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KAJIAN TERHADAP NANO-PES ARGENTUM-KUPRUM SEBAGAI 

BAHAN LAMPIR-DAI UNTUK APLIKASI SUHU TINGGI 

 

ABSTRAK 

 Satu nano-pes argentum-kuprum (Ag-Cu) yang dirumuskan dengan 

mencampurkan nanopartikel Ag dan Cu dengan penambah organik (pelekat resin, 

terpineol dan ethylene glycol) telah dihasilkan bagi diaplikasikan sebagai bahan 

lampir-dai suhu tinggi. Pelbagai peratus berat nanopartikel Cu (20-80 wt%) telah 

ditambahkan ke dalam nano-pes Ag-Cu, diikuti oleh pensinteran di udara terbuka 

pada suhu 380°C selama 30 min tanpa bantuan tekanan luar, untuk mengkaji kesan 

terhadap sifat-sifat fizikal, elektrikal, terma dan mekanikal. Nanopes tulen Ag dan 

Cu turut disediakan untuk tujuan perbandingan. Keputusan belauan sinar-X 

menunjukkan fasa Ag97Cu3, Ag1Cu99 dan CuO terbentuk dalam nano-pes Ag-Cu 

tersinter. Kajian menunjukkan bahawa keliangan didalam nano-pes Ag-Cu tersinter 

meningkat dengan peningkatan kandungan Cu. Kehadiran keliangan tersebut 

membuktikan kesannya untuk mengurangkan ketumpatan, saiz bijian, keberaliran 

elektrik, keberaliran haba dan pekali pengembangan haba (CTE) bagi nano-pes Ag-

Cu tersinter. Walaupun keliangan turut menjejaskan kekerasan, kekukuhan dan 

modulus Young nano-pes Ag-Cu tersinter, namun aliran meningkat telah direkodkan 

dengan penambahan kandungan Cu. Secara keseluruhan, nano-pes Ag-Cu dengan 

kandungan 20 wt% Cu menunjukan kombinasi terbaik bagi keberaliran elektrik 

[2.27 x 10
5
 (Ω-cm)

-1
] dan haba [159 W/m-K]. Nilai-nilai tersebut didapati lebih 

tinggi daripada kebanyakan sistem bahan lampir-dai. CTE yang rendah [13 x 10
-6

 / 

K] yang berkait dengan nano-pes Ag-Cu tersebut memanfaatkan disebabkan ia 

mengelakkan pembentukan tekanan haba serius di antara dai dan substrat. Selain itu, 
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nano-pes Ag-Cu telah menunjukkan suhu lebur 955°C, yang membolehkan nano-pes 

Ag-Cu dapat dipertimbangkan untuk diaplikasikan pada suhu tinggi. Bagi kajian 

sifat ikatan terhadap persalutan logam, salutan Ag and Au pada substrat Cu masing-

masing telah menunjukkan kekuatan ikatan tertinggi (52.6 MPa) dan terendah (34.4 

MPa) bagi nano-pes Ag-Cu. Nilai kekuatan ikatan didapati berkait rapat dengan 

mikrostruktur di antara nano-pes Ag-Cu dan lapisan salutan logam pada substrat. 

Akhir sekali, untuk mengaplikasikan nanopes Ag-Cu sebagai bahan lampir-dai pada 

suhu tinggi, nano-pes Ag-Cu telah digunakan untuk melampirkan dai silikon karbida 

(SiC) pada substrat yang disaluti oleh Ag atau Au. Keseluruhan struktur ikatan 

tersebut telah lulus ujian penuaan haba pada 770°C, mikrostruktur yang telah 

mengalami proses penuaan haba menunjukkan bahawa nano-pes Ag-Cu merekat 

dengan baik pada dai SiC dan substrat yang disaluti Ag. Namun, perekatan nano-pes 

tersebut adalah kurang memuaskan pada dai SiC dan substrat yang disaluti Au. 
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INVESTIGATIONS ON SILVER-COPPER NANOPASTE AS DIE-ATTACH 

MATERIAL FOR HIGH TEMPERATURE APPLICATIONS 

 

ABSTRACT 

 A silver-copper (Ag-Cu) nanopaste formulated by mixing Ag and Cu 

nanoparticles with organic additives (i.e., resin binder, terpineol and ethylene glycol) 

which is meant for high-temperature die-attach applications has been developed. 

Various weight percent of Cu nanoparticles (20-80 wt%) has been loaded into the 

Ag-Cu nanopaste, followed by sintering in open air at temperature of 380°C for 30 

min without the need of applied external pressure. The physical, electrical, thermal 

and mechanical properties were investigated. Both pure Ag and Cu nanopastes were 

also prepared for comparison purposes. X-ray diffraction results showed that 

Ag97Cu3, Ag1Cu99, and CuO phases were formed in sintered Ag-Cu nanopaste. 

