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SIMULASI PRESTASI DIOD LASER UNGU TELAGA KUANTUM 
BERGANDA InGaN DAN ANALISA OUTPUT UNTUK MODULASI DIGIT

ABSTRAK

Kajian simulasi dan teoritikal ini telah dibahagikan kepada dua bahagian 

utama. Bahagian pertama mengfokuskan kepada prestasi diod laser ungu telaga

kuantum berganda InGaN; manakala, bahagian kedua pula mengfokuskan kepada 

analisis output laser ini untuk digunakan sebagai modulasi digit.

Dua program telah digunakan iaitu program perisian simulasi ISE TCAD 

(Integrated System Engineering Technology Aided Design) dan juga program 

MATLAB. Penyelidik telah mengabungkan pengunaan dua program ini iaitu 

simulasi ISE TCAD dan program MATLAB untuk menghasilkan satu kaedah baru 

dalam proses simulasi modulasi digit untuk LD.

Objektif utama kajian yang dijalankan ini adalah untuk menghasilkan arus 

ambang  yang rendah dan lengkung bebas pintal kuasa-arus (L-I) untuk bagi diod 

laser ungu telaga kuantum berganda InGaN  dengan panjang gelombang terpancar 

menghampiri 405 nm, dan analisi output laser ini bertujuan untuk modulasi digi.

Prestasi diod laser ungu telaga kuantum berganda InGaN telah dicapai setelah 

mengoptimumkan kawasan aktif, lapisan sekatan  dan juga panjang lubang. Diod 

laser ungu telaga kuantum berganda InGaN dengan telaga dwi-kuantum telah 

digunakan sebagai struktur asas. Kesan daripada ketebalan telaga kuantum, ketebalan 

sawar dan jenis ke atas ciri elektrikal, optikal dan kekutuban terbina dalam (build-in 

polarization) telah dikaji. Lengkung bebas pintal L-I dengan nilai arus ambang yang 

rendah (16.42 mA) dan kuasa output yang tinggi (64.2 mW) telah diperolehi dengan 

nilai telaga kuantum dan ketebalan pemampan pada 2.5 dan 5 nm masing-masing. 



xx

Kekutuban terbina dalam telah dibuktikan mempunyai kebergantungan terhadap 

ketebalan telaga kuantum serta ketebalan dan jenis sawar.

Kesan daripada lapisan sekatan AlInGaN kuartener ke atas sifat LD telah 

dikaji secara ekstensif. Arus ambang untuk LD telah dikurangkan daripada 16.42 mA 

kepada 13.76 mA apabila mengambilkira kuartener sebagai lapisan sekatan 

berbanding AlGaN pertigaan sebagai lapisan sekatan. Peningkatan taburan kepadatan 

pembawa  di antara dua  telaga kuantum telah diperolehi dengan lapisan sekatan

AlInGaN kuartener. 

Analisis terhadap output  diod laser ungu telaga kuantum berganda InGaN 

yang dihasilkan telah diperolehi dan parameter diod laser yang diperlukan untuk 

kajian dan analisis terhadap respon denyut untuk modulasi digit telah dihitung 

melalui analisis output, penyelesaian persamaan kadar diod laser, dan beberapa kerja 

eksperimen. Parameter untuk modulasi digit yang telah dikaji dan diperolehi adalah 

ayunan santaian, kekerapan ayunan santaian, masa buka dan tutup, dan nisbah 

pemusnahan. Diod laser ungu telaga kuantum berganda InGaN dengan lapisan 

sekatan AlInGaN kuartener telah memperlihatkan sifat modulasi digital yang lebih 

baik berbanding diod laser dengan lapisan sekatan AlGaN pertigaan.

Keseluruhannya, di dalam hasilan kajian simulasi ini, didapati ia sejajar dan 

bertepatan dengan beberapa kerja eksperimen di dalam kajian persuratan.
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SIMULATION OF PERFORMANCE ON MULTI-QUANTUM-WELL 
VIOLET InGaN LASER DIODE AND ANALYSIS OF ITS OUTPUT

FOR DIGITAL MODULATION

ABSTRACT  

This simulation and theoretical study is divided into two parts. Part one 

focuses on the performance of multi-quantum-well (MQW) violet InGaN laser diode 

(LD); whereas,  part two focuses on the analysis of the output of this laser for the 

purpose of digital modulation. 

Two programs have been utilized. They are ISE TCAD (Integrated System 

Engineering Technology Computer Aided Design) simulator and MATLAB 

program. The researcher has coupled ISE TCAD simulator with MATLAB program 

as a new method for the purpose of simulation of digital modulation of the LD. 

The main objectives of this study are to obtain a low threshold current and 

kink-free light output power-current (L-I) curve of the MQW violet InGaN LD with 

an emission wavelength near 405 nm, and to analyse the output of the LD for the 

purpose of digital modulation.  

