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PENGISARAN HALUS HEMATIT DALAM PENGISAR PLANET  

DAN APLIKASINYA SEBAGAI PEMANGKIN UNTUK 

PENYAHWARNAAN PEWARNA 

 

ABSTRAK 

Pengisaran halus hematit dalam pengisar planet telah dilakukan dengan mengubah 

halaju putaran pengisar dan masa pengisaran dalam keadaan kering dan basah. 

Produk terkisar dicirikan berdasarkan luas permukaan spesifik, kesan mekanokimia 

menggunakan Belauan Sinar-X dan Spektroskopi Infamerah dan morfologinya. Luas 

permukaan bernilai 40.2 m
2
/g diperoleh melalui pengisaran dalam keadaan kering 

dan basah dengan penggunaan tenaga masing-masing adalah 76.8 kWjam/kg dan 

30.7 kWjam/kg. Produk terkisar hematit pada 600 rpm selama 10 jam dan 400 rpm 

selama 25 jam dalam keadaan basah mengalami perubahan fasa sepenuhnya 

daripada hematit kepada magnetit manakala tiada perubahan fasa berlaku bagi 

produk terkisar hematit dalam keadaan kering. Darjah penghabluran bagi pengisaran 

dalam keadaan kering dan basah masing-masing berada dalam julat 5.76% hingga 

49.81% dan 4.39% hingga 56.1% dengan produk terkisar mengalami pengembangan 

atau pengecutan kekisi kristal. Saiz kristal minimum diperoleh dalam pengisaran 

kering pada 600 rpm selama 10 jam adalah 17.1 nm dan terikan kekisi 0.846. Kesan 

mekanokimia disokong oleh perubahan yang berlaku pada jalur Infra merah. Produk 

terkisar dalam keadaan kering dan basah mengalami beberapa peringkat 

pengagregatan. Pada peringkat akhir eksperimen, produk terkisar terpilih digunakan 

sebagai pemangkin untuk penyahwarnaan pewarna reaktif merah3B (RR3B) secara 

berkelompok. Penyahwarnaan pada kadar 95.8% dalam masa 10 min dicapai bagi 

partikel bersaiz halus iaitu 75 nm dengan kadar pelarutan ion Fe yang minimum, 

iaitu kurang daripada 5 mgL
-1

 yang mematuhi Peraturan-Peraturan Kualiti Alam 

Sekeliling (Efluen Perindustrian) 2009. Proses penyahwarnaan pewarna RR3B 

secara berterusan juga dilakukan dan didapati penyahwarnaan sepenuhnya diperoleh 

dengan pelarutan ion Fe yang rendah yang menunjukkan bahawa produk hematit 

terkisar boleh digunakan sebagai pemangkin dalam applikasi rawatan air sisa bagi 

industri tektil berskala besar.  
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FINE GRINDING OF HEMATITE IN PLANETARY MILL AND ITS 

APPLICATION AS DYE DECOLORIZATION CATALYST 

 

ABSTRACT 

 

Fine grinding of hematite in planetary mill was carried out by varying the mill 

rotational speed and grinding time in both, dry and wet conditions. The ground 

samples were characterized in terms of the specific surface area, mechanochemical 

effect through X-ray diffraction and Infrared Spectroscopy and its morphology. 

Specific surface area of 40.2 m
2
/g was achieved through dry and wet grinding 

condition with energy consumed of 76.8 kWh/kg and 30.7 kWh/kg respectively. 

Ground hematite in wet condition at 600 rpm for 10 h and 400 rpm for 25 h exhibits 

complete phase transformation from hematite (α-Fe2O3) to magnetite (Fe3O4) whilst 

in dry condition, no phase changes was observed. The degree of crystallinity ranges 

from 5.76% to 49.81% and 4.39% to 56.1% in dry and wet conditions, respectively 

with variation in lattice parameters either expansion or shrinkage. The minimum 

crystallite size obtained was 17.1 nm which exhibits lattice strain of 0.846 in dry 

grinding condition at 600 rpm for 10 h. The mechanochemical effect is supported by 

changes of IR bands. The ground particle exhibits some level of aggregation in both 

grinding conditions. Finally, the selected ground samples were used as catalyst for 

decolourization of reactive dye, Remazol Red3B (RR3B) in batch mode. The smaller 

particle size of 75 nm decolourized at the rate of 95.8% within 10 min with 

minimum iron leached (<5 mgL
-1

) which fulfill the Environmental Quality 

(Industrial Effluent) Regulations 2009. The continuous mode for decolorization of 