Studies revealed that the porosity of sintered Ag-Cu nanopaste increased with an 

increase of Cu loading, where the presence of porosity has shown its effect in 

decreasing of density, grain size, electrical conductivity, thermal conductivity and 

coefficient of thermal expansion (CTE). Although the porosity has also affected the 

hardness, stiffness and Young’s modulus of sintered Ag-Cu nanopaste, yet an 

increasing trend has been recorded for aforementioned properties, with the 

increment of Cu loading. Overall, Ag-Cu nanopaste with 20 wt% of Cu loading has 

offered the best combination of electrical [2.27 x 10
5
 (Ω-cm)

-1
] and thermal 

conductivity [159 W/m-K], where these values are higher than most of the die-attach 

systems. The low CTE [13 x 10
-6

/K] that associated with Ag-Cu nanopaste was good 

to prevent severe buildup of thermal stress between die and substrate. The Ag-Cu 

nanopaste has demonstrated a melting temperature of 955°C, which enables it to be 



xxviii 
 

considered for high-temperature applications. For metallization and bonding 

attribute studies, Ag and Au coatings on Cu substrate have displayed the highest 

(52.6 MPa) and the lowest (34.4 MPa) bonding strength for Ag-Cu nanopaste, 

respectively. The values of bonding strength were found to have a close relationship 

with the interface microstructure between Ag-Cu nanopaste and metallization layer 

on the substrate. Finally, to realize Ag-Cu nanopaste as a high-temperature die-

attach material, the Ag-Cu nanopaste was used to attach a silicon carbide (SiC) die 

on a substrate with either Ag or Au coating. The entire bonding structure has passed 

a three-cycle thermal aging test at 770°C. The thermal-aged interface microstructure 

has shown that the Ag-Cu nanopaste was well adherence to SiC die and substrate 

with Ag coating, but poor adherence to SiC die and substrate with Au coating. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Theoretical background 

 

 The demand of electronic devices that could be operated at high-temperature 

(> 500°C) is continually increasing for years. This is mainly due to the advancement 

of technology in various industries such as automotive, aviation, well-logging, 

nuclear power plant and space exploration. These industries require electronic 

devices that must not only be able to survive upon expose to high-temperature, but 

they must also be able to function under such high-temperature condition. For 

instance, the typical high-temperature applications for those industries are: (i) brake 

and exhaust gas sensors for automotive (300-1000°C) (Johnson et al., 2004; Spetz et 

al., 1999), (ii) turbine and gas sensors for aviation (~600°C) (Dreike et al., 1994; 

Hunter et al., 2004; Sharp, 1999b), (iii) geothermal sensor for well-logging (~600°C) 

(Neudeck et al., 2002; Sharp, 1999b; Watson and Castro, 2012), (iv) nuclear 

radiation detector and nuclear reactor for nuclear plant (700-1000°C) (Dreike et al., 

1994; Kim et al., 2011; Sedlackova et al., 2013), and (v) transmitter, antenna and 

electromechanical devices for space exploration (> 500°C) (Sutton, 2001). For such 

demanding applications, there is an evolution of electronic device, which 

transforming from silicon (Si)-based to silicon carbide (SiC)-based, due to the 

former could only operate at temperature up to 250°C. 

 

 SiC-based electronic device has documented its success to operate at a 

temperature exceeding 500°C. This is mainly attributed to the wide band gap 
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semiconductor properties (3.26 eV) and high breakdown field strength (3.2 MV/cm) 

that associated with SiC semiconductor. These properties allow SiC semiconductor 

to be operated at high-temperature without leakage of current (Chin et al., 2010). 

Nevertheless, to take full advantages of SiC-based electronic device, there is a need 

to develop an electronic packaging, which can use for high-temperature applications. 

The main development areas of electronic packaging include die-attach material, 

substrate material, wire bonding material, and encapsulation material. Of these, die-

attach material has gained particular concern as it is an integral part that provides 

connection between the SiC device and the substrate.  

 

 Ideally, a die-attach material for SiC device should demonstrate a melting 

temperature that is higher than 500°C, which allows it to be operated in a high-

temperature environment. It should also demonstrate a low processing temperature, 

as well as ease to be applied for mass production. Besides, another four main 

properties required are: electrical and thermal conductivities, coefficient of thermal 

expansion (CTE), and bonding strength. These properties must display values that 

are comparable to or superior than the benchmark requirements that listed in Table 

1.1. 

 

Table 1.1: Benchmark requirements of various die-attach properties for SiC device 

(Abtew and Selvaduray, 2000; Bai et al., 2006b; Chin et al., 2010; Chung, 1995; 

Haque et al., 2012; Lu et al., 2004; Manikam and Cheong, 2011). 

Property Benchmark requirement 

Melting temperature > 500°C 

Electrical conductivity ≥ 0.71 x 10
5
 (Ω.cm)

-1
 

Thermal conductivity ≥ 51 W/m-K 
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Table 1.1: Continued. 

