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CCT   CTP-phosphocholine cytidylyltransferase 

CCTα   CTP-phosphocholine cytidylyltransferase alpha  

CCTβ   CTP-phosphocholine cytidylyltransferase beta 

cdK1   Cyclin dependent kinase I 

cdK5   Cyclin dependent kinase 5 

cDNA   Complementary deoxyribonucleic acid 

CFTR   Cystic fibrosis transmembrane conductance regulator 
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CK   Choline kinase 

CKα Choline kinase alpha 

CKA-2   Caenorhabditis elegans CK from family A 

CKβ   Choline kinase beta 

CNG   Cyclic nucleotide-gated ion channel 

CO2   Carbon dioxide 
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CREB   cAMP response element-binding protein 

c-Src    Proto-oncogene tyrosine protein kinase Src    
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DMEM  Dulbecco’s modified eagle’s medium 
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DNA   Deoxyribonucleic acid 
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DTT   Dithiothreitol 
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Epacs   Exchange proteins activated by cAMP 

EPT   Ethanolamine phosphotransferase 
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FRET   Fluorescence resonance energy transfer 

GATA  Transcription factor that binds to the DNA sequence of 

‘GATA’ 

GFP   Green fluorescent protein 
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GPCRs  G protein-coupled receptors 

GSH   Glutathione 

GSK3β  Glycogen synthase kinase 3 β 

GST   Glutathione S-transferase 

GTPase  Guanosine triphosphate (GTP) hydrolyzing enzyme  

HC-3   Hemicholinium 3 
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HIF-1α   Hypoxia-inducible factor alpha 
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IBMX   3-Isobutyl-1-methylxanthine  

IC50   Half maximal inhibitory concentration 

IPTG   Isopropyl-β-D-thiogalactopyranoside 

IRS   Insulin receptor substrate 

kcat   Enzyme turnover rate 

kcat/Km   Enzyme catalytic efficiency 

KCl   Potassium chloride   

kDa   Kilo dalton      

KH2PO4  Potassium phosphate 

Km   Michaelis constant 

LB   Luria-Bertani 

LDH   Lactate dehydrogenase 

Leu   Leucine 

Lys   Lysine 

MCF-7   Human breast adenocarcinoma cell line 

M-CPTI  Muscle type carnitine palmitoyltransferase I 

mCRY2  Muscle cryptochrome 2   

MDCK  Madin-Darby canine kidney cell line   
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Na2HPO4  Disodium phosphate  
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PC   Phosphatidylcholine 

PCho   Phosphocholine 

PDEs   Phosphodiesterases 

PDPK1  3-phosphoinositide-dependent protein kinase-1 

PCR   Polymerase chain reaction 

PE   Phosphatidylethanolamine 
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PEMT   Phosphoethanolamine methyltransferase 
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PI3K   Phosphoinositide 3-kinase   
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PTK   Protein tyrosine kinase 
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to Pseudomonas syringae pathovar tomato 

RAS   Rat sarcoma, described the small GTPase protein 

RFU   Relative fluorescence unit 

RhoA   Ras homolog gene family, member A 

RSK   Ribosomal S6 kinase 

SDS   Sodium dodecylsulfate 

SDS-PAGE  Sodium dodecylsulfate polyacrylamide gel electrophoresis 

Ser   Serine  
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StarD10  START protein of the domain 10 

SUS   Sucrose synthase 

TAE   Tris acetate-EDTA buffer 

TBS   Tris buffered saline 
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PEMFOSFORILAN DAN PENGAWALATURAN KOLINA KINASE BETA 

MANUSIA OLEH PROTEIN KINASE A 

 

ABSTRAK 

Kolina kinase (CK) adalah enzim pertama yang terlibat dalam laluan CDP-kolina 

untuk proses biosintesis fosfatidilkolina yang merupakan komponen utama fosfolipid 

membran. CK terdiri daripada tiga isoform iaitu CKα1, CKα2 dan CKβ. 

Pengawalaturan enzim ini adalah penting dari segi fisiologi. Perubahan metabolik 

CKα telah dikaitkan dengan pembentukan tumor, manakala mutasi atau pemadaman 

gen chkβ boleh menyebabkan distrofi otot. Dalam kajian antikanser, perencatan 

aktiviti CK telah diteroka sebagai strategi terapeutik yang berpotensi. 

Pengubahsuaian pasca translasi merupakan salah satu mekanisme untuk mengawal 

fungsi CK. Semakin banyak bukti menunjukkan bahawa fungsi CK dalam yis dan 

CKα dalam manusia dikawalatur oleh pemfosforilan. Namum begitu, pemfosforilan 

CKβ tidak pernah dilaporkan. Dalam kajian ini, protein kinase A (PKA) telah 

dikenalpasti sebagai protein kinase yang bertanggungjawab dalam pemfosforilan 

CKβ melalui analisis in-gel kinase. Pemfosforilan oleh PKA telah disahkan melalui 

teknik analisis perencat PKA dan blot Western. Analisis in vitro dengan 

menggunakan PKA komersil juga membuktikan bahawa CKβ merupakan substrat 

untuk pemfosforilan PKA. Pemfosforilan ini berlaku pada terminal-N CKβ iaitu asid 

amino serine 39 dan 40. Pemfosforilan CKβ telah dilihat dalam sel embrio ginjal 

manusia (HEK293) dan sel karsinoma hati manusia (HepG2). Rawatan forskolin dan 

3-isobutil-1-metilxantin meningkatkan tahap pemfosforilan pada CKβ manakala 

kesan tersebut direncatkan oleh perencat PKA (H-89). Tahap pemfosforilan CKβ 

juga ditingkatkan oleh rawatan faktor pertumbuhan epidermis. Seterusnya, kesan 
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pemfosforilan terhadap ciri-ciri biokimia CKβ juga dikaji. Pemfosforilan PKA telah 

meningkatkan aktiviti pemangkinan CKβ terhadap kolina, etanolamina dan ATP. 

