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PENYEDIAAN DAN SIFAT-SIFAT KOMPOSIT TERUBAHSUAI HENTAMAN 

DARI POLI(LAKTIK ASID)/SERABUT KENAF 

 

ABSTRAK 

Penyediaan dan sifat-sifat komposit terubahsuai hentaman daripada poli(laktik asid) 

(PLA) dan gentian kenaf (KF) telah dikaji. Bahagian pertama dalam kajian ini melibatkan 

kesan pengubahsuaian hentaman terhadap sifat-sifat terma, mekanikal, morfologi dan juga 

biorosotan (pencuacaan semula jadi dan pengambusan tanah) PLA. Suhu peralihan kaca 

(Tg) PLA di dalam adunan tidak berubah secara ketara dengan penambahan pengubahsuai 

hentaman. Ketidakserasian adunan dapat dilihat daripada analisis dinamik mekanikal 

(DMA), di mana adunan menunjukkan dua nilai Tg yang berbeza yang merujuk kepada 

PLA dan pengubahsuai hentaman. Pemanjangan tahap putus dan kekuatan hentaman 

adunan meningkat dengan penambahan pengubahsuaian hentaman. Kajian morfologi 

melalui mikroskop imbasan elektron (SEM) menunjukkan pemisahan fasa yang 

menggambarkan ketidakserasian adunan PLA/pengubahsuai hentaman. PLA dengan 20 

wt% pengubahsuai hentaman telah dipilih sebagai matriks dan ianya menunjukkan nilai 

kekuatan hentaman optimum meningkat 8 kali ganda berbanding PLA tulen. Bahagian 

kedua kajian ini adalah untuk menganalisa kesan penambahan 40 wt% serabut kenaf (KF) 

ke atas sifat-sifat mekanikal PLA termodifikasi hentaman (i-PLA). Nilai tegasan alah, 

pemanjangan tahap putus, kekuatan hentaman dan  keliatan patahan berkurangan dengan 

penambahan 40 wt% KF. Apabila dibandingkan dengan komposit PLA/KF, komposit i-

PLA/KF menunjukkan penurunan nilai tegasan alah dan modulus Young tetapi nilai 

pemanjangan tahap putus, kekuatan hentaman dan keliatan patahan lebih tinggi berbanding 

komposit PLA/KF. Komposit i-PLA/KF menunjukkan 55.5, 3.8, 78.1, 49.1 % lebih tinggi 
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bagi tegasan alah, modulus Young, kekuatan hentaman dan keliatan patah berbanding 

komposit PP/KF.  
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PREPARATION AND PROPERTIES OF IMPACT MODIFIED  

POLY(LACTIC ACID)/KENAF FIBER COMPOSITES 

 

ABSTRACT 

Preparation and properties of impact modified composites from poly(lactic acid) 

(PLA) and kenaf fiber (KF) was investigated. The first part of this study was to evaluate the 

effect of impact modifier on the thermal, mechanical and morphological properties as well 

as biodegradability (natural weathering and soil burial) of PLA. The glass transition 

temperature (Tg) of PLA in the blends did not significantly change with addition of impact 

modifier. From dynamic mechanical analysis (DMA), the immiscibility of the blends can 

be observed. The blends showed two distinct Tgs corresponding to PLA and the impact 

modifier. The elongation at break and notched impact strength of the blends increased with 

increasing impact modifier. Morphological study via scanning electron microscopy (SEM) 

showed the phase separation of the PLA/impact modifier blends, which indicated the 

immiscibility of the polymer blends. PLA with 20 wt% impact modifier was chosen as a 

matrix for the second part of this study as it showed the optimum notched impact strength 

increased 8-folds compared to pure PLA. The second part of this study was to evaluate the 

effect of 40 wt% KF on the mechanical properties of chosen impact modified PLA (i-PLA). 

The yield stress, elongation at break, notched impact and fracture toughness of i-PLA were 

decreased with addition of 40 wt% KF. As compared to PLA/KF composites, i-PLA/KF 

composites showed lower yield stress, Young’s modulus but higher elongation at break, 

notched impact strength and fracture toughness than that of PLA/KF composites. i-PLA/KF 

composites showed 55.5, 3.8, 78.1 and 49.1 % higher respectively for yield stress, Young’s 

modulus, notched impact strength and fracture toughness than PP/KF composites.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Problem statement      

Plastics have become an inseparable and integral part of our lives and also one of 

the greatest innovations of the millennium (Siddique et al., 2008). Plastics have been used 

in packaging, automotive and industrial applications, medical delivery systems, artificial 

implants and other healthcare applications, water desalination, flood prevention, 

preservation and distribution of food, housing, communication materials, security systems, 

and other uses (Siddique et al., 2008, Vaz et al., 2003). Plastics are one of the major 

polymer materials used in packaging where the main reasons why plastics have been 

chosen are low density, not susceptible to loss of strength when wet, fabrication 

capabilities, long life, light weight, transparency, and cheap. In addition, plastics have good 

mechanical properties (Siddique et al., 2008, Noda et al., 2001).  