Property Benchmark requirement 

Bonding strength ≥ 12.5 MPa 

Coefficient of thermal expansion Close to the die and the substrate 

  

1.2 Problem statement 

 

 Over the past decade, conductive adhesives (Gao et al., 2014; Gomatam and 

Mittal, 2008; Lahokallio et al., 2014; Li and Wong, 2006; Yim et al., 2008) and tin 

(Sn)-based solders alloys (lead-bearing and lead-free) (Abtew and Selvaduray, 2000; 

Koo et al., 2014; Kotadia et al., 2014; Liu et al., 2008; Wu et al., 2004; Zeng et al., 

2012; Zeng and Tu, 2002; Zhang et al., 2012) have been widely used for level-one 

interconnection, namely die-attach material, which serves to attach a semiconductor 

die on a substrate. The wide use of conductive adhesive and Sn based solder alloys 

are mainly due to the low cost and acceptable electrical conductivity [0.01-0.71 x10
5
 

(Ω-cm)
-1

] and thermal conductivity [1-66 W/m-K] (Abtew and Selvaduray, 2000; 

Calame et al., 2005; Gao et al., 2014; Guan et al., 2010; Kisiel and Szczepański, 

2009; Kotadia et al., 2014; Lewis and Coughlan, 2008; Navarro et al., 2012; 

Suganuma et al., 2009). However, with the recent development of SiC device that 

could be operated at temperature exceeding 500°C (Manikam and Cheong, 2011), 

conductive adhesive and Sn based solder alloys that melt at a temperature below 

315°C (Abtew and Selvaduray, 2000; Kotadia et al., 2014; Lahokallio et al., 2014; 

Wu et al., 2004; Zeng and Tu, 2002) can no longer meet the operating temperature 

requirement. The challenge is thus driven to seek a die-attach material that can be 

operated at temperature higher than 500°C. 
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 Bismuth (Bi) (Kim et al., 2014; Shi et al., 2010; Song et al., 2007a; Song et 

al., 2006; Spinelli et al., 2014; Wang et al., 2014b), gold (Au) (Bazin et al., 2014; 

Chidambaram et al., 2012; Ding et al., 2013; Huang et al., 2013; Lau et al., 2013; 

Zhu et al., 2014), and zinc (Zn) (Haque et al., 2012; Haque et al., 2010; Kim et al., 

2009a; Shimizu et al., 1999) based solder alloys are next being proposed as 

alternative solutions. Of these, Bi based solder alloys have generally displayed poor 

electrical conductivity [0.02-0.12 x10
5
 (Ω-cm)

-1
] (Kim et al., 2014; Song et al., 

2007a; Song et al., 2006), poor thermal conductivity [7-11 W/m-K] (Lalena et al., 

2002; Tschudin et al., 2002) and moderate melting point [262-361°C] (Lalena et al., 

2002; Spinelli et al., 2014; Wang et al., 2014b), which are inadequate to be 

considered as alternative solutions. Au and Zn based solder alloys, although, have 

displayed high thermal conductivity [27-110 W/m-K] (Bazin et al., 2014; Kim et al., 

2009a; Kisiel and Szczepański, 2009; Suganuma et al., 2009), their electrical 

conductivity [0.34-0.65 x10
5
 (Ω-cm)

-1
] (Bazin et al., 2014; Lau et al., 2013) and 

melting point [280-383°C] (Bazin et al., 2014; Kim et al., 2008; Kim et al., 2009c; 

Lau et al., 2013; Lee et al., 2005; Sheen et al., 2002; Weng et al., 2013) are still 

lower than the benchmark values (Table 1.1), making them failed to be considered 

as suitable die-attach materials for SiC device. Au-nickel (Ni), with its high melting 

point of 980°C, is an exceptional solder alloy that meets the operating temperature 

requirement (> 500°C) of SiC device, but its high soldering temperature at 980°C 

has also become a drawback (Kirschman, 1999). Two new die-attachment 

techniques, namely inter-diffusion bonding of metal film and sintering of metal 

paste, are subsequently being introduced to overcome the weakness (i.e., high 

soldering temperature) that is associated with Au-Ni solder alloy. For instance, Au-

indium (In) (Mustain et al., 2010; Welch and Najafi, 2008) and silver (Ag)-In 
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(Chuang and Lee, 2002; Mustain et al., 2010; Wu and Lee, 2013) are particular die-

attach materials that utilized inter-diffusion bonding technique to form a joint 

between metal films at temperature of 206 to 210°C with pressure of 40 to 80 psi. 

Meanwhile, Ag micropaste (Zhang and Lu, 2002) (i.e., a mixture of micro-sized 

metal particles and organic additives) and copper (Cu) micropaste (Kahler et al., 

2012b) are particular die-attach materials that formed a joint by sintering the 

micropaste at temperature of 250°C with pressure of 40 MPa. Overall, the advantage 

of these die-attachment techniques is able to process at a moderate temperature 

(206-250°C), yet the joint formed could be operated at temperature exceeds 495°C 

(Kahler et al., 2012b; Mustain et al., 2010; Welch and Najafi, 2008; Wu and Lee, 

2013; Zhang and Lu, 2002). On the other hand, application of pressure during the 

process is one of the disadvantages of these die-attachment techniques, which could 

complicate the manufacturing process and with slight irregularities during 

application of pressure may lead to cracking of both the die and the substrate 

(Kahler et al., 2012b; Mustain et al., 2010; Welch and Najafi, 2008; Wu and Lee, 

2013; Zhang and Lu, 2002). 