Nilai Vmax untuk kolina, etanolamina dan ATP telah masing-masing meningkat 

sebanyak 47.1%, 81.8% dan 50.8%. Pemfosforilan PKA juga telah meningkatkan 

tarikan CKβ terhadap substrat kolina dan ATP, tetapi pemfosforilan menurunkan 

tarikan CKβ terhadap substrat etanolamina. Kecekapan pemangkinan CKβ untuk 

kolina dan ATP telah meningkat sebanyak 121.0% dan 97.5% masing-masing. Kesan 

pemfosforilan PKA terhadap ciri-ciri biokimia CKβ telah ditiru oleh mutasi berganda 

pada serine yang difosforilasi dengan penukaran kepada aspartat. Pemfosforilan juga 

meningkatkan sensitiviti CKβ terhadap perencatan oleh hemicholinium-3 (HC-3) 

yang merupakan perencat CK yang kuat. Nilai IC50 CKβ terfosforilasi (50 μM) 

adalah 29 kali ganda lebih rendah daripada enzim tidak terfosforilasi (1.45 mM). 

Selain itu, pemfosforilan juga mengurangkan kestabilan CKβ terhadap penyahaslian 

urea. Sebaliknya, pemfosforilan tidak menjejaskan pH optima, lokasi subsel dan 

status oligomer CKβ. Kajian ini melaporkan fosforilasi dan pengawalaturan CKβ 

oleh PKA untuk kali pertama. Pengetahuan ini memberikan pandangan baru terhadap 

pengawalaturan intrasel ciri-ciri pemangkinan CKβ yang mungkin merupakan 

mekanisme penting untuk mengawal metabolisme lipid and pertumbuhan sel.  
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PHOSPHORYLATION AND REGULATION OF  

HUMAN CHOLINE KINASE BETA BY PROTEIN KINASE A 

 

ABSTRACT 

 

Choline kinase (CK) is the first enzyme involved in CDP-choline pathway for the 

biosynthesis of phosphatidylcholine, the major component of membrane 

phospholipid. CK exists as three isoforms, which are CKα1, CKα2 and CKβ. The 

regulation of these enzymes is physiologically important. Metabolic alterations of 

CKα are associated with tumorigenesis, while mutation or deletion of chkβ gene 

leads to the development of muscular dystrophy. In anticancer research, inhibition of 

CK activity has been explored as a potential therapeutic strategy. Post-translational 

modification is one of the mechanisms to regulate the function of CK. Growing 

evidences support that yeast and human CKα are regulated by phosphorylation but 

the phosphorylation of CKβ has never been reported. In this study, protein kinase A 

(PKA) was identified as the protein kinase responsible for the phosphorylation of 

CKβ by in-gel kinase assay. PKA phosphorylation was confirmed with specific PKA 

inhibitor and Western blotting. In vitro assay with commercial PKA further 

supported CKβ as the substrate for PKA phosphorylation. The phosphorylation 

occurred at serine 39 and 40 residues in the N-terminal region of CKβ. 

Phosphorylation of CKβ was observed in human embryonic kidney cells (HEK293) 

and liver hepatocellular carcinoma cells (HepG2). Forskolin and 3-isobutyl-1-

methylxanthine treatment increased the phosphorylation level of CKβ, while the 

phosphorylation was inhibited by PKA inhibitor (H-89). The phosphorylation level 

of CKβ was also increased by epidermal growth factor. The effects of PKA 



xxii 

 

phosphorylation on the biochemical properties of CKβ were subsequently examined. 

PKA phosphorylation increased the catalytic activities of CKβ with choline, 

ethanolamine and ATP as substrates. The Vmax values for choline, ethanolamine and 

ATP were increased by 47.1%, 81.8% and 50.8%, respectively. PKA 

phosphorylation improved the affinity of CKβ for choline and ATP, but decreased 

the affinity of CKβ for ethanolamine. Consequently, the catalytic efficiencies of CKβ 

for choline and ATP were increased by 121.0% and 97.5%, respectively. The same 

effects of PKA phosphorylation on the biochemical properties of CKβ were 

mimicked by double mutation of the phosphorylated serines to aspartates. PKA 

phosphorylation also dramatically increased the sensitivity of CKβ to 

hemicholinium-3 (HC-3), a potent inhibitor of CK. The IC50 value for 

phosphorylated  CKβ (50 μM) was 29 times lower than the unphosphorylated 

enzyme (1.45 mM). In addition, PKA phosphorylation also decreased the stability of 

CKβ protein against urea denaturation. On the contrary, phosphorylation did not 

affect the optimum pH, subcellular location and oligomeric state of CKβ. This study 

reports the phosphorylation and regulation of CKβ by PKA for the first time. The 

knowledge provides new insight into the intracellular regulation of CKβ catalytic 

properties by phosphorylation that might be an important mechanism to modulate 

lipid metabolism and cell growth.  
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Kennedy pathway 

Kennedy pathway (Figure 1.1) which consists of CDP-choline and CDP-

ethanolamine pathways decribes the de novo biosynthesis of major phospholipid 

components of the cell (Kennedy and Weiss, 1956). In CDP-choline pathway, CK 

catalyzes the phosphorylation of choline to phosphocholine (PCho) using adenosine 

triphosphate (ATP) and magnesium (Mg
2+

) as substrate and cofactor, respectively 

(Ishidate, 1997). The second enzyme in this pathway is CTP-phosphocholine 

cytidylyltransferase (CCT) which converts the PCho into CDP-choline. CDP-

choline phosphoryltransferase (CPT) catalyzes the final condensation of CDP-

choline to form PC (Kent, 1990, Gibellini and Smith, 2010). For CDP-ethanolamine 

pathway, ethanolamine is converted into phosphoethanolamine (PEtn) by EK and 

followed the similar steps as the CDP-choline pathway (Gibellini and Smith, 2010). 