RR3B was carried out and complete decolorization was achieved with low iron 

dissolution which demonstrates the possibilities of using ground hematite as catalyst 

for large-scale textile industry wastewater treatment applications. 
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CHAPTER ONE 

 

1.0  Introduction 

The important of fine grinding has increase with the demand for fine particles in 

various manufacturing industries such as paper, paint, plastic, pharmaceuticals, 

ceramics, cosmetics, foods and fine chemicals. These industries need fine particles 

with stringent specifications in terms of particle size, particle size distribution and 

particle shape as well as chemical composition (Palaniandy, et al., 2008). 

 

Generally, ultra-fine grinding is known as energy-intensive process in the overall 

process in comminution, which to provide materials in proper fine size ranges for the 

required properties of the final product, especially for producing particles in micron 

sizes (Jankovic, 2003). It is an intermediate case between coarse grinding and 

mechanical activation. In the same way to coarse grinding, fine grinding is intended 

for size diminishing, but the huge amount of energy which was delivered by the mill 

led to microstructural changes in the particles which terms as mechanochemical 

effect, while mechanical activation is worked to change the structure by the reactivity 

determination (Palaniandy and Jamil, 2009).  

 

Recently, fine grinding has the potential to develop the mineral processing industry 

due to the benefits attained through being able to economically produce nanoparticles 

(Wang and Jiang, 2007). Figure 1.1 illustrates an approach to synthesize 

nanoparticles i.e either to break or dissociate solids into finer pieces or assemble 

atoms together. Most of nanoparticles are generated by using crystallization, direct 

generation or other similar techniques, which is often referred to as “bottom up” or 
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build up process. In the other method that will discuss further in this study, referred 

to as “top down” or break down process, i.e. larger particles are reduced through 

mechanical grinding to achieve the desired nanoscale particles (Balaz, 2008).  

 

   

 

Figure 1.1: The top down and the bottom up techniques for synthesis of nanoparticles 

(Balaz, 2008) 

 

As particles become smaller, their properties can change in mysterious and useful 

ways. This change in properties is often due to their highly stressed surface atoms 

which are very reactive. Recently, iron oxide nanoparticles have been used as a 

functional environmental material (Khedr, et al., 2009; Xu, et al., 2008; Wang, et al., 

Bulk 

Powder 

Nanoparticles 

Cluster

s 

Atoms 

TOP DOWN 

BOTTOM  UP 
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2009; Bakardjieva, et al., 2007). It has also been found to reduce effectively the 

generation of dioxin, a substance that has lately become the subject of serious 

environmental concern (Toda Kogyo Corp, n.d). It is well known that the shape and 

size of catalysts play crucial roles on their catalytic performances. 

 

Furthermore, aside from size reduction, mechanical grinding can induce phase 

transformations of α-Fe2O3 to (γ-Fe2O3, Fe3O4) or vice versa depending on the 

environment of grinding performed (Zdujic, et al., 1998; Sanshez, et al., 2007). 

Grinding mills typically used in fine grinding includes the shaker, planetary, jet, 

oscillating, vibration and attritor mills, all of which are classified as high-energy 

mills. In fact, the selection of the appropriate grinding parameters for specific 

equipment to produce fine powders especially nanoparticles is necessary which 

involves preliminary experimental work.  

 

2.0 Application of hematite as catalyst for dye removal 

Generally, nano-sized materials exhibit novel physical and chemical properties and 

consequently, fine grinding of hematite particles will intentionally studied. In fact, 

iron oxides are recently used as catalyst due to easy handling which their availability 

in powder form, relatively low cost, non-toxicity and environmentally friendly 

characteristics (Khedr, et al., 2009; Xu, et al., 2008; Wang, et al., 2009; Bakardjieva, 

et al., 2007). The catalysts are currently utilized on large scale in a laboratory, 

industrial and environmental processes. The high catalytic efficiency in 

heterogeneous catalysis can be achieved by the use of smaller particle sizes which 

provided higher surface area to further enhance the rate of reaction (Xu, et al., 2008). 
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On the other hand, synthetic dyes are extensively used to color many different 

products such as textiles, paper printing, colour photography and cosmetics. 