Currently the world depends on fossil fuels for plastics manufacture (≈270 million 

metric tonnes of fossil fuels) (Suresh Kumar et al., 2004, Khardenavis et al., 2007) and 

since plastics are made using non-degradable polymers (based on fossil fuels), plastics do 

not degrade under normal environmental conditions, resulting in various forms of 

environmental pollutions particularly during incineration (Kim et al., 2006).  

In recent years, there has been an increasing concern of the environmental problems 

caused by increasing number of applications and mass volume uses of plastics in part due 

to increasing number of world population (Limpan et al., 2010). So as a result, many efforts 

have been made to develop environmentally friendly and biodegradable polymers as an 
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alternative replacement for traditional petroleum-based non biodegradable polymers 

(Avella et al., 2005, Lodha and Netravali, 2005, Khardenavis et al., 2007).  

Poly(lactic acid) (PLA) is one of the most promising candidates for further 

development since it is not only biodegradable but is produced from non fossil renewable 

resources such as sugar beets or corn starch (Murariu et al., 2008a, Baiardo et al., 2003). 

PLA exhibits good mechanical strength, processability and biocompatibility, and so can be 

used as a replacement in the production of many products currently produced from 

petroleum-based polymers (Jiang et al., 2005, Byrne et al., 2009). PLA is a commercially 

feasible packaging polymer as a replacement for petroleum-based polymer applications 

such as meat packaging, milk cartons, and beverage bottles, which constitute a large part of 

typical household waste and the use of biodegradable PLA reduces the environmental 

impact associated with packaging disposal (Byrne et al., 2009). 

 A significant material issue limiting the broader adoption of PLA in packaging is its 

brittleness and thus poor impact strength. Due to this, cracking and tearing of the polymer 

can occur during processing where force is placed on the polymer during manufacturing. 

These problems can be solved by copolymerization or blending with an impact modifier in 

order to improve the impact strength of the brittle PLA (Murariu et al., 2008b, Byrne et al., 

2009). 

 PLA is expensive; this high cost limits its commercial applications to some extent 

(Murariu et al., 2008a, Murariu et al., 2008c). Therefore, in response to the demand for 

extending PLA applications while reducing its production cost, PLA can be blended with 

plant fibers such as kenaf fiber to develop biodegradable composites. Biodegradable 

composites are best candidates for short term applications such as cosmetics packaging.   
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The mechanical properties of a composite depend among others on the fiber-matrix 

interaction. An adequate interaction would form interface that allows efficient stress 

transfer from the matrix to the fiber (Huneault and Li, 2007). Hydrophilic plant fibers are 

not compatible with hydrophobic polymers such as PLA resulting in poor mechanical 

properties (Plackett, 2004). This problem of poor fiber-matrix interaction can be improved 

with fiber treatment or with the use of appropriate compatibilizer (Kim et al., 2007a, 

Nakason et al., 2006). Compatibilizer, maleic anhydride grafted polymer has been widely 

studied and used. The anhydride functionality of maleic anhydride grafted polymer reacts 

with cellulosic fiber hydroxyl groups while the grafted polymer entangled and/or co-

crystallizes with the bulk polymer chains of the bulk matrix. This results in efficient stress 

transfer from the matrix to the fiber (Seo and Kim, 2008).    

 

1.2 Research objectives   

1. To investigate the effect of an impact modifier (at several compositions) on the 

thermal, mechanical and morphological properties as well as biodegradability (natural 

weathering and soil burial) of poly(lactic acid) (PLA). The best PLA/impact modifier blend 

composition that showed a good balance of mechanical properties (strength vs toughness) 

was used as the matrix for the study on the biodegradable composite.  

 

2. To prepare and characterize mechanical properties of the biodegradable composites 

made of impact modified poly(lactic acid) and kenaf fiber. In order to promote fiber-matrix 

interaction, maleated poly(lactic acid) was prepared and used as compatibilizer. The 

properties of biodegradable composites were compared with those of polypropylene/kenaf 

fiber composites. Fiber loading was 40 wt%.              
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Plastics and the environment 

Since plastics have started been used in 1930, it has become one of the most 

important part in our daily life. Figure 2.1 shows clearly that the total global production 

of plastics grew from 1.5 million tons in 1950 to 245 million tons in 2006. In the past 20 

years, the production and the use of plastics in the world has enormously increased, 

worsening the problem of the waste disposal (Avella et al., 2005).  