In liver, the end product of CDP-ethanolamine pathway, the PE, can be converted 

into PC by phosphoethanolamine methyltransferase (PEMT) (Li and Vance, 2008).  

 

1.2 Choline kinase 

Human CK is composed of CKα1, CKα2 and CKβ isoforms. CKα and CKβ are 

encoded by two separate genes, chkα (NCBI Gene ID: 1119) and chkβ (NCBI Gene 

ID: 1120) in chromosomes 11q13.2 and 23q13.33, respectively. CKα undergoes 

alternative splicing to form CKα1 (NCBI reference sequence: NP_005189) and 

CKα2 (NCBI reference sequence: NP_001268) with the calculated molecular size of  
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                           EK                        ECT                                             EPT 
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Figure 1.1: Kennedy pathway for the biosynthesis of phosphatidylcholine (PC) 

and phosphatidylethanolamine (PE). Choline kinase (CKα or CKβ) phosphorylates 

choline to form phosphocholine (PCho). PCho is converted into CDP-choline by 

CTP-phosphocholine cytidylyltransferase (CCT). CDP-choline is condensed into PC 

by CDP-choline phosphoryltransferase (CPT). Ethanolamine kinase (EK) 

phosphorylates ethanolamine to form phosphoethanolamine (PEtn). PEtn is 

converted into CDP-ethanolamine by phosphoethanolamine cytidylyltransferase 

(ECT). CDP-ethanolamine is condensed into PE by ethanolamine 

phosphotransferase (EPT). PE can be converted into PC by phosphoethanolamine 

methyltransferase (PEMT). Figure is adapted from Aoyama et al. (2004). 
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50 and 52 kDa, respectively (Aoyama et al., 2004); whereas, CKβ (NCBI reference 

sequence: NP_005189) is encoded by a separated gene with the calculated molecular 

size of 45 kDa. 

 

The enzyme activity of CK was first described in brewer’s yeast by Wittenberg and 

Kornberg (1953). Due to the difficulty in purifying yeast CK, the understanding of 

CK progressed slowly until the highly homogeneous CK was obtained from rat 

tissues in 1984 (Ishidate et al., 1984, Porter and Kent, 1990, Uchida and Yamashita, 

1990). The cDNA of rat and human CKα1 was first isolated from rat liver and 

human glioblastoma (Hosaka et al., 1992, Uchida and Yamashita, 1992a). Amino 

acid sequence comparison between rat and human CKα1 shows 84.9% identity. 

Later, the second transcript of rat CKα1, termed CKα2 was isolated and 

characterized (Uchida, 1994). CKα2 and CKα1 are differed by an extra stretch of 18 

amino acids on the CKα2 isoenzymes with a discrepancy of 2 kDa. The insertion of 

extra amino acids on the CKα2 significantly increased its substrate affinity for 

choline (Malito et al., 2006). The additional stretch of amino acid was proposed to 

be the important region to facilitate the conformational change of the enzyme upon 

substrate binding (Malito et al., 2006).  

 

Another isoenzyme of CK, named CKβ was first cloned from rat liver and 

characterized by Aoyama et al. (1998). The amino acid sequence of rat CKβ shows 

57-59% identity with the amino acid sequence of rat CKα1 and CKα2. The human 

homolog of rat CKβ was identified later by Yamazaki et al. (1997). The cDNA 

sequence of human chkβ was cloned in a large-scale cDNA sequence project and the 

sequence was deposited in NCBI with GenBank accession number: BC082263, 
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BC101488, BC113521(Strausberg et al., 2002). CKβ consists of 395 amino acids. 

CKβ is less studied as compared to the CKα isoenzyme. CKβ is not as active as CKα. 

Most importantly, CKβ is not involved in tumorigenesis as compared to CKα, which 

is the main factor for most of the studies were focused on CKα isoenzyme (Gallego-

Ortega et al., 2009). CKβ started to attract attention when the association between 

CKβ and muscular dystrophy was reported (Wu et al., 2009). 

 

CK from Caenorhabditis elegans has been extensively studied also. The second 

isoenzyme of C. elegans CK from family A (CKA-2) shows 48% identity with the 

human CKα2. Due to its high similarity in gene sequence and biochemical 

properties to human CKα2, CKA-2 has been used as the model for structure function 

study for better understanding of CK function (Gee and Kent, 2003). 

 

1.3 Structure of choline kinase 

CKs consist of two clusters of highly conserved motif, Brenner’s and CK/EK motif 

(Figure 1.2). Brenner’s motif with consensus sequence of hxHxDhx3N (h refers to 

large hydrophobic residue and x refers to an unknown amino acid residue) is found 

in most of the protein kinases that catalyze the transfer of phosphoryl groups 

(Brenner, 1987), whereas, CK/EK motif (hxhhDhEx4Nx3hDhx2HhxE) is conserved 

among the CK from different organisms (Aoyama et al., 2000). 

 

CKA-2 from C. elegans was the first crystal structure to be solved (Peisach et al., 

2003). The crystal structure of CKA-2 revealed the enzyme as a homodimeric 

protein. The structure of CKA-2 is similar with those eukaryotic protein kinases 

(ePK) and aminoglycoside phosphotransferases (AP) although their amino acid  
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Figure 1.2: Sequence alignment of CK from human, mouse and C. elegans. The 

NCBI accession numbers for human CKs; hCKα1, hCKα2 and hCKβ are 

NP_997634, NP_001268, and NP_005189. The NCBI accession numbers for mouse 

CKs; mCKα and mCKβ are NP_038518 and NP_031718. The NCBI accession 

number for C. elegans; CKA-2 is NP_001024480. Figure is adapted from Malito et 

al. (2006). 