 

 In recent years, a strategy of reducing the size of metal particle in metal paste, 

from micron to nano, has been introduced, which it is named as nanopaste (i.e., a 

mixture of nano-sized metal particles and organic additives). The reduction of 

particle size aims to increase the chemical driving force of metal particle and thus 

contributes to eliminate the application of pressure during sintering. Ag nanopaste 

(Bai et al., 2007a; Bai et al., 2007b; Bai et al., 2005; Bai et al., 2006b; Chen et al., 

2008; Lu et al., 2014; Lu et al., 2009; Mei et al., 2011b, 2011c; Yu et al., 2009; 

Zheng et al., 2014) and Cu nanopaste (Krishnan et al., 2012; Nishikawa et al., 2011; 
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Yamakawa et al., 2013) are the leading candidates of this strategy, where they could 

be sintered at temperature of 280-400°C without the need of applying any pressure 

during sintering. Positive results were obtained for these sintered nanopastes, 

namely: (i) no existent of die-shifting issue as the nanopaste does not undergo 

liquid-state transformation during sintering (Bai et al., 2007a; Bai et al., 2007b; 

Krishnan et al., 2012); (ii) high electrical [2.50-2.60 x10
5
 (Ω-cm)

-1
] and thermal 

conductivity [200-240 W/m-K] (Bai et al., 2005; Bai et al., 2006b; Lu et al., 2004; 

Mei et al., 2012; Zheng et al., 2014); (iii) high bonding strength [2-54 MPa] could 

be attained with atomic inter-diffusion between the nanopaste and the metallization 

layer on a die or substrate (Bai et al., 2007b; Nishikawa et al., 2011; Yamakawa et 

al., 2013); (iv) lower Young’s modulus was detected for sintered nanopaste as 

compared to bulk materials and solder alloys; this is important to reduce the build-up 

of thermal stress among the die, die-attach and substrate in an operating device (Bai 

et al., 2007b; Bai et al., 2005; Bai et al., 2006b; Mei et al., 2012; Zheng et al., 2014) 

and (v) high melting point at 960-1083°C has meet the operating temperature 

requirement of a SiC device (> 500°C) (Bai et al., 2007b; Kahler et al., 2012b; Lu et 

al., 2004; Lu et al., 2014; Mei et al., 2011c; Zheng et al., 2014). Despite that, both 

Ag nanopaste and Cu nanopaste are actually having their own limitations, where Ag 

nanopaste has limited to its high cost and low electrochemical migration resistance 

(Lu et al., 2014; Mei et al., 2011a); whereas Cu nanopaste is easy to oxidize. To 

overcome the oxidation issue, additional time (1h) is needed to anneal the Cu 

nanopaste in nitrogen environment (Krishnan et al., 2012; Yamakawa et al., 2013). 

 

 For these reasons, an Ag-aluminum (Al) nanopaste (Manikam et al., 2012; 

Manikam et al., 2013c) is introduced, which aimed at surpassing the preceding 
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limitations of Ag nanopaste and Cu nanopaste. This Ag-Al nanopaste not only could 

tailor the cost to be cheaper than that of Ag nanopaste, it also able to be sintered at 

380°C in air atmosphere without the need of additional annealing process in nitrogen 

environment. Ag-Al nanopaste has displayed electrical conductivity [1.01 x10
5
 (Ω-

cm)
-1

] that is better than Sn, Bi, Au and Zn solder alloys [0.02-0.71 x10
5
 (Ω-cm)

-1
], 

but it is still worse than Cu micropaste [1.29 x10
5
 (Ω-cm)

-1
], Ag micropaste [4.17 

x10
5
 (Ω-cm)

-1
] and Ag nanopaste [2.50-2.60 x10

5
 (Ω-cm)

-1
] (Bai et al., 2005; Bai et 

al., 2006b; Kahler et al., 2012b; Manikam et al., 2012; Zhang and Lu, 2002; Zheng 

et al., 2014). Furthermore, Ag-Al nanopaste has also displayed thermal conductivity 

[123 W/m-K] that is better than Sn, Au, Bi and Zn solder alloys [7-110 W/m-K], but 

it is still worse than Ag micropaste [80-220 W/m-K]  and Ag nanopaste [200-240 

W/m-K] (Bai et al., 2005; Bai et al., 2006b; Kahler et al., 2012b; Manikam et al., 

2012; Zhang and Lu, 2002; Zheng et al., 2014). 

 

 Based on preceding facts, Ag-Cu nanopaste is introduced, which aimed to 

overcome the weakness that associated with Ag-Al nanopaste. Cu was chosen to 

replace Al in a nanopaste formulation because it has the second best electrical and 

thermal conductivities among other metals (Callister, 2007), and it has coefficient of 

thermal expansion that is comparable with Ag (Table 1.2), making it suitable to be 

used with Ag in a nanopaste formulation. Moreover, the price of Cu is comparable 

to that of Al ("Current pricing on precious, platinum, non ferrous, minor and rare 

earth metals," 2013), which is able to meet the cost constraint in electronic 

packaging. Although Cu and Al are ductile materials, Cu has higher tensile strength 

than Al (Table 1.2) (Callister, 2007), where higher bonding strength is predicted for 

Ag-Cu nanopaste if compared with Ag-Al nanopaste (Manikam et al., 2013c; 
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Morisada et al., 2010; Yan et al., 2012). Based on galvanic series, Cu has standard 

electrode potential that is close to Ag if compared with Al to Ag, which minimize 

the tendency of two metals, i.e., Ag and Cu, to interact galvanically, and thus 

reduces the risk of galvanic corrosion (Chawla and Gupta, 1993). Ultimately, Cu has 

a melting temperature that is drastically higher than that of Al; this might make the 

melting temperature of Ag-Cu nanopaste become drastically higher than that of Ag-

Al nanopaste.  