 

 

Figure 2.1 World Plastics Production since 1950 (Lopez et al., 2009) 

 

Conventional polymers such as polypropylene (PP) and polyethylene (PE) 

persist for many years after disposal. Built for the long haul, these polymers seem 

inappropriate for applications in which plastics are used for short time periods and then 
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disposed. Furthermore, plastics are often soiled by food and other biological substances, 

making physical recycling of these materials impractical and generally undesirable 

(Gross and Kalra, 2002). One major drawback of most polymers is the problem with 

their disposal. Since they may be resistive to degradation (depending on the polymer, 

additives, conditions etc), non-degradable polymers tend to accumulate in what is 

today’s most popular disposal system, the landfill (Kyrikou and Briassoulis, 2007). The 

growing interest in environmental impact of discarded plastics has directed research on 

the development of plastics that degrade more rapidly in the environment, leading to a 

complete mineralization or bioassimilation of the plastics (Avella et al., 2005). 

 Some commercially successful biodegradable plastics are based on chemical 

synthesis like polyglycolic acid, polylactic acid, polycaprolactone, and polyvinyl 

alcohol. Others are products of microbial fermentations like polyesters and neutral 

polysaccharides or are prepared from chemically modified natural products like starch, 

cellulose, chitin or soy protein (El-Naggar and Farag, 2010). 

 

2.2 Biodegradable polymers 

Biodegradable polymers are an alternative replacement for traditional 

petroleum-based non biodegradable polymers. It decreases the waste disposal problems 

created by plastics waste that become crucial nowadays (Avella et al., 2005). Rising oil 

prices helped to stimulate early interest in biodegradables in the 1970s, and concerns 

over the dwindling availability of landfill sites, environmental regulations, and 

increasing oil prices are reviving interest in biodegradable materials today (Mohanty et 

al., 2005).  

Biodegradable polymers may be defined as those which undergo microbially 

induced chain scission leading to photodegradation, oxidation, and hydrolysis, which 
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can alter the polymer during the degradation process. Another definition states that 

biodegradable polymers are capable of undergoing decomposition primarily through 

enzymatic action of microorganisms in to carbon dioxide (CO2), methane, inorganic 

compounds, or biomass in a specified period of time (Mohanty et al., 2002). 

Figure 2.2 shows classification of biodegradable polymers and they are 

classified into four families. Except for petrochemical product family, which is of fossil 

origin, most biodegradable polymers are obtained from renewable resources or biomass. 

The biomass product family is agro based polymers obtained from biomass by 

fractionation. The microorganisms and biotechnology families are polyesters, obtained, 

respectively by fermentation from biomass or from genetically modified plants and by 

synthesis from monomers obtained from biomass. The petrochemical products family 

are also polyesters but totally synthesized by petrochemical process (John and Thomas, 

2008). Blending two or more biodegradable polymers are also of interest to produce a 

new biopolymer designed for specific requirement (Mohanty et al., 2002).  

 

 

Figure 2.2 Classification of biodegradable polymers (Averous and Boquillon, 2004) 
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Biodegradability is not only a function of origin but also of its chemical 

structure and degrading environment. When a biodegradable material (neat polymer, 

blended product, or composite) is obtained completely from renewable resources, it may 

be termed as a green polymeric material. The life cycle of compostable biodegradable 

polymers is represented schematically in Figure 2.3. 

 

 

Figure 2.3 Life cycle of biodegradable polymers can maintain CO2 balance in the 

environment (Mohanty et al., 2005) 

 

2.3 Poly(lactic acid) (PLA) 

Poly(lactic acid) (PLA) belongs to the family of aliphatic polyesters commonly 

made from α-hydroxy acids, which include poly(glycolic acid) or poly(mandelic acid) 

(Agrawal et al., 2004, Soares, 2008). PLA is a rigid biodegradable thermoplastic, high-

strength, high-modulus polymer that can be made from annually renewable resources to 

yield articles for use in industrial packaging, in the agricultural field, or for the 

bioabsorbable medical device market. It is easily processed like polyolefin plastics such 
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as polypropylene (PP) and polyethylene (PE) by conventional processing methods such 

as injection molding, sheet extrusion, blow molding, thermoforming or fiber spinning 

(Oksman et al., 2003, Soares, 2008).  

PLA is degraded by simple hydrolysis of the ester bond. This reaction occurs 

spontaneously and does not require the presence of catalytic enzymes. When disposed 

of properly, PLA will hydrolyze to harmless, natural products in about six months 

(compared to 500 to 1000 years for conventional plastics such as polystyrene and 

polyethylene). It could be a technical and economic solution for the problem of the 

eventual disposal of the very large amount of plastic packaging used in the world 

(Soares, 2008).  