 

Brenner’s  motif CK/EK motif 
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sequences are different. Structural comparison of CKA-2 with the catalytic subunit 

of protein kinase A (PKA) and aminoglycoside 3’-phosphotransferase [APH(3’)-IIIa] 

shows conserved structural cores of a N and C-terminal domains. The conserved 

structure of the N-terminal region consists of five strands of β sheet (first five 

strands) and one helix (second helix), whereas the C-terminal domain consists of 

three helices (third to fifth helices) and four strands of β sheet (ninth to twelfth 

strands). The smaller N-terminal domain is connected to the large C-terminal 

domain by a short linker. The crystal structure of CKA-2 also showed the location of 

Brenner’s and the CK/EK motif at the C-terminal domain. There was no bound 

substrate, so the ATP site was predicted based on the existing structure of highly 

similar proteins ePK and AP. The choline binding site was proposed to be near to 

the ATP binding pocket which was formed by several structurally flexible loops 

(Peisach et al., 2003). 

 

Later, Malito et al. (2006) solved the crystal structure of human CKα2 protein with 

bound ADP and PCho to reveal the molecular details of ATP and the choline 

binding sites on CKα2. The ribbon diagram of the CKα2 crystal structure is shown 

in Figure 1.3. CKα2 was also crystalized as homodimeric form. The structure of 

CKα2 is very similar with the structure of CKA-2. As compared to the CKA-2, a 

small difference is found on the fifth helix of CKα2. However, this region is not part 

of the catalytic region. 
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Figure 1.3: Ribbon diagrams of human CKα2 and CKβ. CKα2 (PDB 3G15) and 

CKβ were bound with the hemicholinium (HC-3) (PDB 3FEG). C and N indicate C 

and N-terminal regions. The dimeric structure shown of CKβ was the suggested 

biological model based on the asymmetric unit of CKβ (Hong et al., 2010). 
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CKα2 overexpressed in E. coli BL21(DE3) was the N-terminal truncation mutant 

without the first 49 amino acids (Malito et al., 2006). The truncated version of the 

CKα2 shows very similar biochemical properties as the full length protein and this 

suggests that the N-terminus of CKα2 is not important for enzyme catalysis. On the 

crystal structure, the first visible residue is on the Pro 85 which indicates that the 

first 30 amino acids on the crystal structure are disordered. In this structure, the 

choline binding pocket is described as a deep hydrophobic groove with a rim of 

negatively charged residues. ATP is bound within a cleft between two domains (the 

N and C-terminal domain) of the enzyme. Residues from both N and C-terminal 

lobes contribute to the formation of large pocket for ATP binding. Upon binding of 

choline, it undergoes conformational changes affecting the N-terminal domain and 

the ATP-binding loop.  

 

Subsequently, Hong et al. (2010) solved the crystal structure of another CK 

isoenzyme, CKβ in complex with the potent CK inhibitor, hemicholinium (HC-3). 

HC-3 molecule was bound onto the choline binding pocket. The structure of CKβ 

exhibited the same bilobal architecture as CKα2 with the major difference being the 

C-terminal lobe (Figure 1.3) (Hong et al., 2010). This difference lowers the 

sensitivity of CKβ towards HC-3 inhibition (Hong et al., 2010). Besides, the N-

terminal truncated (35 amino acids) CKβ was shown as a monomer rather than 

dimer like the CKα2 and CKA-2. The first 35 amino acid might be important for the 

oligomeric formation.  
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Mutagenesis study was performed on the conserved Brenner’s and CK/EK motif 

based on information obtained from the crystal structural of CK and other ePK with 

similar protein structure. Aspartate residue on Brenner’s motif was responsible for 

the removal of the proton charge from the hydroxyl group of ATP (Zheng et al., 

1993). Thus, mutation on the Asp 255 residue of CKA-2 and Asp 306 residues of 

CKα2 caused the total loss of CK activity (Malito et al., 2006, Yuan and Kent, 

2004). On the other hand, mutation on the CK/EK motif also impaired the catalytic 

activity of CK. These residues were shown to coordinate the enzyme co-factor, Mg
2+

 

ion by two carboxyl oxygen atoms. Mutation on Asn 260 and Asp 301 on CK/EK 

motif of CKA-2 resulted in the loss of the enzyme activity (Peisach et al., 2003; 

Yuan and Kent, 2004). However, mutation on the Asn 330 on the CK/EK motif of 

CKα2 did not alter the catalytic activity although the crystal structure of CKα2 

showed a direct contact of this residue with Mg
2+

 ion (Malito et al., 2006). Besides, 

Ser 121 in the ATP loop is also important for the activity of CK. Mutation of this 

residue decreased the catalytic efficiency of the enzyme. Hydroxyl group on this 

position is essential for a full activity of the CKα2 protein. 

 

1.4 CK oligomeric structures 

CK exists as dimer, tetramer or higher oligomer. Homo or hetero-oligomer 

formation of CK isoforms had been reported. According to Aoyama et al. (2002), 

the most active form of CK in mouse is the homo-oligomer of α/α, followed by 

hetero-oligomer of α/β and the least active CK is homo-oligomer of β/β. The mRNA 

abundance of CKα isoform was the highest in testis, while the expression of CKβ 

isoform was relatively high in the heart and liver. In liver tissue, hetero-oligomer 

contributed 60% of the total activity, while the homo-oligomer contributed 20% 
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each to the remaining activity. In contrast, the enzyme obtained from heart tissue 

showed 70% of activity from homo-oligomer of β/β, 25% from hetero-oligomer of 

α/β, and <5% was contributed by the homo-oligomer of α/α (Aoyama et al., 2002). 

These observations indicate that the expression, distribution and the combination of 

the CK oligomer were tissue type-dependent.  

 

The dimeric structure of CKα2 protein is stabilized by the dimer interface formed at 

the second α-helix (Glu 175 ̶ Arg 190) of each monomer (Malito et al., 2006). For 

CKA-2, another dimer interface is identified at the first helix (Pro 50  ̶Leu 64) and 

the S-shaped loop [formed by the fourth (Ala 167 ̶ His 174) and fifth (Leu 194 ̶ Thr 

208) helices] (Peisach et al., 2003). The extra dimer interface on CKA-2 is absent 

from the CKα2 protein as the structure at this region is disordered (Malito et al., 

2006). In mouse CK, the important regions for oligomer formation were also 

identified (Liao et al., 2006). The amino acids between first (Pro 73 ̶ Arg 85) and 

ninth helices (Gln 424 ̶ Lys 430) as well as single amino acid on seventh helix, Asp 

320 are critical for oligomer formation of CKα. The region between first (Arg 35 ̶ 

Arg 62) and tenth helices (Gln 379 ̶ Lys 385) is important for oligomer formation of 

CKβ (Liao et al., 2006).  