 

Table 1.2: Properties of bulk Ag, Cu, Au and Al. 

Property Ag Cu Au Al Ref 

Electrical 

conductivity  

[x 10
5
 (Ω-cm)

-1
] 

6.80 6.00 4.30 3.80 (Callister, 2007) 

Thermal 

conductivity 

[W/m-K] 

428 398 315 247 (Callister, 2007) 

Coefficient of 

thermal 

expansion  

[x 10
-6

 /K] 

19.7 17.0 14.2 23.6 (Callister, 2007) 

Tensile strength 

[MPa] 

170 200 130 90 (Callister, 2007) 

Young’s modulus 

[GPa] 

74 110 77 69 (Callister, 2007) 

Ductility 

[% elongation] 

44 45 45 40 (Callister, 2007) 

Melting point 

[°C] 

962 1085 1064 660 (Callister, 2007) 

Price on March 

2013 [$ US / kg] 

1012.36 7.61 56717.06 1.89 ("Current pricing on 

precious, platinum, 

non ferrous, minor 

and rare earth 

metals," 2013) 

Standard 

electrode 

potential [V] 

+0.800 +0.340 +1.420 -1.662 (Callister, 2007) 
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 In this work, the Ag-Cu nanopaste is formulated by mixing Ag and Cu 

nanoparticles with organic additives. This nanopaste can be sintered at 380°C in 

open air without the need of applying external pressure. The study covered the 

detailed investigation of the physical, electrical, thermal and mechanical properties 

of Ag-Cu nanopaste with various Cu loadings, as these properties are crucial for die-

attach applications. Further investigations were also carried out to assess the 

workability of Ag-Cu nanopaste as a die-attach material for SiC device, which is 

mainly for high-temperature applications. 

 

1.3 Research objectives 

 

 The primary aim of this research is to formulate an Ag-Cu nanopaste that can 

be used for high-temperature die-attach applications, yet it can be processed at a 

low-temperature. Various physical, electrical, thermal and mechanical properties of 

Ag-Cu nanopaste were systematically investigated, which include density, porosity, 

electrical conductivity, thermal conductivity, coefficient of thermal expansion, 

melting temperature, hardness, Young’s modulus and bonding strength. These 

properties must be properly investigated in order to demonstrate the suitability of 

Ag-Cu nanopaste as a die-attach material for high-temperature applications (Table 

1.1). With this primary aim in mind, the following objectives are to be achieved: 

 

1. To formulate an Ag-Cu nanopaste by mixing metallic nanoparticle and 

organic additives, and determine its optimum sintering temperature and 

environment. 
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2. To investigate the physical, electrical and thermal characteristics of Ag-Cu 

nanopaste with various Cu loadings. 

3. To investigate the mechanical properties of Ag-Cu nanopaste and its bonding 

attributes on different metallization layers. 

4. To apply Ag-Cu nanopaste for attaching SiC die on Cu substrate and 

aluminium nitride direct bonded Cu substrate. 

 

1.4 Scope of study 

 

 In this research work, Ag-Cu nanopaste was first formulated by mixing Ag 

and Cu nanoparticles with various loadings of organic additives. The rheology of 

nanopaste was next analyzed to determine an optimized formula for Ag-Cu 

nanopaste. Various sintering temperatures and environments were used to sinter the 

nanopaste which was aimed to obtain an optimized sintering condition. The research 

was next continued to investigate the physical, electrical, thermal and mechanical 

properties of Ag-Cu nanopaste with various weight percent of Cu loadings. The Ag-

Cu nanopaste with optimized properties was selected for further investigation on its 

bonding attribute on different metallization coatings. Finally, the workability of Ag-

Cu nanopaste as a high-temperature die-attach material has been investigated, where 

it was used to attach a SiC die on either Cu substrate or aluminium nitride direct 

bonded Cu substrate. The entire bonding structure has undergone a thermal aging 

test, followed by a cross-section failure analysis. 

 

 Various characterization techniques have been used in this work, where they 

are classified into physical, electrical, thermal and mechanical characterizations. For 
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physical characterization, rheometer was used to reveal the viscosity of nanopaste. 

Field emission scanning electron microscope (FE-SEM) and atomic force 

microscope (AFM) were used to characterize the surface morphology and 

topography of sintered Ag-Cu nanopaste. X-ray diffraction (XRD) was used to 

identify the phases, and co-linear four point probe system was used to measure the 

electrical conductivity of sintered nanopaste. For thermal characterization, 

differential scanning calorimetry (DSC) was used to determine the melting 

temperature of raw Ag and Cu nanoparticles. It also used to determine the melting 

temperature and specific heat of sintered Ag-Cu nanopaste. Besides, thermo-

gravimetric analysis (TGA) was used to determine the burn off temperature of 

organic additives used in Ag-Cu nanopaste. The thermal diffusivity and thermal 

expansion attributes of sintered nanopaste were measured by using nanoflash laser 

and thermo-mechanical analysis (TMA) systems, respectively. As for mechanical 

characterization, nanoindentation technique was used to determine the hardness, 

stiffness and Young’s modulus of sintered Ag-Cu nanopaste; whilst, lap shear test 

has been performed by using Instron universal testing machine to obtain the bonding 

strength of Ag-Cu nanopaste. The lap shear test was also performed on Cu substrate 

with various metallization coatings in order to understand the bonding attributes of 

Ag-Cu nanopaste. 