 

2.3.1 Production and synthesis of PLA 

The basic building block for poly(lactic acid) is lactic acid.  Lactic acid is one of 

the most important organic acids produced by lactic acid bacteria (LAB), discovered by 

Swedish scientist C.W. Scheele in 1780 from sour milk (Reddy et al., 2008). Lactic acid 

can be manufactured either by carbohydrate fermentation or chemical synthesis from 

petrochemical feedstock (Soares, 2008). The majority of the world’s commercially 

produced lactic acid is made by the bacterial fermentation of carbohydrates, using 

homolactic organisms such as modified and optimized strains Lactobacilli, which 

exclusively form lactic acid. The various types of carbohydrates that can be utilized in 

the fermentation depend on the particular strain. In general, most of simple sugars 

obtained from agricultural by products can be used, including: (i) glucose, maltose, and 

dextrose from corn or potato starch; (ii) sucrose from cane or sugar beet; and (iii) 

lactose from cheese whey. Along with carbohydrates, the organisms require proteins 

and other complex nutrients. These requirements are very species-dependent, so it is 
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typical to develop strains around the available nutrients, since these can add 

considerable cost to the process. High yield (up to 90% of weight of carbohydrate) 

commercial fermentation is usually conducted in a batch process, which takes three to 

six days to complete (Soares, 2008, Garlotta, 2001). The synthesis of lactic acid into 

high molecular weight poly(lactic acid) can follow three different routes of 

polymerization (Figure 2.4).  

 

 

Figure 2.4 Synthesis methods for high molecular weight PLA (Garlotta, 2001) 
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First route by direct condensation of lactic acid, because the direct condensation 

route is an equilibrium reaction, difficulties of removing trace amounts of water in the 

late stages of polymerization generally limit the ultimate molecular weight achievable 

by this approach. The second route is to collect, purify and ring-open polymerize of the 

cyclic lactide dimer to yield high molecular weight PLA (>100,000). Ring opening 

polymerization was first demonstrated by Wallace Carothers in 1932 but significantly 

high molecular weights were obtained only with improved lactide purification 

techniques developed by DuPont in 1954. The third and most recent method yields 

higher molecular weights (>300,000) and is polymerization by azeotropic dehydration 

of lactic acid with a catalyst under high temperatures and reduced pressures. The 

residual catalysts can cause problems during further processing, such as unwanted 

degradation, or in the case of medical applications, catalyst toxicity (Lunt, 1998, Soares, 

2008).  

 

2.3.2 Morphological characterization 

High molecular weight poly(lactic acid) is a colourless, glossy, stiff 

thermoplastic with properties similar to polystyrene (PS) (Kaplan, 1998). The 

amorphous PLA is soluble in most organic solvents such as tetrahydrofuran (THF), 

chlorinated solvents such as chloroform, benzene, and dioxane. Crystalline PLA is 

soluble in chlorinated solvents and benzene at elevated temperatures (Garlotta, 2001). 

Lactic acid (2-hydroxy propionic acid) is the simplest hydroxyl acid with an 

asymmetric carbon atom and exists in two optically active configurations (Figure 2.5) 

(Gupta and Kumar, 2007, Soares, 2008). The L-isomer is produced in humans and other 

mammals, whereas both the D- and the L-enantiomers are produced in bacterial 

systems.  
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Figure 2.5 L- and D- enantiomers of lactic acid. Note the difference in location of the 

hydroxyl group in the chiral carbon (Soares, 2008) 

 

Hence, when polymerized, poly(lactic acid) assumes two forms: poly(L-lactic), 

poly(D-lactic acid) (Figure 2.6). Both can coexist in the same chain, either in a random 

or in a block copolymer, poly(D,L-lactic acid). Poly(levo-lactic acid) and poly(dextro-

lactic acid) are highly crystalline with identical chemical and physical properties, while 

poly(D,L-lactic acid) or poly(meso-lactic acid), a racemic polymer obtained from an 

equimolar mixture of D- and L-lactic acid, is amorphous, with weak mechanical 

properties. The involvement of D- and L- units in the sequences of PLLA and PDLA, 

gives a profound effect on their thermal and mechanical properties. Generally, the 

increased stereo-isomeric ratio decreases the crystallinity and accordingly the melting 

temperature is lower. On the other hand, a 1:1 polymer blend of PLLA and PDLA 

undergoes formation of a stereo complex that shows quite different properties from 

those of PLLA or PDLA (Urayama et al., 2002).  

 

Figure 2.6 Isotactic poly(lactic acid). Either the L- or D- enantiomers yield stereoregular 

isotactic chains which are prone to stack in an ordered structure (Soares, 2008) 
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2.3.3 Mechanical and thermal properties of PLA  

PLA is receiving commercial interest because its mechanical properties making 

it a good alternative to many currently used commodity polymers including 

polypropylene (PP), polyethylene (PE) and poly(ethylene terepthlate) (PET); 

unfortunately, PLA is rigid and brittle (Sawpan et al., 2009, Baiardo et al., 2003). The 

most common mechanical properties found in the literature for poly(lactic acid) are 

tensile strength, Young’s modulus, and elongation at break  following ASTM methods 

D638 or D882 (tensile tests for dumbbell shapes and thin films respectively). The 

mechanical behavior is highly dependent not only on gross quantities of poly(lactic 

acid) such as molecular weight and degree of crystallinity, but also its microstructure 

seems to play an extremely important role in the mechanisms of deformation. PLA has 

good mechanical properties, with tensile strength, Young’s modulus and elongation at 

break in the range of 55 to 60 MPa, 3.2 to 3.7 GPa and 2.5% to 6%, respectively 

(Baiardo et al., 2003, Jiang et al., 2005, Soares, 2008). PLA is a partially crystalline 

polymer with a glass transition temperature (Tg) in the range of 55 to 65˚C and a 

melting temperature (Tm) around 160 to 170˚C (Baiardo et al., 2003, Li et al., 2009). 