The performance of the MQW violet InGaN LD has been achieved through 

optimization of its active region, blocking layer (BL) and cavity length. The MQW 

violet InGaN LD with double quantum well (QW) has been used as a base structure. 

The effects of QW thickness, barrier thickness and type on the electrical and optical

properties and built-in polarization have been investigated. The kink-free L-I curve 

with the lowest threshold (16.42 mA) and highest output power (64.2 mW) has been 

obtained with QW and barrier thicknesses of 2.5 and 5 nm, respectively. The built-in 

polarization has been proven to depend on the QW thickness and barrier thickness 

and type. 
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The influence of the quaternary AlInGaN BL on LD properties has been 

extensively investigated. The threshold current of the LD has reduced from 16.42 

mA to 13.76 mA when considering the quaternary AlInGaN as a BL instead of the 

ternary AlGaN BL. The enhancement of carrier density distribution between double 

QW has been observed with quaternary AlInGaN BL.

The analysis of the output of the simulated MQW violet InGaN LD has been 

achieved and the LD parameters required for studying and analyzing the pulse 

response for digital modulation of the LD have been calculated through the output 

analysis, solving the LD rate equations, and some experimental works. The digital 

modulation items, which have been investigated and determined, are relaxation 

oscillation, frequency of relaxation oscillation, turn-on and turn-off times, bit rate

and extinction ratio. The MQW violet InGaN LD with quaternary AlInGaN BL has

exhibited better digital modulation characteristics than the LD with ternary        

AlGaN BL. 

Overall, in this study, simulation results were found in line with several 

experimental studies in the literature.   
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CHAPTER 1

INTRODUCTION

1.0 Overview

Group III-nitrides based semiconductors have emerged as the leading materials

for the production of blue-violet light emitting diodes (LEDs) and laser diodes (LDs). 

The historical evolution of GaN-based materials and devices technology in Japan,

USA, and Europe in the early 1990’s is regarded as the most important developments 

in solid-state devices today.   

Group III-nitride materials have been recognized as one of the most promising 

optoelectronic semiconductor materials because they possess excellent mechanical 

properties such as high melting point, high hardness, and high thermal conductivity.

In addition, group III-nitride materials have large direct tunable band gaps which are

appropriate for short-wavelength LEDs and LDs where the usefulness and goodness

of GaN and its alloys have been well established for the fabrication from visible to

ultraviolet (UV) LEDs and LDs. 

Violet LD that is based on these materials, especially the LD with an emission 

wavelength near 405 nm has attracted great interest as a light source for high-density 

optical data storage, high-resolution color printing, chemical sensor, medical 

applications, and undersea optical communications. 

Since the demonstration of the first InGaN/GaN LD by Nakamura et al. [1],

significant progress has been made towards reducing the threshold current, 

increasing the output power, increasing the lifetime of the LDs and improving the 

device characteristics. 
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In spite of the significant progress achieved, many aspects regarding the 

technology of group III-nitrides-based LDs are in need to be improved. In addition,

the underlying issues of physics must be clarified and that superior performances of 

shorter emission wavelengths are expected to be a form of challenges for the next-

generation devices [2].

Group III-nitrides-based LDs are normally grown on the c-plane (0001) of the 

wurtzite crystal structure. Therefore, such LDs suffer from the presence of 

spontaneous and piezoelectric polarizations which induce a built-in electrostatic field 

resulting in significant reduction of electron-hole wavefunction overlap. Therefore, 

the radiative recombination rate and optical gain of the quantum well (QW) will be 

further reduced. Moreover, the lack of suitable native substrate leads to high 

threading dislocation density. This high threading dislocation density in group III-

nitride materials leads to low radiative efficiency of the LDs. The indium segregation 

is another reason which causes the reduction of light emission [of the LDs] [3].

Furthermore, low quality and limited doping of the p-type are still problems in 

realizing high performance nitride based device [4]. Therefore, the present nitride-

based LDs suffer from relatively high threshold current density between 2-4 kA/cm2

[5].

On the other hand, GaN-based devices are known to operate very well without 

aging effects with dislocation density as high as 1010 cm-2. In spite of this large 

number of dislocation in GaN-based LEDs and LDs, the efficiency of these devices 

is much higher than that of the conventional III-V compound semiconductors, such 

as AlGaAs and AlInGaP-based LEDs and LDs where many reports suggest that III-V 

nitride-based devices are less sensitive to dislocation than the conventional III-V 

semiconductors [6, 7]. Moreover, the lifetimes of blue-violet LDs have been 
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improved to greater than 15 000 h under room temperature (RT) at continuous wave 

(CW) at 60 oC [8, 9].

The dynamics of the LD are studied through the use of well-known laser rate 

equations. Since these rate equations are non-linear, various linearization methods 

have been utilized [10].