Although dye makes our world beautiful, they bring pollution. It is estimated that 10-

15% (10-200 mgL
-1

) of the total dye used for colouring is lost in the effluent during 

dyeing process (Pirillo et al., 2008).  A variety of physical, chemical and biological 

methods are used for treatment wastewater from chemical dye production industry 

although most of them were found to be not effective and expensive (Khedr, et al., 

2009).  

 

An alternative method for removing dye from wastewater is advanced oxidation 

process by using hematite particles where the local resources can be exploited to 

produce Fe2O3 nanopowder. The aim of this work is to value add locally available 

hematite through fine grinding in planetary mill to be use as catalyst for textile dye 

removal in wastewater.  

 

1.2 Problem Statement 

The direct synthesis of iron oxide nanoparticles by chemical synthesis such as gas 

phase, liquid phase, two phase, sol-gel, high pressure and hydrothermal methods are 

commonly used in industry although it is found to be very complicated and 

expensive. Mechanical grinding is a very convenient technique and promising way to 

produce nano-particles powder (Wang and Jiang, 2007).  

 

In particular, during the initial stages of grinding a mixed powder, a reduction of the 

grain size occurs down to the limit of fragmentation, while the huge amount of 

energy delivered by further grinding can produce a phase transformation, 
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mechanochemical effect, or the recovery of the grains. Therefore, the ground 

particles may experience structural defects, leading to reduction in the degree of 

crystallinity of particles. The mechanochemical effect can be quantified through the 

degree of crystallinity, crystallite size, lattice strain, and lattice parameters 

(Palaniandy and Jamil, 2009). Thus, the study on the control of the operational 

parameters and grinding environments is very essential to optimize the size reduction 

process and mechanochemical effect of the ground particles. 

 

As colors are the most notorious characteristics of dye wastewater and have a strong 

negative impact on aquatic environment, it is important to remove these pollutants 

from wastewater. The present of dye in wastewater will reduces sunlight penetration 

in water system which causing negative effect on photosynthesis. Thus, aquatic 

ecosystem can be seriously affected (Koprivanac and Kusic, 2007). From an 

environmental point of view, the hematite which produces through mechanical 

grinding has the possibility to decolorize dye. 

 

On the other side, Malaysia’s iron ore reserves are estimated about 82.2 million 

tonnes where the mines located in Pahang, Johore, Perak and Terengganu (Malaysian 

Chamber of Mines, 2009). Hence, for protecting the environment and to meet the 

stringent government law, this research proposed as an effective and economical way 

of dye-containing wastewater treatment by using Fe2O3 as catalyst which locally 

available in Malaysia.  
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1.3  Research Objective 

The main objective of this study is to produce hematite nanoparticles through fine 

grinding in planetary ball mill and to use ground hematite for decolorization of dye.  

The measurable objectives are; 

1. To determine the influence of mill rotational speed and grinding time on the 

product fineness, particle morphology and mechanochemical effect through 

changes in phases, degree of crystallinity, crystallite size and lattice strain 

during dry and wet grinding conditions in planetary mill. 

2. To evaluate the performance of hematite particles as catalyst through the 

decolorization efficiency and iron leaching in batch and continuous process. 

 

1.4 Scope of Study 

The scope of this study includes fine grinding of hematite in planetary mill by 

varying the mill rotational speed and grinding time in dry and wet conditions. The 

mill rotational speed chosen were 200, 400 and 600 rpm, whilst the grinding times 

were 1, 5, 10, 15 and 25 h. The factors affecting the fine grinding in planetary mill 

were identified in terms of physical and chemical characteristics through chemical 

composition (XRF), mineral phases (XRD), BET surface area analysis, particle size 

analysis (PSA), morphological analysis (SEM), Transmission Electron Microscopy 

(TEM) and chemical bonding (FTIR). The selected hematite particles produced from 

mechanical grinding were tested as catalyst to decolorize synthetic dye Remazol 

Red3B (RR3B) in a batch system. The influence of reaction parameter such as effect 

of pH values, amount of catalyst loading, concentration of H2O2 and temperature 

were examined in batch mode series, as well. The best catalytic conditions for 
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hematite particles were determined to get a good performance in decolorization of 

dye in batch system by observing the percentage of color removal from its 

characteristics absorption using UV-Vis spectrophotometer and iron dissolution 

using Atomic Absorption Spectrophotometer (AAS). In addition, an attempted of 

performing continuous process for decolorization of RR3B under the best reaction 

conditions obtained from batch experiment were studied, as well. The synthetic dyes 

were collected from the batik industry in Penang, Malaysia. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.0 Introduction 

Grinding is an oldest engineering process as it was used since the Stone Age. 