 

1.5 CK subcellular location 

In early studies, CK had been reported as a cytosolic protein. The CK activity was 

detected in the cytosol fraction of the cells (Uchida and Yamashita, 1990; Aoyama 

et al., 2002). In addition, Miyake and Parsons (2011) also showed CKα as a 

cytoplasmic protein when overexpressed in breast cancer cell line. CKα was 

translocated from cytoplasm to the membrane of the cell when co-expressed with its 
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interacting partner, the epidermal growth factor receptor (EGFR) (Miyake and 

Parsons, 2011). Besides, there was also a report on nucleus translocation of CKα at 

the mitotic phase of the cell cycle (Gruber et al., 2012). These observations provide 

the evidences for CKα translocation into different cell compartments. However, no 

information is available for the subcellular location of CKβ.  

 

1.6 Biochemical properties of CK 

Extensive biochemical characterizations of CK from rat, S. cerevisiae and C. 

elegans had been performed in the earlier studies (Gee and Kent, 2003, Ishidate et 

al., 1984, Kim et al., 1998, Porter and Kent, 1990, Uchida and Yamashita, 1990, 

Ishidate et al., 1985). The details were summarized in Table 1.1 (Aoyama et al., 

2004). Among rat CK, CKα2 possessed the highest specific activity, followed by 

CKα1 and the least active form of CK is CKβ (Ishidate et al., 1984; Ishidate et al., 

1985; Porter and Kent, 1990; Uchida and Yamashita, 1990). As compared to rat CK, 

the similar characteristic was reported for human CK (Hong et al., 2010). Yeast CK 

(S. cerevisiae) was almost as active as the rat CKα2 with lower affinity towards 

choline (Kim et al., 1998). In contrast, C. elegans CK was less active than the yeast 

CK. However, its affinity toward choline was higher than the yeast CK (Gee and 

Kent, 2003).  

 

All the purified CKs possess EK activity (Aoyama et al., 2004; Hong et al., 2010). 

Therefore, the nomenclature of CK becomes choline/ethanolamine kinase in the 

early nineties. The subsequent discovery of Drosophila EK established the existence 

of a separate gene (ek) encoding an ethanolamine specific kinase (Uchida, 1997). In 

human, the cDNA of the ek1 gene was isolated and characterized by Lykidis et al. 
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Table 1.1 The catalytic activity of CK from rat, S. cerevisiae and C. elegans. 

The table is adapted from Aoyama et al. (2004). 

 

Source Oligomeric 

form 

S.A(mmol

/min/mg) 

Km 

Choline 

(μM) 

Km 

ATP 

(mM) 

Corresponding 

protein 

Rat kidney
a,b

 dimer 3.3 100 1.5 CKβ 

Rat liver
c
 tetramer 143 13 0.04 CKα2 

Rat brain
d
 dimer 40 14 1.0 CKα1 

S. cerevisiae
e 

(Recombinant)
 

dimer 128 270 0.09 CKI 

C. elegans
f 

(Recombinant)
 

Dimer 

(oligomer) 

43 

24 

1.6 mM 

13 mM 

2.4 

0.72 

CKA-2 

CKB-2 

 
a
 Ishidate et al. (1984) 

b
 Ishidate et al. (1985) 

c
Porter and Kent (1990) 

d
 Uchida and Yamashita (1990) 

e
 Kim et al. (1998) 

f
 Gee and Kent (2003) 

 

S.A: specific activity. 
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(2001). It possessed high EK activity with negligible CK activity. In general, CK 

prefers choline rather than ethanolamine as substrate. The affinity of CK for choline 

is higher than ethanolamine (Porter and Kent, 1990). Gallego-Ortega et al. (2009) 

reported that both human CKα and CKβ isoforms showed higher affinity toward 

choline rather than ethanolamine. However, human CKβ showed a higher 

ethanolamine kinase activity than CK activity in the cells (Gallego-Ortega et al., 

2009). The overexpression of CKα in human derived cell line increased the 

production of both PCho and PEtn. However, CKβ overexpression increased PEtn 

production, but not PCho (Gallego-Ortega et al., 2009), which showed that CKβ 

catalyzed the phosphorylation of ethanolamine rather than choline when both 

substrates are present in the cell.  

 

In terms of the substrate affinity, CKα purified from bacterial expression system 

possesses a higher affinity for both choline and ethanolamine than the CKβ (See Too, 

2006). CKα overexpressed from human derived cell line (crude cell lysate) also gave 

similar results (Gallego-Ortega et al., 2009). However, Hong et al. (2010) showed a 

contradicting result. Their purified CKβ from bacterial expression system had a 

higher substrate affinity for choline than CKα although the catalytic efficiency of 

CKα remained higher than the CKβ isoenzyme. 
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1.7 The roles of choline kinase 