PLA, however, is too stiff and brittle for room-temperature applications as its glass 

transition temperature (from 55 to 65˚C) is well above room temperature. 

 

2.3.4 Limitations  

A significant material issue limiting the broader adoption of PLA in packaging is 

its brittleness (with less than 10% elongation at break) and thus poor impact properties. 

Due to this, cracking and tearing of the polymer can occur during processes where force 

is placed on the polymer during manufacturing (Byrne et al., 2009, Murariu et al., 

2008a), there is a general interest to formulate new grades with improved flexibility, 
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ductility, higher impact properties and toughness, while the tensile strength 

performances are maintained at the optimal level required by a given application,  which 

would eliminate the processing and handling deficiencies, precedes the possibility for 

widespread utilization and substitution for commodity plastics (Murariu et al., 2008b).  

 

2.3.5 Toughen PLA  

2.3.5.1 Copolymerizations 

The brittleness of PLA can be modified by copolymerization of lactic acid with 

other monomers such as ε-caprolactone, glycolide, trimethylene carbonate, ethylene 

glycol, etc. (Jiang et al., 2005, Kricheldorf, 2001, Rasal et al., 2010).  Jean et al. (2003) 

study the effect of copolymerization of lactic acid monomer with ε-caprolactone; with 

copolymerization both PLLA-PCL multiblock copolymers and PLLA-PCL-PLLA 

triblock copolymer were found to have good mechanical properties and to behave like 

thermoplastic elastomer. Hiljanen-Vainio et al. (1996) showed that racemic-PLA 

copolymer containing 1% caproyl units was hard and brittle; increasing the caproyl 

units by a few percent decreased the modulus and substantially increased the elongation. 

Nakayama et al. (2007) synthesized multiblock poly(L-lactide)-co-poly(ε-caprolactone) 

with elongation at break three times higher than pure PLLA.  

The application of PLA in the field of commodity plastics requires a dramatic 

reduction in the costs of this polymer, as well as reliable and controllable technical 

processes. Because none of the aforementioned PLA copolymers are commercially 

available at this time, blending with different polymers and plasticizers is probably the 

most extensively used methodology to improve PLA mechanical properties (Jiang et al., 

2005).  
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2.3.5.2 Blending with polymers  

Blending PLA with other polymers (biodegradable and non-biodegradable) 

provides a more-practical and economic way of toughening PLA. Blending PLA with 

other polymers can substantially modify the mechanical and thermal properties, 

degradation rate, and permeability (Rasal et al., 2010, Jiang et al., 2005). The blending 

of PLA with polymers to improve impact strength has however been widely reported. 

For example the impact strength of PLA has been improved through blending with 

poly-ε-caprolactone (Semba et al., 2007), starch (Martin and Avérous, 2001), 

poly(ethylene oxide) (Heald et al., 2002) and poly(hydroxyl butyrate) (Rychter et al., 

2006). Most of these blends are immiscible and compatibilizers are needed to improve 

their compatibility. For example PLA and starch are two promising  candidates for 

biodegradable polymer blends. However, hydrophobic PLA and hydrophilic starch are 

thermodynamically immiscible leading to poor adhesion between the two components, 

resulting in poor and irreproducible performance. Two approaches are usually used to 

improve blend compatibilization (Ajji and Utracki, 1996). The  first approach is to 

introduce a third component into the polymer system, reducing the interfacial energy, 

improving dispersion, and consequently enhancing  adhesion between binary polymer 

phases. A block copolymer, for instance, is often used. The second method is reactive 

blending. In principle, this approach  promotes chemical reactions between the two 

polymers in a molten state, often by introducing either a reactive third component with 

appropriate functional  groups or a catalyst. The second approach is  generally more 

economical than the first (Zhang and Sun, 2004a).  However, although the impact 

strength is improved due to blending with these polymers, there is a related reduction in 

tensile strength (Martin and Avérous, 2001). Jiang et al. (2005) study the effect of 

blending of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) 
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(PBAT) and found that impact strength was increased from 2.6 kJ/m2 for neat PLA to 

4.4 kJ/m2 for PLA-20 % PBAT. Figure 2.7 shows micrographs of impact-fractured 

surfaces of blends with different PBAT contents. Micrographs of the impact-fractured 

surfaces show more evidences of ductile fractures as more and longer fibrils can be 

observed from the surfaces with the increase in PBAT content. Coupled with this 

improvement in the impact strength, however, there is an associated reduction in tensile 

strength and modulus of the PLA/PBAT blends with increasing PBAT content. Tensile 

strength decreased by 25% from 63 (neat PLA) to 47 MPa (20% PBAT) while modulus 

decreased by 24% from 3.4 (neat PLA) to 2.6 GPa (20% PBAT).  