Traditionally, the mills have been operated by human muscles and the energy input 

was created by rubbing, rolling and knocking with pestles and grinding stones. This 

basic grinding mechanism is still used in the modern grinding mills, especially for 

media and roller mills. As the demand for fine particle is emerging, due to its 

advantage of larger specific surface area and high activity of the particle surface 

there is need to grind the particles finer and currently the demand is focusing at sub-

micron and nanometer (Stein, 2005; Yokoyama and Inoue, 2007). 

  

Mechanical grinding is one of the common methods used to prepare ultrafine particle 

even in nano-meter range. However, grinding at this particle size range is exorbitant 

due to low mill throughput with high energy consumption. Therefore, it is essential 

to improve the operating and design parameter with optimum feed in order for 

substantial beneficial in terms of energy consumption and cost. To accomplish this, 

appropriate mill selection and operation at optimum grinding conditions are 

necessary (Cho, et al., 2006). 

 

The main aim of grinding is for size reduction and this phenomenon is true for the 

case of coarse grinding (De Castro and Mitchell, 2002). On the other side, if the 

grinding is performed in high energy mill, the resulting particulate powders will 
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experience relaxation from brittle fracture to ductile fracture along with rise in strain. 

As a result, the dislocation flows take place in the particles. Consequently, it leads to 

the growth of structure distortion. Those structural changes determine the reactivity 

of the particles (Pourghahramani and Forssberg, 2006a). 

 

Among the high energy mills are vibratory mill, planetary ball mill, jet mill and 

stirred mill. This mill varies in terms of capacities, efficiencies of grinding and 

additional arrangements such as cooling, special systems for measuring the 

temperature and/or pressure. Apart from that, they have certain features in common, 

where the grinding ability of these devises is controlled by the frequency of impacts 

and the modes of stress that influence the nature of structural changes besides 

particle size reduction (Wieczorek-Ciurowa and Gamrat, 2007). The variety of 

mechanical grinding devices is attributable to the diversity in the requirements for 

the grinding and the properties of the materials to be ground.  

 

2.1 High-energy grinding 

High energy grinding is one of the method produce submicron and nanoparticles. As 

mention earlier, grinding mills typically used in the production of ultrafine particles 

are planetary ball mill, jet mill, oscillating mill, vibration mill and stirred mill, all of 

which are classified as high-energy mills. The advantages of preparing ultrafine by 

high energy mill are its more economical, simple operation and high yield than 

chemical synthesis (Wang and Jiang, 2007). Furthermore, latest development in high 

energy mill has the capability to produce ultrafine particles compared to conventional 

ball mill due to the impose energy by the mills to the particles which are typically 

100-1000 times higher than the conventional mills (Balaz, 2008). Generally, the 
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product form the high energy mills are mechanically activated and the particles 

possess a number of new useful characteristics such as higher reactivity, lower 

sintering temperature, higher density and improved mechanical and electrical 

properties (Fokina, et al., 2004). This phenomenon very much depends on the type of 

stress impart by the mill on the particles.  

 

The stress of particles in media type mills are affected by impact, pressure and shear 

forces between grinding media each other and between the mills parts (Stein,  2005). 

These stresses allow a dramatic change of structure and surface properties of solids 

to be induced besides particle size reduction (Pourghahramani and Forssberg, 

2006a).  Figure 2.1 shows different type of stress of particle which took place in the 

media type mills.  