1.7.1 Cell proliferation 

CK is involved in cell proliferation. The product of CK, PCho was shown to induce 

mitogenesis. In human primary mammary epithelial cells (HMEC) and mouse 

embryonic fibroblast cells (NIH 3T3), PCho production was increased by growth 

factor, insulin and hydrocortisone treatments, which were the effectors for normal 

cell proliferation (Ramirez de Molina et al., 2004, Kiss and Chung, 1996). The 

treatment also increased the DNA synthesis of HMEC cells and promotes G1 to S 

phase transition of the cell cycle (Ramirez de Molina et al., 2004). CK 

overexpression was found to alter the expression of 31 genes and promote cell 

proliferation (Ramirez de Molina et al., 2008). The expression of transforming 

growth factor beta (TGF-β), one of the important proteins in G1 cell cycle arrest was 

down-regulated by the overexpression of CK (Ramirez de Molina et al., 2008). The 

role of CK in down regulating cell arrest was further confirmed by specific CK 

inhibitor, MN58b. MN58b was shown to reverse the TGF-β mediated transcriptional 

activation which was activated by CK overexpression (Ramirez de Molina et al., 

2008). In addition, Yamashita and Hosaka (1997) showed that CK mRNA and 

protein levels were elevated during the exponential phase of tumor cell growth but 

decreased in the stationary phase. This leads to the accumulation of PC which is the 

end product of CK. The accumulation of PC resulted from an increased level of CK 

protein at the enterance of S phase was also found to be essential for cell division 

(Lykidis and Jackowski, 2001).  
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1.7.2 Tumorigenesis 

CK is overexpressed in both tumorous tissue and tumor derived cell lines (Ramirez 

de Molina et al., 2002a, Ramirez de Molina et al., 2002b, Ramirez de Molina et al., 

2007, Hernando et al., 2009). The overexpression of CK was detected at both 

mRNA and protein levels (Eliyahu et al., 2007). Furthermore, the levels of the 

choline metabolites were also elevated in cancerous cells (Katz-Brull et al., 2002, 

Iorio et al., 2005, Eliyahu et al., 2007). These observations raise the question of 

whether CK acts as an oncogene or as a byproduct of the physiological alteration 

associated with oncogene expression.  

 

Earlier study showed that overexpression of CK was the consequence of 

tumorigenic transformation. Bhakoo et al. (1996) showed the elevation of PCho in 

ras oncogene transformed cell. The activity of CK was up-regulated by ras protein 

through the direct effectors of Ral-GDS and phosphoinositide 3-kinase (PI3K), two 

of the important mediators for tumorigenesis (Ramirez de Molina et al., 2002a). 

Treatment with the PI3K inhibitor (PI-103) was shown to suppress the expression 

level of CK and in turn decrease the level of PCho production and total choline 

metabolites in the cells (Al-Saffar et al., 2010). In addition, the activity of 

serine/threonine kinase (AKT), one of the protein kinase in PI3K pathway was also 

regulated by CK (Chua et al., 2009). Besides, the breakdown product of PC, 

phosphatidic acid was found as the key activator for the PI3K pathway (Yalcin et al., 

2010). Knockdown of the phospholipase D, the enzyme to hydrolyze PC was shown 

to attenuate the activation of AKT (Toschi et al., 2009). 
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Oncogenic property of CK in tumor transformation was reported by Ramirez de 

Molina et al. (2005). Overexpression of CK induced oncogenic transformation of 

human embryo epithelial kidney fibroblasts (HEK293) and Madin-Darby canine 

kidney cells (MDCK). Co-expression of CK with RhoA from GTPases family 

further potentiates anchorage independent growth and tumorigenesis. This suggested 

that CK plays role in Rho-mediated tumor transformation. The role of CK in cell 

transformation was further confirmed by the specific CK inhibitor, MN58b, which 

inhibited the CK mediated tumorigenesis (Ramirez de Molina et al., 2005).  

 

Later, Gallego-Ortega et al. (2009) showed that the CKα isoform was oncogenic and 

able to induce cell transformation, but not CKβ isoform. The overexpression of CKβ 

did not induce tumor growth. In addition, the study also showed the CKα but not 

CKβ mRNA was elevated in a panel of mammary cancer cell line as compared to 

the non-tumorogenic mammary cell lines (Gallego-Ortega et al., 2009). 

 

CKα is an important enzyme in cancer cell survival. CKα knockdown in cervical 

cancer cell line (HeLa) using small interfering RNA (siRNA) resulted in cell death 

(Glunde et al., 2005, Falcon et al., 2013). However, the inhibition of CKα activity 

with specific inhibitor, MN58b is not sufficient to induce cell death. This result 

indicates that the non-catalytic role of CKα is important for the cancer cell survival 

(Falcon et al., 2013). Cells with single CKβ or double CKα/CKβ knockdown have 

no aberrant phenotype compared to the single knockdown of CKα (Gruber et al., 

2012). In this case, the balance of the CKα and CKβ isoforms also important for 

cancer cell survival and simultaneous knockdown of CKβ reduced or abolished the 

cell-killing effect of single CKα knockdown (Gruber et al., 2012). 
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1.7.3 Differential role of CKα and CKβ 

CKα and CKβ knockout mice generated a different phenotype. Early embryonic 

lethality was observed on CKα knockout mice (Wu et al., 2008) while CKβ 

knockout mice developed muscular dystrophy (Sher et al., 2006). Thus, CKα plays 

important role in early development of mouse embryo while CKβ is involved in the 

later part of mouse development. Heterozygous CKα knockout mice (ckα
+/-

) have a 

normal early embryonic development and the biosynthesis of PC was unaffected 

although the PC synthesis was decreased by 30% (Wu et al., 2008). No significant 

compensation was found from CKβ in homo and heterozygous CKα knockout mice 

because the mRNA and protein levels of CKβ were not increased in both of the CKα 

knockout mice (Wu et al., 2008). The evidence supported that CKα and CKβ have 

different roles in maintaining the PC homeostasis.  