 

 

Figure 2.7 SEM pictures of the impact-fractured surfaces of blends with different PBAT 

contents. (a) Neat PLA, (b) 5% PBAT, (c) 10% PBAT, (d) 15% PBAT and (e) 20% 

PBAT (Jiang et al., 2005) 
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2.3.5.3 Blending with plasticizers  

A large number of investigations have been made to improve PLA properties via 

plasticization but due to a great number of variables, e.g. nature of PLA matrix, type, 

and optimal percentage of plasticizer, thermal stability at the processing temperature, 

etc., unfortunately sometimes poor mechanical properties have been reported. In this 

context, it is important to note that unsuitable choice of the plasticizer can lead to PLA 

mixture that is not miscible, to migration of the plasticizer, to degradation of the 

polyester matrix and/or of the plasticizer along processing, etc. Typically, amounts from 

10 to 20 wt% plasticizers are required to provide a substantial reduction of the glass 

transition temperature (Tg) of the PLA matrix and affect mechanical properties (Murariu 

et al., 2008b). The preferred plasticizer for PLA can be any biodegradable product, 

sufficiently non-volatile, with a relatively low molecular weight to produce a desired 

decrease in Young’s modulus and increase in impact strength. It is well known that the 

monomer, lactide itself, is considered as one of the best plasticizers for PLA (Jacobsen 

and Fritz, 1999), but it has the disadvantage to migrate very rapidly to the polymer 

surface. Excessive volatility can lead to fouling of the process equipment, which is 

observed when PLA with high content of lactide is processed. The addition of 

plasticisers to PLA has been widely reported, with the most common studied including 

glucose monoesters and partial fatty acid esters (Jacobsen and Fritz, 1999), lactic acid 

oligomers (Martin and Avérous, 2001), glycerol esters (Oksman et al., 2003, Ljungberg 

et al., 2003), citrates (Ljungberg et al., 2003, Baiardo et al., 2003, Ljungberg and 

Wesslén, 2005), citrate oligoesters (Ljungberg and Wesslén, 2005), citrate oligomers 

(Ljungberg and Wesslén, 2003) and even higher molecular weight plasticizers like 

poly(ethylene glycol) (Baiardo et al., 2003, Paul et al., 2003, Hu et al., 2003), 

poly(propylene glycol) (Kulinski et al., 2006), etc.   
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These plasticisers have been shown to be effective in reducing the brittle 

behavior of PLA. Coupled with this improvement in the mechanical properties, however 

there is an associated reduction in glass transition temperature (Tg). As the glass 

transition temperature of PLA is low, in the range of 55 to 65˚C, any reduction limits 

the application of the polymer further (Baiardo et al., 2003, Byrne et al., 2009). Murariu 

et al. (2008b) reduced the PLA brittle behavior and improved its ductility, by selecting 

three plasticizers, bis(2-ethylhexyl) adipate (DOA), glyceryl triacetate (GTA), and 

tributyl O-acetylcitrate (TBAC). The increase in (DOA) plasticizer fraction up to 20% 

leads to a surprisingly 11-fold increase of impact strength (Izod), while the fracture is 

characterized by a ‘‘hinge break’’, where 20% of GTA results in a sample that do not 

initiate any breakage with respect to neat PLA and PLA-20% TBAC.  

In general, it has been accepted that the addition of a reasonable amount of 

plasticizer (e.g. 15–20 wt%) into PLA matrix leads to improved flexibility properties 

whereas for smaller percentages, especially up to 10 wt%, some ‘‘antiplasticizing’’ 

effects in relation to the mechanical properties can be recorded (Jacobsen and Fritz, 

1999).  On the other hand, the choice of plasticizer used as a modifier for PLA is limited 

by the legislative or technical requirements of the application (Ljungberg and Wesslén, 

2005) and in this context its selection becomes more difficult. The nature of the 

plasticizer can strongly influence the final properties of the products, where the impact 

and/or crystallization properties are required to be higher than a critical value (e.g. in 

injection-molded parts, plastic containers, fibers, films, etc.).  

 

2.3.6 Toughening mechanisms 

Several studies have reported occurrence of various energy-dissipative 

mechanisms locally in a stressed specimen before catastrophic crack development (Li 
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and Shimizu, 2007, Jiang et al., 2005, Yin et al., 2009). Mechanisms such as crazing, 

cavitation, bond rupture, crack growth, plastic and viscoelastic deformations, etc., 

relieve stresses and consequently reduce the stored elastic energy. High strength and 

toughness therefore, result primarily from special combination of these mechanisms that 

retard or arrest the growth of cracks (Smith, 1971).  