 

Falling balls 

Stress of particle in media mills 

Impact (collision 

and stroke) 
Compression Shear force 

Ball-powder-ball 

 

 
 

 

 

 

 

 

 

Ball-powder-wall 

 

 

 

 

 

 
 

 

 

Figure 2.1: Different type of stress of particle in media mills (Stein, 2005) 
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Tumbling ball mills can be operated at different speed levels, which will influence on 

type of stress imposed such as impact and shear. Vibration mill with their high 

frequency motion are dominated by impact grinding, whereas centrifugal mills tend 

more to shear and pressure stressing. Similar to tumbling ball mills, the planetary ball 

mills create different media motion depending on the rotation of mill pots and 

revolving base disk (Stein, 2005).  

 

The high energy mill also leads to contamination and formation of agglomerates 

during grinding which are the main disadvantages especially those particles which 

was ground in media based mill. The main contributor of impurities during high 

energy mill in media type mills are iron from the grinding media and mill lining.  In 

order to avoid iron or other contamination of grinding media made from tungsten 

carbide or ceramics is desirable, when possible to have the grinding vessel and the 

grinding medium made of the same materials as the particles being ground. 

According to Balaz (2008), the contamination can also be reduced by using 

surfactants and grinding at shortest time. 

 

Furthermore, the ground particles exhibit higher surface energy which leads to the 

agglomeration phenomenon in order to reduce the surface energy (Balaz, 2008). 

There are three stages of interaction between particles, which are adherence, 

aggregation, and agglomeration. In the adherence stage, ground particles will coat 

the grinding bodies. Adherence interferes with the grinding process, and further 

adhesion may also take place during storage and transport. At the aggregation stage, 

particles affect the grinding process through the product’s quality. Agglomeration is 

defined as a very compact, irreversible interaction of particles in which chemical 
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bonding may also play a role. Agglomeration is detrimental to the grinding and the 

quality of the product (Jamil and Palaniandy, 2009). Currently, grinding aids are used 

to prevent particle agglomeration during the production of fine particles (Choi, et al., 

2010).  

 

Besides media type mills, jet mill which is considered as semi autogeneous or 

autogeneous is widely use for ultra fine grinding process for particle size below 10 

µm. Jet mills possesses several advantages include the ability to produce micron-size 

particles with narrow size distribution, the absence of contamination, and the ability 

to grind heat sensitive materials. Although it consumes high energy, the particle to 

particle impact breakage mechanism which leads to minimal contamination, sets jet 

mill as a promising device for producing ultrafine particles (Palaniandy et al., 2008). 

Among all the high energy mills, the planetary ball mill has the capability to produce 

ultrafine particles in nanometer range with mechanochemical effect and phase 

transformation as reported by several authors for iron oxide and other minerals 

(Chen, et al., 2007; Sanshez et al., 2004, 2007). 

 

2.2 Planetary ball mill 

Planetary ball mill is widely used for ultra-fine grinding and synthesis of advanced 

materials and currently there are planetary ball mill which are operating in 

continuous mode, as well. Besides particle size reduction, this mill is being used for 

mechanical alloying and mechanochemical-synthesis operations. In conventional ball 

mills, the gravity field becomes the main limiting factor as the impact energy is too 

low. The planetary mill overcomes this limitation by supplying a strong acceleration 

field that produced maximum collision with higher impact energy (Chaira et al. 
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2007). Furthermore, this mill exhibits advantages such as low material loss, the cost 

of the equipment is significantly lower than other types of mill such as jet mill, 

excellent homogenization and particles with high superficial area are easily 

generated in a very short time. Similar characteristics can be observed in stirred mill 

(Dos Santos and Costa, 2006).  

 

Although planetary mill exhibits massive particle size reduction, contamination due 

to grinding media is still an issue. Figure 2.2 shows the amount of contamination that 

cooperated in SiC powder by grinding in planetary ball mill with grinding media of 

ZrO2+CeO2 and isopropyl alcohol as the dispersant. Longer grinding period increase 

the contamination in the ground products due to strong friction between the grinding 

media, the powder, the coating and a very small regions of the jar wall not coated, 

which introduced small fragments originating from each of those places (Dos Santos 

and Costa, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The amount of element introduced during grinding of SiC powder in 

planetary ball mill at different grinding times (Dos Santos and Costa, 2006) 

 

C
o

n
ta

m
in

a
ti

o
n

 (
w

t%
) 

Grinding time (h) 



 
14 

 