 

Sher et al. (2006) reported that CKβ knockout mice developed hindlimbs muscular 

dystrophy and neonatal forelimb bone deformity. Total CK activity was generally 

decreased in all tissues, however muscle dystrophy was only observed in skeletal 

muscle of hindlimbs (Sher et al., 2006). CKβ was involved in PC metabolism of 

hindlimb muscle, while CKα was responsible for PC synthesis in forelimb muscle as 

muscular dystrophy did not develop in forelimbs due to CKα abundance and stable 

PC homeostasis (Wu et al., 2010). CKα was not overexpressed in the CKβ knockout 

mice to compensate for the loss of CKβ activity (Wu et al., 2009). 
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Mitochondria abnormalities were observed on the skeletal muscle of CKβ knockout 

mice whereby mitochondria were absent on the center of muscle fibers and large 

mitochondria was found at the peripheral fiber (Mitsuhashi et al., 2011a, Wu et al., 

2009). The PC level was low in the isolated mitochondria. The activity of the 

respiratory chain enzyme (complex I-IV) and the ATP production of the defected 

mitochondria in CKβ knockout mice also decreased. In addition, the molecular 

markers of mitophagy were found in the defected mitochondria suggested that the 

loss of ckβ gene resulted in mitochondria dysfunction and led to the development of 

muscular dystrophy (Mitsuhashi et al., 2011a).  

 

In human, heterozygous mutation of chkβ was detected in 15 patients with 

congenital muscular dystrophy from Japan, Turkey and Britain (Mitsuhashi et al., 

2011b). CK activity was not detected in the muscle tissue of the patients and the PC 

content of the frozen biopsied muscle tissues was lower than normal individual. A 

total of 11 mutations were identified and these mutations mostly truncated the 

protein or eliminated the conserved region of CKβ protein (Mitsuhashi et al., 2011b). 

Besides muscular dystrophy, patients with chkβ gene mutation also have severe 

mental retardation (Mitsuhashi et al., 2011b). Previously, the decreased CKβ 

expression has been linked with narcolepsy, a sleep disorder (Miyagawa et al., 

2008). The findings supported the involvement of CKβ in the maintenance of 

normal brain function in humans.  

 

Gutierrez Rios et al. (2012) also reported the chkβ gene mutation in an American 

patient with congenital muscle dystrophy. The mutation also truncated the protein by 

introducing a stop codon at Gln 292. Giant mitochondria containing densely packed 
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and whorled cristae were observed in the tissue biopsy. The authors concluded that 

CKβ was involved in mitochondria-associated membrane phospholipid metabolism 

(Gutierrez Rios et al., 2012). They also postulated that CKβ gene defect could 

consequently affect the production of active human muscle type carnitine 

palmitoyltransferase I (M-CPTI) protein, a key lipid transport enzyme in the outer 

membrane of mitochondrial. The transcription of chkβ and cpt1β genes were 

bicistronic (Yamazaki et al., 2000). In consequence, the mitochondria dysfunction 

might also be due to the defect of cpt1β gene expression which affect the activity of 

mitochondrial respiratory chain. 

 

1.8 Regulation of choline kinase 

1.8.1 Transcriptional level 

Several studies on the promoter regions have shed light on the transcription 

regulation of CK genes by transcription factors. Aoyama et al. (2007) reported an 

up-regulation of CKα expression in mouse liver after treatment with carbon 

tetrachloride (CCl4). The overexpression of CK was contributed by the binding of c-

jun transcription factor to an AP-1 element (at   ̶ 866 bp upstream of translational 

start site) upon treatment with CCl4 (Aoyama et al., 2007).  

 

In human, the putative promoter region upstream of ckα gene ( ̶ 2.3 kb region 

upstream of translational start site) was isolated by Glunde et al. (2008). Their study 

showed that the expression of CKα was regulated by hypoxic condition. Eight 

hypoxia responsive elements (HREs) sites were predicted by promoter sequence 

analysis. The responsive elements composed of two non-overlapping regions which 

up-regulated ( ̶ 1068/ ̶ 851) and down-regulated (  ̶ 670/+1) the CKα expression 
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during hypoxia (Glunde et al., 2008). Highly repressive element was found at the 

position  ̶ 225/ ̶ 222 bp upstream of translational start site (Bansal et al., 2012). The 

binding of hypoxia-inducible factor (HIF-1α) on the respective HRE sites was 

shown to suppress the mRNA expression of CKα (Glunde et al., 2008; Bansal et al., 

2012).  

 

Recently, Yee (2012) reported the isolation of promoter region of human ckβ gene   

( ̶ 2 kb region upstream of translational start site). GATA and Ets were identified as 

the important transcription factors that suppressed the expression of CKβ expression 

(Yee, 2012).  

 

1.8.2 Translational level 

To date, translational regulation of CK had not been reported. The translational 

regulation of CTP-phosphocholine cytidyltransferase (CCT), a second enzyme in 

CDP-choline pathway had been postulated in X-box-binding protein (XBP-I(S)) 

transducted fibroblasts (Sriburi et al., 2007). The expression of the XBP-I(S) was 

shown to increase the assembled (80S) ribosomes which enhanced the protein 

synthesis of CCT. However, the detailed mechanism of XBP-I(S) in enhancing the 

translation of CCT needs further investigation.  

 

1.8.3 Post-translational level 

Post-translational regulation of CK by phosphorylation was first described in yeast 

CK. Yeast CK is phosphorylated by protein kinase A (PKA) and protein kinase C 

(PKC) (Kim and Carman, 1999, Yu et al., 2002, Choi et al., 2005). Phosphorylation 

of yeast CK with PKA and PKC increased the catalytic activity by 1.9 and 1.6 folds, 
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respectively (Kim and Carman, 1999, Choi et al., 2005). Furthermore, 

phosphorylation of yeast CK was shown to increase the production of PCho and PC. 

Ser 30 and Ser 85 residues were identified as the PKA phosphorylation sites (Yu et 

al., 2002), whereas Ser 25 and Ser 30 residues were identified as the PKC 

phosphorylation sites (Choi et al., 2005). PKA and PKC were found to 

phosphorylate yeast CK at the same residue of Ser 30 (Choi et al., 2005).  