Using fractured surfaces of notched Izod impact tested samples as a means of 

differentiating brittle to ductile fractures, previous studies reported noticeable whitening 

only occurs at the origin of the notched tip for brittle fracture, while ductile fracture 

involves all of the material around the fractured surface in stress whitening and forms a 

yielding zone (Yin et al., 2009). Rubber modification provides an effective method to 

improve the impact strength of a rigid polymer matrix (brittle to ductile transition). The 

main role of the dispersed rubber particles is to induce an overall deformation 

mechanism, rather than a localised one (Loyens and Groeninckx, 2003). In rubber-

toughened plastic systems, two types of cavitation induced by impact or tensile tests are 

discerned, which includes internal cavitation in the rubber domains for the blends with 

strong interfacial adhesion and debonding cavitation between the interfaces with 

insufficient interfacial adhesion (Li and Shimizu, 2007). The dispersed rubber particles 

are likely to cavitate and/or debond upon the application of a load. The voiding of the 

rubber phase leads to a relief of the triaxial stress state ahead of the notch or crack, thus 

creating a stress state beneficial for the initiation of multiple matrix shear yielding 

(Loyens and Groeninckx, 2003).   

The criteria for rubber cavitation have been studied by Dompas and Groeninckx 

(1994) and also by Lazerri and Bucknall (1993). The cavitation ability of the rubber 

particles was found to depend on the volume strain imposed upon sample loading. 

Figure 2.8 illustrates the different steps involved during the event of rubber cavitation. 
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The model explains the increasing resistance against cavitation with decreasing rubber 

particle size. 

 

Figure 2.8 Schematic presentation of the steps involved in rubber cavitation (Loyens 

and Groeninckx, 2003) 

 

Bucknall et al. (2000) have developed a dynamic mechanical thermal 

spectroscopic technique (DMTS) that allows investigating cavitation as a separate 

process during the early stages of deformation in the absence of shear yielding. 

Generally, the mechanisms causing the damage during brittle fracture have been 

prescribed as mainly crazing or microcracks (leading to stress whitening) and cavitation 

(Liang and Li, 2000). Crazing, cavitation, shear banding, crack bridging, and shear 

yielding reportedly occur as important energy dissipation processes involved in the 

impact fracture of toughened polymer systems (Jiang et al., 2005). 

PLA has strength and modulus comparable to those of commercially available 

engineering polymers. However, PLA exhibits brittle fracture behavior, especially under 

impact loading conditions, and therefore, it is important to examine the fracture 

behavior using PLA specimens that are notched or cracked (Arakawa et al., 2006). Only 

a few experimental studies examining the fracture behavior of PLA have been published 

(Arakawa et al., 2006). Park et al. (2004) studied effect of annealing on the fracture 

toughness of poly(lactic acid), Park et al. (2006)  studied effect of crystallinity and 
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loading-rate on mode I fracture behavior of poly(lactic acid) and Arakawa et al. (2006) 

studied the tensile fracture behavior of a biodegradable polymer, poly(lactic acid).   

 

2.3.7 Degradation of PLA  

PLA can be completely degraded under compost conditions. Although it has a 

hydrophobic characteristic (non-water soluble), microbes in marine environments can 

degrade it into water and carbon dioxide (Briassoulis, 2004), and hydrolyzes more 

promptly than polyhydroxyalkanoates in anaerobic condition (Moura, 2006). The first 

step of PLA degradation does not require microbial action and is characterized by the 

cleavage of the ester linkages to lactic acid by a temperature and humidity-enhanced 

process (Figure 2.9) (Agarwal et al., 1998, Lunt, 1998, Ho and Pometto III, 1999). Then 

lactic acid is biodegraded by microbes into carbon dioxide, methane, and water 

(Sinclair, 1996). The complete degradation of PLA by hydrolysis in the environment 

takes from several months to two years in a composting condition depending on its 

molecular weight, moisture and temperature, which is relatively fast compared to 500 to 

1,000 years for petroleum-based plastics such as polystyrene and polyethylene (Datta et 

al., 1995). 

The biodegradability of PLA depends on the environment to which it is exposed. 

Suyama et al. (1998) reported that 39 bacterial strains of class Firmicutes and 

Proteobacteria isolated from soil environment were capable of degrading aliphatic 

polyesters such as poly(hydroxyl butyrate) (PHB), poly(ε-caprolactone) (PCL) and 

poly(butylene succinate) (PBS), but no PLA-degrading bacteria were found. These 

results showed that PLA-degrading microorganisms are not widely distributed in the 

natural environment and thus, PLA is less susceptible to microbial attack in the natural 

environment than other microbial and synthetic aliphatic polyesters. It was also found 
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out that among the 41 genera (105 strains) of actinomycetes from the type culture, the 

PLA degraders phylogenetically belonged to Pseudonocardiaceae family and related 

genera, including the genera of Amycolatopsis, Lentzea, Kibdelosporangium, 

Streptoalloteichus, and Saccharothrix (Suyama et al., 1998, Tokiwa and Calabia, 2007). 