Another aspect that has to be considered during grinding in planetary ball mill is 

agglomeration. Pourghahramani and Forssberg (2007) have studied the effects of 

mechanical activation on the reduction behavior of hematite concentrate in planetary 

ball mill and vibratory mill. Figure 2.3 shows the results obtained for mean particle 

size (d50) of ground products with different value of grinding media surfaces at 

various grinding period which results typical agglomerate of hematite. The 

agglomeration was indicated by increased in d50 values after prolonged grinding with 

higher surface area media as supported by image from SEM analysis. Moreover, the 

increased of temperature by prolonged grinding in planetary mill had created a 

problem in the system, as well. Therefore, the use of a copper disk as a simple heat 

sink for planetary mills had been proposed by Kleiv (2009) in order to limit or slow 

down the temperature increase during prolonged grinding. 

 

2.2.1 Grinding mechanism in planetary ball mill 

Planetary ball mill consists of a revolving base disk and rotating mill pots partially 

filled with material to be ground and grinding balls. Figure 2.4 presents the 

schematic configuration of the planetary ball mill. Materials are ground by the large 

centrifugal force generate when both base disk and pot rotated simultaneously and 

separately at high speed in opposite direction. Such high-speed rotation results the 

balls to move strongly and violently, leading to large impact energy of balls that 

improves grinding performance (Chaira et al., 2007).  
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Figure 2.3: Values of d50 for initial and ground hematite obtained with different 

media surfaces at various grinding times and their morphologies after 9 h grinding 

(Pourghahramani and Forssberg, 2007) 

 

 

 

 

 

Figure 2.4: Schematic configuration of the planetary ball mill (Mio et al., 2004) 
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As planetary mill use balls as grinding media, the movement of the balls can be 

describe in three different motions; (a) cascading, (b) falling or cataracting, or (c) 

hurricane as illustrate in Figure 2.5. In cascading motion, the feed moves counter to 

the rotation of the pot. Velocity gradients in the ball-powder-ball, as well as between 

ball-powder-wall, create favorable conditions for effective attrition (Figure 2.5a). In 

the catarating mode of operation, the feed is concentrated in the narrow zone, where 

it tumbles along a curved trajectory (Figure 2.5b). A similar trajectory has been 

detected in the so-called hurricane mode of operation, although in this case the 

material is distributed over the entire volume of the drum (Figure 2.5c). The 

hurricane mode of operation is characterized by the combined action of compression, 

shear and impact stresses. Shear resulting from the attrition of particles caught 

between beads is the prevailing mode of stress in attritors. The action of shear forces 

is supplemented with compression between the ball-powder-ball and ball-powder-

wall (Tkacova, 1989). Specifically, the impact stress force plays a role in the rapture 

of particles while the shear and compression play an important role in the formation 

of structural defects (Gonzalez et al., 2000). 

 

 

                (a)                                            (b)                                          (c) 

 

Figure 2.5: Type of ball motion in planetary ball mill (Tkacova, 1989) 
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2.2.2 Parameters affecting ultrafine grinding in planetary mill 

In order to improve the processes in a planetary mill, much attention should be given 

on optimizing the grinding parameter to control the particle size reduction, 

mechanochemical effect and particle morphology. The main parameters effects on 

grinding that will be discussed further in this study are nature of grinding mode, 

grinding speed and grinding time. The other essential parameters are amount of 

material filling, feed size, charge ratio and material of media grinding 

(Suryanarayana, 2004).  

 

2.2.3 Nature of grinding mode 

Two grinding modes, dry and wet contidions are commonly applied in the grinding 

process to observe the effects on the structural changes on the ground products. Dry 

grinding process was carried out in air or argon atmosphere whilst in the wet 

grinding process different appropriate liquids/ surfactant such as distilled water, 

ethanol or acetone had been used depending upon material of interest (Sorescu and 

Diamondescu, 2010; Zhang et al., 2008; Sanchez et al., 2007; Goya, 2004). For 

comparison, wet grinding causes shearing along the cleavage planes whereas dry 

grinding fractures the crystal. Furthermore, wet grinding proceeds with the 

preferential formation of new surfaces while little bulk deformation takes place in 

particles (Charkhi et al., 2010). There are two mechanisms for the effect of the 

surfactant while performing the grinding in wet condition; 

 The surfactant absorbed on the surface of the brittle materials can reduce the 

hardness of the materials. 