LDs are important in information technology because of its high coherent light 

output, small size, ruggedness and high efficiency which can be modulated to carry 

code information at a high distance and speed via fiber optics. LDs can be modulated 

and tuned directly. The modulation is either digital or analog. Digital modulation is 

extremely important for most LD applications. Therefore, analytical applications 

such as undersea optical communication systems and blu-ray disc (BD) of the multi-

quantum-well (MQW) violet InGaN LDs require a detailed knowledge about its 

pulse response and relaxation oscillation (RO) for the purpose of digital modulation. 

Pulse response and RO have been carefully studied for GaAs- and InP-based LDs for 

the optical communication systems. However, almost no information is available on 

the RO and pulse response analysis related to digital modulation for InGaN-based 

LDs.

1.1 Crystal structure of group III-nitrides     

Group III-nitrides exist in three common crystal structures: the wurtzite, 

zincblende, and NaCl. Under ambient conditions, the thermodynamically stable 

structure is wurtzite for bulk aluminum nitride (AlN), gallium nitride (GaN), and

indium nitride (InN) [11]. Wurtzite structure has a hexagonal unit cell and thus two 

lattice constants (c and a). Wurtzite structure consists of two interpenetrating 

hexagonal closely packed (HCP) sublattices; each one is with one type of atom, and 
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offset along the c-axis by 5/8 of the cell height (c). Each group-III atom (Gallium 

(Ga)) is coordinated by four nitrogen (N) atoms and vice versa. Wurtzite GaN has 

two faces: Ga face (Ga-polarity) and N face (N-polarity). Figure 1.1 shows the 

crystalline structure: (a) hexagonal (wurtzite), (b) cubic, (c) and (d) represent Ga-

polarity and N-polarity of wurtzite GaN, respectively [12]. It can be seen that the 

directions of spontaneous polarization are also designated as arrows as in c and d.

Wurtzite GaN, InN and AlN crystals have bonds along the c-axis which are 

longer than the other bonds. Therefore, this non-ideality which is given by the 

differences in bond lengths and the ionicity of the Ga-N bond leads to the existence 

of a non-zero electrical dipole moment which is parallel to the c-axis, and 

consequently to a spontaneous polarization [11]. The spontaneous polarization in 

group III-nitrides is very large in terms of MV/cm and that the increase from GaN to 

InN and AlN is due to the increase of the non-ideality of the crystal structures.

Figure 1.1. The crystalline structure of (a) hexagonal, (b) cubic, (c) Ga-polarity and 
(d) N-polarity of GaN. Directions of spontaneous polarization are also designated as 
arrows in (c, d) [12].
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1.2 Unique properties of group III-nitrides

Group III-nitrides, AlN, GaN, InN, and their alloys are considered materials 

of great interest for the applications in optoelectronic devices. This is due to their

wide and direct band gap ranging from 0.77 eV for InN to 3.4 eV for GaN and to 6.2 

eV for AlN. Therefore, these materials together with their ternary alloys InGaN and 

AlGaN can, in principle, cover almost all the visible and near-ultraviolet regions of 

the spectrum as schematically depicted in Figure 1.2 [13]. Figure 1.2 plots the band 

gap energies and wavelengths of group III-nitrides and some semiconductor

compounds and elements as functions of their lattice constants. Moreover, group III-

nitride materials are also characterized by unique properties such as: high thermal 

and chemical stability, low compressibility, high breakdown field                   

(1.5×106 V/cm), high thermal conductivity (1.3 W/cm oC) [14], and high melting 

temperature (for GaN 2540 K) [15]. Therefore, these properties make group III-

nitrides one of the most promising candidates as potential materials for the

applications to LEDs and LDs from near-ultraviolet to the visible region of the 

spectrum. 

Figure 1.2. Diagram of the band gap energies and wavelengths of group III-nitrides 
and some semiconductor compounds and elements as functions of their lattice 
constants [13].



6

1.3 Problems of group III-nitrides

Although group III-nitride materials have potential properties as mentioned 

above, these properties also make the growth of high-quality single crystals, the 

epitaxy of perfect layers and the device processing difficult and complicated [11].

The problems are discussed in the subsequent sub-sections.

1.3.1 Mismatch 

Mismatch between group III-nitrides and the substrates and among group III-

nitrides themselves is considered a major problem when working with these 

materials. Heteroepitaxial growth of GaN is usually performed on sapphire or SiC 

substrates with lattice mismatch 13% and 3.5%, respectively [16]. Two important 

crystal properties that should be ideally closely matched between GaN and the 

substrate; these are the lattice parameters and the coefficient of the thermal 

expansions. Any mismatch between these properties can result in defects in the film. 

This means that the misfit and threading dislocations are due to the lattice mismatch; 

and that cracking or bowing is due to the thermal mismatch. 

The lack of suitable native substrates leads to a poor quality epitaxial GaN

film with dislocation density as high as 1010 cm-2 when growing on a sapphire or SiC 

substrates. The low thermal conductivity and insulating properties make sapphire less 

perfect as a substrate for the GaN epilayers; while the high cost and some of the 

mechanical defects of the SiC hinder its acceptability in LEDs [and LDs] markets

[17]. An ideal substrate for GaN epitaxy would be a high quality GaN wafer itself. 