 

In human, regulation of CKα by phosphorylation had been reported by Miyake and 

Parsons (2011). This proto-oncogene tyrosine protein kinase Src (c-Src) dependent 

phosphorylation occurred at Tyr 197 and Tyr 333. Phosphorylation of CKα was 

important for its interaction with EGFR complex. The phosphorylation level of CKα 

was increased by c-Src co-expression. The phosphorylation increased the catalytic 

activity of CKα by 2.5 folds (Miyake and Parsons, 2011). In addition, the subcellular 

location of CKα is also affected by phosphorylation. Co-expression of c-Src and 

EGFR translocated the CKα protein from cytosol to the cell membrane (Miyake and 

Parsons, 2011).  

 

CTP-phosphocholine cytidylyltransferase (CCT), the second enzyme in CDP-

choline pathway is also regulated by phosphorylation (Dennis et al., 2011). The 

phosphorylated form of CCT is inactive and retained in cytosol, while the 

unphosphorylated form of CCT is active and being translocated to the cell 

membrane for PC biosynthesis (Hatch et al., 1992). The isoforms of CCTα and 

CCTβ possess a divergent N-terminal and C-terminal phosphorylation region. 

Generally, the binding affinity of CCTβ towards anion membrane was weaker than 

the CCTα isoforms. However, after phosphorylation, CCTβ showed a higher binding 
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affinity to the anion membrane than the phosphorylated CCTα isoforms (Dennis et 

al., 2011).  

 

1.9 Phosphorylation 

About one third of the human proteins are reported as phosphoproteins (Cohen, 

2000). The modification occurs rapidly and less energy is required since it does not 

involve re-synthesis or degradation of the existing protein. Furthermore, the process 

of phosphorylation is reversible (Fischer and Krebs, 1955). Protein kinase is 

responsible for protein phosphorylation by transferring the phosphate (PO4
3-

) group 

from ATP, while protein phosphatase removes the phosphate group from the protein 

substrate. In eukaryotes, the hydroxyl groups (OH) of serine, threonine and tyrosine 

amino acid side chains are the common targets of protein phosphorylation (Manning 

et al., 2002).  

 

The process of phosphorylation was first described by Burnett and Kennedy (1954). 

They showed that a liver enzyme catalyzed the phosphorylation of casein. A year 

later, Fischer and Krebs (1955) discovered a process known as reversible 

phosphorylation of an enzyme involved in glycogenolysis. They won the Nobel 

Prize in medicine in 1992 by showing the phosphorylation of glycogen 

phosphorylase. The process involved the phosphorylation of phosphorylase b 

(unphosphorylated form) into phosphorylase a (phosphorylated form) in the 

presence of metal ion and ATP. Later, the key enzyme called protein kinase 

involved in phosphate transfer was discovered (Fischer and Krebs, 1955). Extensive 

investigation was then focused on protein phosphorylation after Linn et al. (1969) 

suggested that phosphorylation played a key role in the regulation of metabolic 
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pathway. This led to the discovery of important protein kinases in different 

metabolic pathways. 

 

Phosphates are negatively charged, thus the addition of a phosphate group onto a 

protein will certainly change its characteristic (Kitchen et al., 2008). These changes 

had been reported to regulate the function of enzyme, cellular movement, protein-

protein interaction and protein stability (Johnson and Barford, 1993, Nishi et al., 

2011). Tight regulation of protein phosphorylation is important and phosphorylation 

is generally regulated by the balance between the activity of protein kinases and 

phosphatases.  

 

1.10 Protein kinase A 

PKA holoenzyme is a heterotetramer protein composed of two regulatory (R) 

subunits and two catalytic (C) subunits (Corbin et al., 1973, Corbin and Keely, 

1977). Two classes of PKA holoenzymes have been identified; type I and type II 

with the difference in the R subunit with RI for type I and RII for type II. Both R 

and C subunits exist as multiple isoforms; RIα, RIβ, RIIα, RIIβ, Cα, Cβ, and Cγ. 

Type I PKA is mostly found in the cytosol of the cell, while the type II is anchored 

in a specific compartment. Generally, the type I holoenzyme has a higher affinity 

towards cAMP than the type II holoenzyme (Tasken and Aandahl, 2004). RI subunit 

is expressed predominantly in brain and nervous system, while the RII subunit is 

generally detected in heart, liver and fat tissues (Cummings et al., 1996). Cα subunit 

is expressed ubiquitously, while the other isoforms are detected in specific tissues. 

For example the Cγ is mostly found in testis (Beebe et al., 1990). 
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PKA holoenzyme is inactive. There are two cAMP binding sites on each R subunit 

of PKA, known as A and B sites. Only B site is exposed and available for binding of 

the cAMP. When the B site is occupied, it enhances the binding of cAMP to the A 

site by an intramolecular steric change. Bindings of four cAMP molecules on both R 

subunits cause a conformational change and the holoenzyme is dissociated into 

dimer R subunit and monomer of C subunits (Kopperud et al., 2002). The 

dissociated C subunits are active and able to phosphorylate the nearby substrate. 

Figure 1.4 shows the schematic diagram of the PKA activation. PKA phosphorylates 

the serine and threonine residues in specific consensus sequences of RRXS/T, 

AKXS/T, and KKXS/T, X represents any residue (Shabb, 2001, Songyang et al., 

1994). 

 

1.10.1 Regulation of Protein kinase A 

PKA is regulated by the cAMP-signaling pathway. The pathway is triggered 

extracellularly via binding of a specific ligand to the G protein-coupled receptor 

(GPCRs). The ligands are small molecules such as catecholamines, lipids, 

neurotransmitters or a large protein for example hormones. Upon binding of the 

ligand on the receptor, GPCRs will undergo conformational change and activate the 

heterotrimeric G protein. This leads to the dissociation of α subunit of G protein 

from β and γ subunits and activates the adenylyl cyclases. The activated adenylyl 

cyclases are responsible to increase the intracellular level of cAMP by converting 

ATP into cAMP (Taylor et al., 1990, Pidoux and Tasken, 2010). The cAMP-

signaling pathway is shown in Figure 1.5. Conversely, phosphodiesterases (PDEs) 

are responsible to control the local pool of adenylyl cyclase-generated cAMP by  

 