Out of 14 fungal strains tested, only two strains of F. moniliforme and one strain of 

Penicillium roqueforti could assimilate lactic acid and racemic oligomer products of 

PLA but no degradation was observed on PLA (Tokiwa and Calabia, 2006, Tokiwa and 

Calabia, 2007).  

 

 

Figure 2.9 Hydrolytic degradation in PLA  (Lunt, 1998) 

 

2.3.7.1 Natural weathering  

Natural weathering or environmental degradation is an acceptable method of 

acquiring data about material performance under the influence of atmospheric factors 

such as temperature, humidity, and solar radiation or UV radiation, as well as seasonal 

variations and environmental pollutants. It represents the overall effects of the factors as 

well as the interplay of those parameters (Ismail and Awang, 2008). As the outdoor 

applications of plastics become more widespread (e.g., disposable plates, cups, cutlery, 
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and drinking straws; agricultural mulch films; packaging bags and films; containers for 

liquid foods; loose fill packaging; and golf tees) it is important to have an understanding 

of weathering effects on their material properties (Ghorpade et al., 2001). The durability 

of its products against weathering, particularly UV light becomes of concern.  

UV exposure can cause changes in the surface chemistry of the materials, also 

known as photodegradation, photodegradation results in a serious deterioration in 

mechanical properties, and color change during service life making the products 

aesthetically unappealing (Matuana et al., 2001). There are a few reports on UV 

degradation of PLA. Ho and Pometto III. (1999) and Lee et al. (1989) described 

separately action of UV and relative humidity (RH) on PLA. Zaidi et al. (2010) 

investigated the degradation of polylactide (PLA)/Cloisite 30B nanocomposites under 

natural weathering as a function of clay loading (1, 3 and 5 wt%) for up to 130 days, 

The results showed that the photo-oxidation mechanism of PLA was not modified in the 

presence of Cloisite 30B, but only the degradation rates were accelerated. The decrease 

of the weight-average molecular weight, and the number-average molecular weight 

associated with an enhanced polydispersity of the nanocomposite samples indicated that 

chain scission was the most prominent phenomenon in natural weathering. The thermal 

degradation of the PLA was faster in the presence of clay. Finally, the weathering effect 

on the morphology of exposed samples observed by SEM revealed that the fractured 

surfaces exhibited many voids and cracks, these defects were much more pronounced 

for the PLA nanocomposites. 

 

2.3.7.2 Soil burial  

The degradation of PLA has been studied several years ago, but understanding 

on this subject is still inadequate. This is clearly evidenced by lack of information on the 
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mechanisms involved and the microorganisms associated with the degradation. 

Polymers are degraded in the soil by the action of a wide variety of microorganisms. 

Therefore, the ecological and taxonomic studies on the abundance and diversity of 

polymer-degrading microorganisms in the different environment are necessary because 

they are responsible for the degradation of plastic materials (Tokiwa and Calabia, 2006). 

In general, polymer degradation takes place through the scission of the main chains or 

side chains of polymers. Different degradation mechanisms whether chemical or 

biological can be involved in the degradation of biodegradable polymers. A 

combination of these mechanisms can also happen at some stage of degradation.  

The rates of biodegradation of polymers are influenced by several factors 

including molar mass, chemical structure, stereochemistry, hydrophilic/hydrophobic 

balance and chain mobility (Rizzarelli et al., 2004). Lately, crystallinity has been 

singled out as the factor that affects mostly enzymatic degradation of polymers (Nagata 

et al., 1998, Montaudo and Rizzarelli, 2000). Several reports showed that the crystalline 

part of the PLA was more resistant to degradation than the amorphous part, and the rate 

of degradation decreases with an increase in crystallinity (Tsuji and Miyauchi, 2001). 

Calmon et al. (1999) found that PLA films had weight losses varying from 0 to 100% 

after burial in soil for 2 years depending on PLA type and location. Osawa et al. (2000) 

found that the molecular weight of PLA in PLA/starch 70/30 moldings decreased by 

about 60% after burial in soil for 45 days versus 10% for PLA alone. 

 

2.3.8 Applications of PLA  

There have been an increasing number of studies on the use of high molecular 

weight PLA in the biomedical field such as drug delivery systems, including fertility 

and cancer control and surgical repair materials such as fracture pins and sutures (Sheth 
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et al., 1997, Arakawa et al., 2006).  PLA is a commercially feasible packaging polymer 

as a replacement for petroleum based polymers application such as meat packaging, 

milk cartons, beverage bottles and cosmetic containers which constitute a large part of 

typical household waste and the use of biodegradable PLA reduces the environmental 

impact associated with packaging disposal (Butterwick and Lowe, 2009, Park et al., 

2006, Byrne et al., 2009). Figure 2.10 shows some application of PLA in packaging 

industry.  

 

  

 
 

Figure 2.10 PLA as packaging materials 

 

 

 