However, this approach is limited due to the difficulties in producing sufficient high 

quality GaN substrate [18].  
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A variety of techniques has been employed to reduce this high dislocation 

density. One method was used to engineer the substrate surface to control the 

threading dislocation density, and thus inhibiting the formation threading dislocation 

and reducing the mismatch. This has been made by using the epitaxial lateral 

overgrowth (ELO) technique as it has been further proven to be used effectively to 

obtain low dislocation density as low as 106 cm-2 with estimated lifetime for  LDs of 

15 000 h [8, 9]. However, this technique is difficult and complex. Another approach 

which has attracted a lot of attention and it is considered easy; the growth of GaN is 

made on sapphire, SiC or silicon (Si) substrates by using AlN or GaN as nucleation 

layers [19]. By using these nucleation layers, it has become possible to obtain high-

quality GaN films, a low residual carrier concentration, a high mobility and strong 

photoluminescence (PL) intensity even though there is a large lattice mismatch 

between GaN and these substrates [8]. 

On the other hand, the mismatch among group III-nitrides themselves leads to 

piezoelectric polarization when they are grown on a c-plan of the wurtzite structure. 

This will be elaborated below (see sub-section 1.3.2).

1.3.2 Polarization   

It is well known that a strong built-in polarization inside the epitaxial 

structures of group III-nitrides influences their device properties. This built-in 

polarization is due to piezoelectric and spontaneous polarizations. Piezoelectric 

polarization is formed when the materials with different lattice constants come 

together, such as InxGa1-xN well with GaN barrier layer. The discontinuity in 

polarization from one material to another creates bound charges at the interfaces 

which, in turn, lead to quantum confined stark effect (QCSE) [20]. QCSE creates 
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band bending in the quantum well (QW) as indicated in Figure 1.3, and this leads to 

make the electrons in the conduction band move to a side; while the holes in the 

valence band move to the other side of QW. On the other hand, spontaneous 

polarization, as mentioned previously, existed due to the electrical field in the 

intrinsic material. Consequently, the total polarization is equal to the sum of 

spontaneous and piezoelectric polarizations. Polarization leads to increase in the 

threshold current, and reduce the output power and efficiency of the InGaN-based 

LDs. In fact, polarization exists in the c-plane of group III-nitrides of wurtzite 

structures; while such polarization does not exist in the m-plane of wurtzite structure, 

as can be seen in Figure 1.3 [21]. Therefore, c-plane is called polar plane; while m-

plane is called non-polar plane. Recently, the idea of achieving a structure that is free 

from built-in electrostatic field in non-polar direction has been proposed [22-25].

However, the appropriate growth orientation for non-polar is still under investigation

and development and the growth condition may be much more complicated as 

compared to the conventional growth process [26].

Figure 1.3. Polar (c-plane) and non-polar (m-plane) of group III-nitrides of wurtzite
structure [21].
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1.3.3 Indium composition 

Ternary InxGa1-xN alloy is widely used as an active layer in InGaN-based 

LEDs and LDs. The main problem with InGaN is the growth temperature where a lot 

of experimental works have proven that growing high quality InGaN is very difficult,

especially for high indium (In) composition in InxGa1-xN alloy [27]. In order to grow 

QW with high In content, the growth temperature for the InGaN QW needs to be

lowered, taking into account the low sticking coefficient of In which results in lower 

crystalline quality in the QW and barrier [28]. Such growth conditions often result in 

compromised material quality in the MQW and barriers which are also associated 

with a poor optical quality of the active region and formation of the localized states 

by phase separation [29]. Besides temperature, indium incorporation is also strongly

dependent upon the growth rate, pressure, carrier gas and V/III ratio [30].

Moreover, as In composition increases, the lattice-mismatch induces

increased strain of InGaN epitaxy on GaN which leads to cause a variety of defects

to the materials. Therefore, one can see that the low In-content in ternary InxGa1-xN 

alloy is widely used as an active layer to fabricate high-brightness blue-violet LEDs 

and LDs.

Furthermore, the weakness of the In-N bond requires the growth temperature 

of InGaN to be reduced [31].

1.3.4 P-type doping  

Controlled p-type doping is crucial for the development of group III-nitrides 

as it is used in visible and ultraviolet LED and LD devices. The first successful        

p-type of GaN was achieved by Amano et al.; they used magnesium (Mg) as a

dopant with low-energy electron-beam irradiation (LEEBI) treatment [32]. A few 
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years later, Nakamura et al. obtained p-type conductivity by removing hydrogen

which passivates the Mg acceptor through thermal annealing [33]. However, this 

method allows only a fraction of the total Mg dopant to be activated [34, 35]. 