 

1.5 Thesis outline 

 

 This thesis is organized and divided into 5 chapters. Chapter 1 

provides an overview of high-temperature electronic packaging, followed by the 

issues and challenges faced in the development of high-temperature die-attach 
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material, research objectives, and scope of study. Chapter 2 covers the detailed 

literature review, which corresponds to the background theories adopted in the study. 

Chapter 3 presents the systematic methodology that was employed in this research. 

Chapter 4 focuses on the results and discussion from the characterizations. Finally, 

Chapter 5 summarizes the overall findings of this study and concluded with 

appropriate recommendation for future works.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

 In recent years, electronic devices are continually improving for high-

temperature applications, mainly due to the increasing demand from various 

industries such as automotive, aviation, well-logging, nuclear power plant and space 

exploration (Chin et al., 2010). These electronic devices are fabricated by using a 

wide band-gap semiconductor, namely silicon carbide (SiC), which aim at 

overcoming the limitation of low operating temperature (< 250°C) that exhibited by 

conventional silicon (Si)-based electronic device (Chin et al., 2010). The current 

research trend is thereby targeted to develop electronic packaging that is in line with 

the SiC-based electronic device, which is able to operate at high-temperature. This 

chapter begins by reviewing the evolution of electronic device from Si-based to SiC-

based, followed by their applications. The chapter will next cover an overview of 

electronic packaging and the materials used for high-temperature applications. Since 

this research is focused on developing a die-attach material, the basic requirements 

of a die-attach material will be discussed. Next, the detailed literatures for high-

temperature die-attach materials will be systematically covered. Finally, this chapter 

will review the factors affecting the mechanical, electrical, and thermal properties of 

die-attach material.  
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2.2 Definition of high-temperature for electronic device 

 

 ―High-temperature‖ is a term that subject to various interpretations, where it 

can be defined as a temperature that is greatly higher than a typical standard 

operating temperature (Chin et al., 2010). For instance, automotive, well logging 

and space exploration industries have defined the term of ―high-temperature‖ as an 

operating temperature at beyond 125°C (Johnson et al., 2004), 300°C (Palmer and 

Heckman, 1978) and 500°C (Hagler et al., 2011), respectively. Hence, it is 

inadequate to define the term of ―high-temperature‖ in accordance to respective 

industry. The definition must be determined from a group of variety industries, 

followed by taking into considerations the operating temperature of various 

electronic devices in the group. Manikam and Cheong (2011) are the leading 

researchers who proposed three ranges of temperature based on a group of variety 

industries. ―High-temperature‖ is defined as a range of temperature that operates at 

beyond 500°C; whilst, ―medium-temperature‖ and ―low-temperature‖ are defined as 

another ranges of temperature that operate at 300-500°C and < 300°C, respectively 

(Manikam and Cheong, 2011). In this thesis, these three ranges of temperature will 

be used; whereby ―high-temperature‖ is fixed at a temperature that higher than 

500°C. 

 

2.3 Evolution of semiconductor in electronic device 

 

 Over the past decade, Si has emerged as the most widely used semiconductor 

materials in electronic devices. This is mainly due to its interesting attributes, such 

as (i) able to be produced in a large defect-free single crystal, (ii) able to grow a 
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stable native oxide layer (SiO2) that possesses superior dielectric properties, (iii) has 

appropriate hardness that allows large wafer can be handled by either hand or 

machine, (iv) able to be doped with small amount of impurities (e.g. phosphorus or 

boron), which formed either n-type or p-type semiconductor, and (v) relatively 

cheap in cost because of its relatively abundance in the earth crust (Chante et al., 

1998; Harper, 2003). However, with advances in technology for recent years, there 

is a demand of electronic devices that could be operated at high-temperature (≥ 

500°C) and harsh environment. The electronic devices that based on Si 

semiconductor, with a maximum operating temperature of 250°C, have become no 

longer meet the requirement of high operating temperature. The low operating 

temperature (≤ 250°C) of Si semiconductor is actually attributed by its narrow band-

gap (1.12 eV), in which leakage of electric current happens if it is operated at 

temperature beyond 250°C (Chante et al., 1998). As a result, it is crucial to seek a 

semiconductor material that is capable to operate at temperature beyond 250°C. 

 

 In recent years, SiC semiconductor, with its large band-gap (3.26 eV), has 

identified as a promising candidate to overcome the limitation of Si semiconductor 

in an electronic device, due to its operating temperature is drastically improved to 

400°C and above. Besides that, SiC semiconductor could also display a few 

advantages of Si semiconductor, such as (i) able to produce high quality single 

crystal with low defect, (ii) able to grow native oxide of SiO2, and (iii) able to 

selectively dope of either n-type or p-type (Friedrichs and Rupp, 2005). These 

advantages are also contributing to make SiC becomes an interesting alternative 

semiconductor material for high-temperature applications. Table 2.1 provides a 

comparison of semiconductor properties between Si and SiC. It can be seen that the 
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SiC with large band-gap has offered a high breakdown electric field (3.2 MV/cm), 

which is approximately ten times higher than that of Si (0.3 MV/cm) with narrow 

band-gap. High breakdown electric field allows the SiC to be operated at a high-

temperature without leakage of current if compared to Si. The thermal conductivity 

of SiC (3.7 W/cm-K) is approximately two times higher than that of Si (1.5 W/cm-

K); this is good for heat dissipation in an operating electronic device.  