 The surfactant can reduce the viscosity of the slurry of powder mixture 

(Zhang et al., 2008). 
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The grinding rate decreased with increase of either viscosity or surface tension of the 

grinding medium. Zhang et al. (2008), has reported the effect of different type of 

grinding medium as shown in Table 2.1, on the nanostructure of tungsten 

carbide/cobalt (WC-Co) composite powder in planetary ball mill. The best level for 

WC grain size reduction is by using ethanol, but the best level for particle size 

reduction is by using distilled water. The reason is, ethanol with lower surface 

tension may be absorbed on the surface of WC and its micro-crack, and also reduce 

the hardness of WC.  Distilled water has higher surface tension and lower viscosity, 

thus the reduced viscosity of the slurry may help to reduce the particle size. 

 

Table 2.1: Surface tension and viscosity of the grinding medium in air at 20⁰ (10
-3

 

Nm
-1

) (Zhang et al., 2008) 

 

 

 

Sanchez et al. (2007) studied the conditions for production of hematite nanoparticles 

in air and ethanol. The results show that by grinding in ethanol, hematite nanoparticle 

was obtained without any change whilst a new maghemite phases (γ-Fe2O3) were 

observed by grinding in air. This transformation is due to the greater energy 

transferred to the powder for the mill, contrary to the grinding in ethanol where this 

avoids the direct contact between powder and elements of the mill.  

 

 

Grinding mediums 
Surface tension 

(10
-3

 Nm
-1

) 

 

Viscosity (cP) 

Distilled water 72.75 1.002 

Ethanol 22.8 1.200 

Acetone 23.7 0.3 

75% Ethanol water solution 25.28 - 
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2.2.4 Grinding speed 

Grinding speed is an important operational parameter in the grinding process. The 

faster the mill rotates, the higher will be the energy input imparted onto the materials 

which directly relates to the transfer of impact energy from the grinding media to the 

materials being milled. The impact energy of balls, E is given in Equation 2.1. 

 

                     E=1/2 mv
2                                                    

Equation 2.1 

 

where, m = mass and v = is the relative velocity of the grinding media 

(Suryanarayana, 2004).  

 

Besides that, at higher grinding speeds the temperature of the grinding chamber may 

reach a high value, thus more energy is transferred to the powder particles resulting 

in faster development of a surface area and promotes mechanochemical effect. 

However, contrary results were obtained during mechanochemical synthesis of 

CaTiO3 in planetary ball mill. Figure 2.6 shows the particles became coarser as the 

mill speed increased and the fineness particles of CaTiO3 were just obtained at 200 

rpm speed at 1 h time due to agglomeration and the tendency of the particles to 

reduce the surface energy (Palaniandy and Jamil, 2009).   

 

In fact, planetary mill operation involved the rotating disk and the vials either in the 

same direction (normal direction) or in the opposite direction (counter direction). 

Depending on the direction in which they move, the impact energy acquired by the 

balls varies. Figure 2.7 shows the XRD patterns of talc after ground in planetary ball 

mill at various grinding period.  
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Figure 2.6: Change in specific surface area of calcium titanate (CaTiO3) at various 

mill rotational speeds and grinding times (Palaniandy and Jamil, 2009) 

 

 

 

 

Figure 2.7: XRD patterns of the talc samples ground for various times; (a) counter 

direction; (b) normal direction (Mio et al., 2002) 

 

 

(a) (b) 
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The planetary mill which move in counter direction tends to changes the structure of 

talc to amorphous state sooner than normal direction. Thus, it was concluded that the 

rotation of the pot in the counter direction to the revolution is more effective in fine 

grinding especially for mechanochemical activation and mechanical alloying, due to 

promotion of the impact energy of the balls during grinding (Mio et al., 2002). 

 

2.2.5 Grinding time 

The grinding period is an important parameter as it determines the final size of the 

milled product. The grinding time required to reach a certain particle size varies 

depending on the mill rotational speed, the ball-to-powder ratio and the temperature 

inside the mill. However, the level of contamination will increase with grinding time 

and undesirable phases may form if the powder was ground for longer hours 

(Surayanarayana, 2004). 