Despite that Amano et al. and Nakamura et al. have showed that Mg can be 

used as a dopant, but it is far from being ideal. Mg is an acceptor in GaN residing 

between 180 and 250 meV from the valence band edge making ionization difficult at 

room temperature [36]. This problem is greater at short wavelength and higher 

aluminum composition [as in AlGaN blocking layer of LD where a higher Al 

composition is always needed] due to further deepening of this center [36, 37]. 

For p-type GaN, there are still some challenges, such as low hole

concentration and mobility which result in a high device resistivity [38]. Moreover, 

some theoretical and experimental studies indicated that compensation by natural 

defects plays a significant role in the p-type doping process [39]. Therefore, p-type 

doping in GaN [and its alloys] is much more complicated than that of n-type doping 

[36].

1.4 Advantages of violet laser diode near 405 nm 

Violet InGaN LDs with an emission wavelength near 405 nm have many 

advantages such as high efficiency, relatively high power and low threshold current.

In addition, violet InGaN LDs with an emission wavelength near 405 nm 

have potential applications in blu-ray disc (BD) to read and write data. The blu-ray 

disc is expected to be used in the next-generation recording technology beyond

digital versatile disc (DVD). It dramatically increases recording density by using a 

violet 405-nm laser compared to the conventional 650-nm red laser used in today’s 

DVD technology. The shorter wavelength allows a smaller spot size and track pitch 
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to be recorded on the disc, increasing storage density from 4.7 to 25 GB on one side

of the disc [6].  

In reality, blu-ray disc overcomes DVD-reading issues by placing the data on 

top of a 1.1-mm-thick polycarbonate layer [40]. Since the data is on top of the BD, 

this prevents birefringence and therefore prevents readability problems. Moreover, 

the recording layer is placed closer to the objective lens of the reading mechanism, 

the problem of disc tilt is virtually eliminated; because the data is closer to the 

surface, a hard coating is placed on the outside of the disc to protect it from scratches 

and fingerprints [40]. Figure 1.4 shows CD and DVD versus BD.  

Moreover, violet LDs can also improve the performance of laser display,

color printer, medical applications and undersea optical communication systems.

          

  Figure 1.4. CD and DVD versus BD [40].
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1.5 Double quantum well blue-violet InGaN laser diodes  

Several experimental and simulation studies indicated that double quantum 

well (DQW) blue-violet InGaN LDs have many advantages, such as higher output 

power and efficiency with lower threshold current, depending on the specific 

wavelength of the LDs.

Nakamura et al. experimentally studied the performance of several LDs with 

an emission wavelength of 390-420 nm as a function of the number of InGaN well 

layers. They found that the lowest threshold current density is obtained when the 

number of InGaN well layers is two [41]. However, in another study, they observed 

that LDs with an emission wavelength longer than 435 nm and when the number of 

InGaN well layers varies from one to three, the threshold current density is the 

lowest at one, and increased with the number of InGaN well layers [42]. In another 

study, when the number of the InGaN well varies between 1 and 4, with an emission 

wavelength of the LDs around 408 nm, Nakamura et al. found that the lowest 

threshold current density is obtained with DQW of the LD [43]. This phenomenon is 

attributed to the dissociation of the high indium content of InGaN QW at high 

growth temperature [44]. 

On the other hand, several simulation studies [45-50] were in line with 

Nakamura’s experimental studies as will be discussed below. 

J. Y. Chang and Y. K. Kuo studied laser performance with an emission 

wavelength of 462 nm. They found that the threshold current density increases with 

the number of well layers. They also found that the hole distribution is non-uniform 

between DQW and this non-uniform hole distribution plays an important role in laser 

performance as a function of the number of well layers and that the performance 

decreases when the number of well layers increases [45].
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Y. K. Kuo et al. studied the characteristics of the blue-violet MQW InGaN 

LDs with an emission wavelength of 400-480 nm when the band-offset ratio of the 

InxGa1-xN/InyGa1-yN heterojunction is 3/7 and 7/3. They found when the band-offset 

ratio is 7/3, the lowest threshold current of the blue-violet InGaN LD is obtained 

when the number of well layers is two if the emission wavelength is shorter than 450 

nm, and one if the emission wavelength is longer than 450 nm [46]. 

Y. K. Kuo and Y. A. Chang investigated laser performance of several MQW 

InGaN LDs with an emission wavelength of 392-461 nm. Their simulation results 

indicated that the lowest threshold current density is obtained when the number of 

QW is two if the emission wavelength is shorter than 427 nm, and one if the 

emission wavelength is longer than 427 nm [47]. 

Optical properties of the MQW InGaN violet and ultraviolet LDs were

numerically studied by S. H. Yen et al.; especially, the performance of the LDs of 

various active region structures operating in a spectral range from 385 to 410 nm. 

Their simulation results indicated that the DQW laser structure with a peak emission 

wavelength of 385-410 nm has the lowest threshold current [48].

S. M. Thahab et al. studied the effect of QW number on the output power, 

threshold current and slope efficiency of MQW InGaN LDs with an emission 

wavelength around 416 nm. They observed a maximum output power, a higher slope

efficiency, and a lower threshold current when the number of QW is two [49, 50]. 