 

Table 2.1: A comparison of semiconductor properties between Si and SiC 

(Chelnokov and Syrkin, 1997; Chin et al., 2010; Zolper, 1998). 

Property Si SiC 

Band-gap (eV) 1.12 3.26 

Dielectric constant 11.80 9.66 

Breakdown electric field (MV/cm) 0.3 3.2 

Thermal conductivity (W/cm-K) 1.5 3.7 

Saturated electron velocity (cm/s) 1 x 107 2 x 107 

Electron mobility (cm2/Vs) 1400 1000 

Hole mobility (cm2/Vs) 600 115 

Melting point (°C) 1417 2827 

Physical stability Good Excellent 

Process maturity Very high High 

 

In addition, the saturated electron velocity of SiC (2 x 10
7
 cm/s) is also two times 

higher than that of Si (1 x 10
7
 cm/s); this indicates that SiC can be operated at much 

faster speed if compared to Si. A SiC semiconductor is actually made up of Si and C 

atoms that held by a strong bond. The Si-C bond, in fact, is stronger than Si-Si bond 

that contains within a Si semiconductor. This strong bond provides better physical 

and chemical stabilities over the SiC semiconductor, which allows it to be operated 

in a high-temperature and harsh environment (Chin et al., 2010). 
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2.3.1 Demands of high-temperature electronic device 

 

 Nowadays, consumer electronic products, such as personal computer, cell 

phone, television and washing machine, have become an integral part in our daily 

lives. These products are commonly made up of Si-based electronic device, where it 

is continuously strike to decrease its feature size, increase its operating speed, and 

reduce its power consumption. Normally, the consumer electronic products are 

designed to be operated at temperature below 200°C; thereby Si-based electronic 

device is sufficient to meet the requirements of those products. 

 

 On the other hand, the demands of industrial electronic components, such as 

radiation and pressure sensors, are slightly varied to those consumer electronic 

products. The industries are seeking for electronic components that are capable to be 

operated at high-temperature, high-power and harsh environment. The Si-based 

electronic device, with its low operating temperature (< 250°C), is therefore no 

longer fulfill the requirements of industry electronic components. SiC-based 

electronic device, with its high operating temperature (> 400°C), is next emerging as 

a promising candidate to overcome the limitations of conventional Si-based 

electronic device. For instance, the hydrocarbon sensor that made up of SiC has 

proven able to operate at temperature up to about 800°C (Shields, 1996). 

 

 Over the years, the demand of high-temperature electronic devices has 

shown a steady growth due to the continuous technology advances in various 

industries. Oil and gas industry, in particular, is one of the leading industries that 

have high demand on the high-temperature electronic devices. This industry requires 
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a lot of fairly sophisticated sensors that to be installed in vicinity to the drilling head 

(Chin et al., 2010). During a well drilling operation, the sensors are used to monitor 

the health of drilling head, as well as, used to measure the drilling depth as a 

function of temperature. This is due to the temperature variation in earth crust, 

which can be ranging up to 600°C for the deepest drilling depth that can be attained 

by current drilling technology (Chin et al., 2010; Sharp, 1999b). For well logging 

process (down-hole measurement), the sensors are used to acquire the down-hole 

information, such as surrounding geologic formation and saturation of hydrocarbon 

(oil and gas) (Watson and Castro, 2012). This information is important to determine 

the amount of hydrocarbon that can be extracted from the well. Finally, during the 

hydrocarbon extraction process, the sensors and electronic systems are used to 

monitor the pressure, temperature, vibration, and flow rate of hydrocarbon; this is to 

ensure an optimized productivity from the well, while also prevents any catastrophic 

disaster (Chin et al., 2010; Sharp, 1999b; Watson and Castro, 2012).  

 

 Aviation is another industry that requires a large volume of high-temperature 

electronic devices, which arise from the main goal that moving towards the ―more 

electric aircraft‖ (MEA) (Reinhardt and Marciniak, 1996; Santini et al., 2013; 

Watson and Castro, 2012). Traditional commercial aircraft is operated with a 

centralized control system, which involved large amounts of complex wiring, piping 

and connector interfaces to transmit the signal and power from the central electronic 

controller to the mechanical, hydraulic and pneumatic systems that located in an 

aircraft (Santini et al., 2013). In line with the target of MEA, distributed control 

system is being introduced to replace the centralized control system in an aircraft, 

where the electronic controllers are placed near to the engines (Watson and Castro, 
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2012). This system offers five main advantages: (i) it reduces the complexity of 

wiring interconnections, thereby reducing the maintenance complexity and cost; (ii) 

it reduces the amount of long and heavy wiring and piping systems, thereby saving 

the weight of an aircraft; (iii) it increases the control reliability because of a number 

reduction in connector pins; (iv) it increases the survivability of an aircraft since 

malfunction of certain electronic controllers still can allow an aircraft landing safely; 

and (v) it provides better fuel efficiency and increases performance of an aircraft 

(Reinhardt and Marciniak, 1996; Watson and Castro, 2012). The trade off, however, 

is the electronic controller needs to be operated at high-temperature environment 

that is close proximity to the engine. For instance, the electronic controller that 

monitors rotational speed of turbine disk in an aircraft engine, it has to withstand an 

elevated temperature up to 600°C (Nieberding and Powell, 1982). Another example 

is the electronic controller and sensor that used for combustion emission monitoring; 

they need to operate to the temperature ranging up to 800°C (Hunter et al., 2004; 

Sharp, 1999b). 

