 

 

 Separate – variance  t test. The separate-variance t test introduced by Welch 

(1938, 1947) and Scatterthwaite (1946) is one of the widely used and best known 

procedures for testing the difference in the means of two populations when both 

their variances and sample sizes are unequal. The separate-variance t test or Welch’s 

test is calculated from an unpooled error term and the degrees of freedom are 

modified to determine the rejection region of t. The statistic, 
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With computational software we can get t and F values with rational degrees of 

freedom. The Welch’s t test also served as a model for other approaches. 

  

When sampling from a skewed population with small sample sizes, the usual 

group means and variances are greatly influenced by the presence of extreme 
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observations in the population distribution. The standard error of the usual mean 

becomes seriously inflated when the underlying distribution has heavy tails. Lix & 

Keselman (1995) noted that the Welch’s test is generally robust only to variance 

heterogeneity under normality. To obtain a test statistic that is insensitive to non-

normality, the usual mean and variance is substituted by a robust measure of 

location and scale. To deal with the effect of extreme values, one of the strategies is 

to give less weight to these extreme values at the tails and instead focus more on 

those values near or around the centre of the distribution. This is usually 

implemented by either removing these extreme values or pulling them in nearer to 

the centre of the distribution. From the wide range of robust estimators (Gross, 

1976; Lind & Zumbo, 1993), the trimmed mean and Winsorized variance are most 

appealing due to their computational simplicity and good theoretical properties 

(Wilcox, 1995).  

 

Yuen’s modification. Yuen (1974) suggested that trimmed means and 

Winsorized variance be used in conjunction with Welch’s (1938) statistics. Hence 

the suggested test is known as the Yuen-Welch test or just the Yuen’s test. The 

Yuen’s test is for testing the hypothesis that two independent groups have equal 

trimmed means.  

 

The Yuen’s test is designed to allow unequal Winsorized variances. The standard 

Welch’s test is incorporated into the Yuen’s test. In situations where trimming is not 

required ( )0=γ , the Yuen’s test is reduced to the Welch’s test which is meant for 

comparing means that allows unequal variances. 

 

210 : ttH µµ =
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 In trimmed means, outliers in both tails are simply omitted. Let 

jnjj j
YYY )()2()1( ≤≤≤ L  represent the ordered observations associated with the jth 

group, (j = 1, 2). Let [ ]jj ng g=  be the number of observations trimmed for each 

tail. The symbol [ ] operates on jnγ  gives the nearest integer less than or equal 

to jnγ . The valueγ  is the proportion of the observations to be trimmed from each of 

the tail of the distribution. After trimming, the effective sample size for the jth group 

becomes jjj gnh 2−= . The respective sample trimmed means are computed from 

these trimmed samples using: 
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Similarly, to compute the Winsorized variance, the outliers in the distribution 

are identified. Instead of trimming off the tails of the distribution, they are replaced 

with the maximum and minimum observations respectively from the trimmed data 

as shown below. 
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Foremost, the Winsorized mean, which is an integral portion in computing 

Winsorized variance, is determined. The Winsorized mean is computed as 
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The sample Winsorized variance is then computed by using 
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