The above mentioned simulation studies indicated that the dissociation of the

InGaN QW during crystal growth is not the only cause for the deterioration of laser 

performance when number of  QW is over than two because the respective 

researchers did not take into account the dissociation of the InGaN QW during 

crystal growth in their software simulation programs. They suggested that the non-
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uniform hole distribution plays an important role in the laser performance due to the 

large mass and low mobility of the hole, high band offset in the valence band, and 

using the high band gap blocking layer which result in accumulating the holes in the 

QW near p-type of the LD structure.

On the other hand, it has been discussed that the blue InGaN LDs have 

peculiar temperature characteristics due to the unique carrier transport properties of 

DQW InGaN with high In composition which is deduced from the simulation of 

carrier density and optical gain [51]. The DQW LD structures with an emission 

wavelength 445 nm having an n-type doped barrier show negative or very high

temperature characteristics depending on the In barrier composition [51]. On the 

contrary, the DQW structures having an undoped barrier and a single QW structure 

show normal dependence of LD temperature characteristics [51]. In another study, H. 

Y. Ryu et al. reported high stable temperature characteristics of the threshold current 

and output power in InGaN blue LDs emitting around 450 nm [52]. The threshold 

current is changed by <3 mA in operation temperature range from 20 to 80 °C, and 

even negative temperature characteristics was observed in a certain temperature 

range [52]. 

1.6 The quaternary AlxInyGa1-x-yN alloy in the InGaN laser diodes  

The quaternary AlxInyGa1-x-yN alloy is potential for the fabrication of lattice 

matched III-nitride by independently controlling the band gap energy and the lattice 

constant and it has better lattice match to GaN resulting in a decrease of dislocations 

[53, 54]. Moreover, the use of AlxInyGa1-x-yN quaternary materials is proved to be a 

promising approach in realizing deep UV devices [55].
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The growth temperature of quaternary AlInGaN by metal organic chemical 

vapor deposition (MOCVD) ranges from 750 to 900 oC [53, 56, 57]; and this is close

to the growth temperature of the InGaN active region.  As a result, this makes the 

indium prevention by evaporation from the InGaN active region better when using it 

as a blocking layer (BL) than using the conventional ternary AlGaN BL. 

Theoretically, J. R. Chen et al. showed that the built-in polarization can be 

reduced by using quaternary AlInGaN as a BL instead of ternary AlGaN BL [58]. 

The optical properties of InGaN MQW LDs with different polarization-matched 

AlInGaN barrier layers have been investigated numerically by S. Park et al. [59]. 

These researchers showed that the use of quaternary polarization-matched AlInGaN 

barrier layers enhances the electron-hole wavefunction overlap due to the 

compensation of polarization charges between InGaN QW and AlInGaN barrier 

layer. The optimal polarization-matched InGaN/AlInGaN LD showed lower 

threshold current and higher slope efficiency compared to the conventional      

InxGa1-xN/InyGa1-yN LDs. C. Skierbiszewski et al. used the quaternary AlInGaN in 

the superlattice cladding layer of the LD as AlInGaN/InGaN pairs instead of 

conventional AlGaN/GaN pairs; they relatively obtained high output power (60 mW) 

at room temperature [60].

Therefore, the quaternary AlInGaN alloy is indeed the most promising 

material to be used as a BL because it better matches with the InGaN and GaN 

barriers in the active region and it independently controls the band gap energy and 

the lattice constant parameters.
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1.7 Digital modulation of violet InGaN laser diodes

The InGaN LDs near 405 nm are expected to play an important role in 

undersea optical communication systems, especially after increasing their lifetimes

where long lifetime is always needed for laser used in optical communication 

systems. Moreover, the digital modulation of the pulse response of violet InGaN LDs 

is also required in other applications. Therefore, the analysis of digital modulation 

and pulse response of violet InGaN LD are required to examine the ability of this 

laser to build a clean square wave of pulse response. The other items of the digital 

modulation of violet InGaN LD such as relaxation oscillation (RO), turn-on and turn-

off times, and bit rate have not been sufficiently clarified yet. 

However, there is very little information about the digital modulation of 

violet InGaN LDs. The violet InGaN LDs have been modulated with pulse current in 

order to measure the carrier lifetime experimentally by S. Nakamura et al. and M. 