 

According to Stewart et al. (2003), during the initial stages of grinding a ceramic 

material, a reduction of the grain size occurs down to the limit of fragmentation, 

while further grinding can produce a phase transformation, a mechanochemical 

reaction, or recovery of the grains. In addition, by increasing the grinding time, the 

number of pulses increases and subsequently, more energy is transfer to the particles 

being ground (Pourghahramani and Forsberg, 2006a). 

 

2.3. Effect of ultrafine grinding and characterizing methods on ground particles  

The application of high energy grinding mill, such as planetary mill, allows dramatic 

changes in the structure and surface properties of solid materials. The most 

noticeable change with grinding is reduction in the particle size, generally to nano-
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scale. The mechanical treatment in a high-energy mill generates a stress field within 

the solids. Heat release can cause stress relaxation, the development of a surface area 

as a result of brittle fracture in the particles, generation of various sorts of structural 

defects, and stimulation of a chemical reaction within the solids (Palaniandy and 

Jamil, 2009).  

 

Mechanochemical effect is another view of grinding, and now become a very 

important consideration in understanding of the properties of ground particles.  

Hence, the ground samples under high intensive grinding cannot be characterized by 

a particle size distribution alone and the characterization of particle morphology and 

structural changes where the mechanochemical were take place have to be 

considered. 

 

2.3.1 Particle size reduction 

Comminution, specifically refer to ultrafine grinding by high energy mill is known to 

produces ground particles with particle size below 10 µm (Jankovic, 2003). The 

particles in this size range exhibits several advantages such as magnetite with particle 

size <10 µm tend to improve the pigment qualities in terms of their colour, tinting 

strength, hiding power and oil adsoption (Legodi and Waal, 2007).  

 

Basically, the effectiveness of ultrafine grinding in planetary mill is evaluated 

through determination of the final sizes of ground products. The evaluation included 

the analysis on the particle size and its distribution, as well as specific surface area, 

as there is an inverse relationship between surface area and particle size (Sanchez et 
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al., 2004). The mean particle diameter (d50), can be determined via surface area from 

BET measurement by using Equation 2.2. 

 

                                                    dav= 6/σS                     Equation 2.2 

 

where dav is the equivalent spherical particle diameter (µm),  σ is the density (g/cm
3
) 

and S is the specific surface area (m
2
/g) (Pourghahramani and Forssberg, 2006a; 

Subrt et al., 2000).  

 

According to Pourghahramani and Forssberg (2006a), for a given energy input, the 

d50 (mean particle diameter) value of hematite obtained from laser diffraction method 

are larger than the dav (equivalent spherical particle diameter) of those determined 

from BET specific surface area as shown in Figure 2.8. This observation implies that 

pore agglomerates of primary particles are produced during intensive grinding. A 

small increase in d50 after intensive grinding also indicated the occurrence of 

agglomeration which is one of the main drawbacks of mechanical grinding. 

 

Figure 2.8: The mean particle diameter (d50) and BET particle size as a function of 

specific energy input (kWh/kg) (Pourghahramani and Forssberg, 2006a) 
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2.3.2 Mechanochemical effect 

Apart from inducing size reduction, the huge amount of energy delivered by the mill 

during high energy mill cause severe and intense mechanical action on the solid 

surfaces during fine grinding are known to lead to chemical and physicochemical 

effect in the near-surface region where solids come into contact under mechanical 

force. The mechanically initiated physicochemical effects in particles are generally 

terms as mechanochemical effect (Palaniandy and Jamil, 2009). 

 

The consequence due to mechanochemical effect from structural distortion of crystal 

lattice during fine grinding had created much attention among researchers due to 

several advantages. These advantages include reduction in sintering temperature, 

increase in pozzolonic properties of cement filler, enhancement of leaching, 

production of nanocrystalline materials, improvement of reactivity of waste materials 

to be used as construction materials, transformation of phases, and production of new 

phase (Mahadi and Palaniandy, 2010; Chen, et al., 2007; Sanshez et al., 2004, 2007;  

Pourghahramani and Forssberg, 2006a). 

 

As summarized Zhang et al. (2007), the mechanochemical phenomena are indicated 

by; 

 formation of dislocation and point defect in the crystalline structure,  

 mechanical activation of solid materials and, 

 polymorphic transformation, amorphization, and crystallization.  

 

 