Kuramoto et al. [61-63]. M. Kuramoto et al. studied the relationship between the 

slope gain and frequency of the relaxation oscillation of the violet InGaN LDs with 

emission wavelengths at 411, 404 and 397 nm. They observed the ROs in the pulse 

response for these three LDs and concluded that the LD which has higher RO, also 

has a higher carrier lifetime [63]. S. Nakamura et al. modulated the MQW violet 

InGaN LD with an emission wavelength near 405 nm, and they measured the 

frequency of the RO which was 3 GHz [64]. 
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1.8 Research objectives   

The objectives of this simulation and theoretical research are:

1. To design low threshold kink-free light output power-current (L-I) curve of 

MQW violet InGaN LD with an emission wavelength around 405 nm by 

using ISE TCAD (Integrated System Engineering Technology Computer

Aided Design) simulator

2. To optimize the active region of the MQW violet InGaN LD with an 

emphasis on reducing the polarization effects 

3. To use the quaternary AlInGaN as a BL instead of the conventional ternary 

AlGaN BL 

4. To study and analyze the output of the MQW violet InGaN LD with ternary 

AlGaN and quaternary AlInGaN BLs

5. To study and analyze the pulse response of the digital modulation of the 

MQW violet InGaN LDs using MATLAB program based on linearization of 

the rate equations by applying Jacobian matrix and state-space model         

1.9 Research originality 

The originality of this research can be summed up as listed below:

1. Designing edge emitting MQW violet InGaN LDs with low threshold current

and relatively high power without using ridge geometry and superlattice 

cladding layers

2. Reducing and exploring new influences of built-in polarization on the MQW 

violet InGaN LDs

3. Exploring the quaternary AlInGaN BL in the LD to enhance optical intensity 

and carrier density distribution inside the active region 
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4. Proposing a novel model for simulation of digital modulation by coupling 

ISE TCAD simulator with MATLAB program

5. Using the proposed model for simulation and analysis of the pulse response

for digital modulation of the MQW violet InGaN LDs which have not been 

studied before

1.10 Thesis outline 

This study comprises of six chapters; they are outlined below:

Chapter 1 sets up the study by commencing with an overview on the topic. Then it 

moves to identify the advantages and problems of group III-nitride materials. The

literature review is also presented in this chapter. The research objectives, originality

of this research, and the thesis outline are presented in this chapter

Chapter 2 presents the relevant theories and concepts of the LDs that are utilized in 

this study

Chapter 3 explains the methodology that is employed in this study. Two simulation 

programs have been utilized and described in this chapter: ISE TCAD simulator and 

MATLAB program. Coupling ISE TCAD simulator with MATLAB program is also 

presented in this chapter 

Chapter 4 presents the results and discussion of the performance of the MQW violet 

InGaN LDs 

Chapter 5 presents the results and discussion of the output analysis and digital 

modulation of MQW violet InGaN LDs 

Chapter 6 presents the conclusions of this study. The recommendations for future 

work are also proposed in this chapter 
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CHAPTER 2

THEORETICAL FRAMEWORK

2.0 Introduction 

Theories and concepts of LD and group III-nitride materials that are related to 

this work will be explained in this chapter. The concepts of quantum confinement, 

quantum well, multi-quantum-well, and superlattice will be presented. The InGaN-

based LD structure will be explained. Piezoelectric polarization and strain effects on

the active region of the InGaN-based LD will be presented; and nitride materials 

rules will also be presented. The method of extracting the parameters of laser cavity-

length dependent will be described and the temperature characteristics will also be 

included in the discussion to reveal its meaning and usefulness in the LD. The LD 

rate equations will be described and their meaning and usages will be explained. The 

pulse response for digital modulation purposes and its related concepts will be 

described.  

2.1 Quantum well confinement 

A quantum-confined structure is one in which the motion of the electrons or

holes are confined in one or more directions by potential barriers [65]. The

classification of quantum confinement is given in Table 2.1.   

              Table 2.1. The quantum confinement classification.

Structure Confined directions Freedom directions

Quantum well 1 2

Quantum wire 2 1

Quantum dot 3 0
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Quantum size effects become important when the thickness of the layer 

becomes comparable with de Broglie wavelength of the electrons or the holes in the

target material where quantum-mechanical effects are expected to occur. In this case, 

the distribution of low energy, wave-like states available for the electrons and holes 

confined to the active layer changes from quasi-continuous to discrete [66]. If we 

consider the free thermal motion of a particle of mass (m) in the z-direction, de 

Broglie wavelength at a temperature (T) is given by [65]: 

                                                 
mkT

h
de .                                            (2.1)

where k is Boltzmann constant. In general, in order to observe the quantum-

confinement effects at room temperature for semiconductor materials, the thickness 

of the confined materials should be in a few nanometers. This thickness can easily be 

obtained by the molecular beam epitaxy (MBE) or MOCVD techniques.  

The quantum well is a single layer of one narrow band gap (Eg(QW)) 

semiconductor which is sandwiched between two layers of a wider band gap material 

(Eg(barrier)), such as InxGa1-xN as a well and GaN as a barrier, or from one material but 

with different mole fractions in the well and barrier, such as In0.12Ga0.88N as a well 

and In0.01Ga0.99N as a barrier where the condition Eg(Barrier) > Eg(QW) must be inquired.

Figure 2.1 represents the principle of QW confinement structure. The confinement 

direction in QW is usually taken in the z-direction.

The quantization of the motion in the z-direction (QW confinement) has three

main results [65]. Firstly, the quantization energy shifts the effective band edge to a

higher energy. Secondly, the confinement keeps the electrons and holes closer 

together and hence it increases the probability of radiative recombination rate. 

Finally, the density of states becomes independent of energy. Many useful properties 

of the QW follow these three properties. Therefore, the applications of the QW
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structures of LDs have received considerable attention because of its physical interest 

as well as its superior laser characteristics.

Figure 2.1. Principle of quantum well confinement structure.

From Schrö dinger equation, the energy of the confined states for electrons 

and holes is given as:
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where n is the quantum number, 
2

h
 , h is Planck constant, d is the QW 

thickness, and m* is the effective mass of the particle (electron or hole) in the QW.
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         Since the emission wavelength of a semiconductor corresponds to its band gap 

energy, custom-designed energies can be obtained where the energy emission from 

QW is [67]:

                                                 11)( HEEh QWg                                              (2.3)

where E1 and H1 are the state energies at n=1 of the electron and hole, respectively.

2.2 Multi-quantum-well and superlattice   

The MQW structure has the same single QW structure, but it consists of more 

than one QW alternative layers with relatively thick barriers which prevent the 

tunneling between the wells and barriers and thus the carriers become very dense 

inside the quantum well. The MQW is used as an active region in the LD where the 

laser takes place. Hence, a higher power of the LD can be produced by using MQW 

as an active region than the single QW active region. MQW structure is shown in 

Figure 2.2 (a).   

A superlattice (SL) is very thin alternative layers of two materials. The 

purpose of the SL is to take advantage of the tunneling properties associated with 

crystal lattice systems and controlling the movement of the carriers [65]; while still 

maintains control over the design of band gap energy. In fact, the SL is similar to 

MQW, but the barrier thickness is smaller, when the barrier thickness is reduced, the 

wave functions of adjacent wells begin to overlap and the discrete levels broaden to 

minibands as the wave functions in neighboring wells couple together through the 

thin barrier that separates them [65], as shown in Figure 2.2 (b). The SL can be used 

as many pairs in the cladding layers to eliminate the mismatch problem and to 

increase the optical confinement inside the active region of LD. The common SL 

feature in InGaN-based LDs is AlGaN/GaN pairs.
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      Figure 2.2. The MQW and superlattice structures.

2.3 InGaN-based laser diode structure

The state of art in InGaN-based LDs is realized as separate confinement 

heterostructure multi-quantum-well (SCH-MQW) lasers. The SCH is a modification 

of the double-heterostructure (DH) which provides additional carrier confinement. 

This confinement plays an important role in the III-nitrides based optoelectronic 

devices where a better confinement of the injected electrons is considered as a key 

issue to be resolved due to the low efficiency of p-type doping in these materials

[68].

A vertical structure of such an LD can be seen in Figure 2.3. The active 

region of such a device consists of several InxGa1-xN/GaN or InxGa1-xN/InyGa1-yN 

MQW placed in the junction region of a p-n heterostructure which is sandwiched on 

both sides by the layers having higher band gap energies, i.e. the top and bottom 

waveguides and cladding layers.

Conduction band                                             Conduction band

Valence band                                           Valence band

     (a) MQW                                  (b) Superlattice
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The QWs are designed to trap electrons in a two-dimension environment and 

to have a particular band gap energy related to the wavelength of the light emitted by 

the LD. The QW allows the electrons to gather more densely in the well than they 

would elsewhere. This can be achieved by the band discontinuities in the conduction 

and valence bands which confine the electrons and holes within the active region. 

This results in more concentrated carriers as compared with the usual homogenous 

structure where carriers can be diffused over distances of the orders of microns. 

         Figure 2.3. Diagram of SCH-MQW laser diode structure [1].

By using a convenient semiconductor feature, increasing the band gap energy

of the semiconductor by changing its composition also normally decreases its 

refractive index. This leads to optical confinement of the photons closely around the 

active region. The larger refractive index of the inner layer in the heterostructure 
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guides the optical wave between the outer layers (cladding layers). However, to

realize the confinement in an optimal way, the optical waveguide should have a 

relatively large thickness. For this reason, the waveguide is normally thicker than the 

active region, and the cladding layers of the LD, which are surrounding the 

waveguide, are always thicker than the waveguide. Consequently, in accordance with 

Snell’s law, the light will be confined in the active region. This is similar to the 

optical properties of a fiber optic cable. This can be seen in Figure 2.4 which 

represents rays and intensity confinement in the LD. Where n is the refractive index, 

n1 and n2 are the refractive indices of the waveguide and cladding layers, 

respectively.

Figure 2.4. Rays and intensity confinement in the laser diode [11].

However, only a small part of the light field that oscillates along the QWs is 

confined in the active region because the active region is very thin in comparison 

with other parts of the laser structure. The thickness of the active region depends on 

the thicknesses and number of QWs and barriers. In the InGaN-based LDs, the 

normal thickness of the active region with DQW is around 20 nm. Therefore, the 
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