 

 The automotive industry is a fairly substantial market, which requires large 

quantities of high-temperature electronic devices. This is due to the evolution of the 

automotive industry that is transforming from mechanical and hydraulic systems to 

an electromechanical system (Huque et al., 2008). The evolution is mainly aimed to 

improve fuel efficiency and reduce emissions of an automobile. Consequently, more 

sensors and signal-conditioning components are being installed into an automobile 

in order to precisely control the valve timing (Chin et al., 2010; Sharp, 1999a). 

Nowadays, an advanced automobile contains approximately 100 sensors, where 

these sensors are used to monitor the health of engine, angular position and speed, 
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automatic brake system, power steering, and exhaust system (Fleming, 2001; Sharp, 

1999a). Those sensors are being installed in various locations of an automobile, in 

which the operating temperature is also varied according to the install locations, as 

shown in Table 2.2. For instance, the sensors for automatic braking and exhaust 

systems are working under an ambient temperature of 300°C and 1000°C, 

respectively (Sharp, 1999a; Spetz et al., 1999). 

 

Table 2.2: Automotive maximum operating temperatures (Johnson et al., 2004; 

Spetz et al., 1999). 

Sensors install locations Maximum operating temperature (°C) 

On-engine 150-200 

In-transmission  150-200 

On wheel-automatic brake system 150-300 

Cylinder pressure 200-300 

Exhaust system Up to 1000 

 

 Space exploration is a niche market of electronic devices, but its operating 

temperature and environment is rather high and harsh. Starting from the launch of 

the space shuttle, the sensors are used to monitor the combustion of hydrocarbon at a 

temperature up to 1000°C and above, as well as, used to detect any leakage of 

hydrocarbon (Sutton, 2001). This is to ensure a safe journey from the earth to the 

outer space. For Venus planet exploration, the surface temperature of this planet is 

ranging between 460°C and 480°C, with a surface pressure of 92 bars, carbon 

dioxide and nitrogen atmospheres, and sulfuric acid cloud coverage at a distance of 

50 km from the surface (Cressler and Mantoot, 2013). The electronic devices that 

have landed on this planet must be able to withstand those harsh conditions first, 

followed by executing the given missions on this planet. 
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 On the other hand, high-temperature electronic devices are also being used in 

other industrial applications, including nuclear power plant and industrial production 

machine. The nuclear power plant utilized a lot of sophisticated sensors that are 

made up of SiC semiconductor. These sensors are being used wisely to detect the 

neutron formation and its liberated radiation at a temperature of 700°C (Kim et al., 

2011; Sedlackova et al., 2013). Besides, the sensors are also being installed in 

surrounding the storage tanks of nuclear waste, which function to detect any leakage 

of radioactive and hazardous substances, at a temperature of up to perhaps 150°C 

(Dreike et al., 1994). All of these applications could be beneficial to prevent any 

possibility of catastrophic disaster happens to the nearby citizens. For industrial 

production applications, such as ammonia production plant, the sensor is being used 

to monitor the synthesized concentration of ammonia, where it must able to 

withstand a high temperature, up to 500°C, that to be applied in the production 

process (Timmer et al., 2005). Other industrial applications include temperature, 

pressure, flame indicator, and ultraviolet radiation sensors, which operate at a 

medium- to high-temperature, ranging between 450°C and 1050°C (Casady and 

Johnson, 1996; Shields, 1996). In summary, the applications of high-temperature 

electronic device are a large variety in accordance with the industrial requirements. 

Although the market of industrial electronic components is not as large as consumer 

electronic products, but its market has steadily grown in recent years, and therefore 

the market cannot be ignored too. 
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2.4 An overview of electronic packaging 

 

 High-temperature electronic device has been realized with the development 

of SiC semiconductor technology. Nevertheless, the electronic device cannot be 

worked without a proper packaging. Therefore, the packaging, or more specifically 

termed as electronic packaging, must be developed in order to connect the electronic 

device to other components of electronic package, namely substrate, heat sink, 

printed wiring board and power source (Tummala, 2001). Figure 2.1 illustrates a 

three-level hierarchy of electronic packaging. At first-level of electronic packaging, 

also known as device level packaging, an electronic device or chip is to be 

connected to a package that serves as protecting, powering and cooling mediums. 

This level of packaging also functions to provide signal transmission from a chip to 

the package, or vice versa, where electrical conductive pads on both the chip and the 

package are to be connected via wire bonding. The first-level electronic package is 

next interconnected to a second-level electronic package, which is typically a printed 

wiring board (PWB). It is because a single device or chip does not generally form 

into a system, as a typical system requires a number of different types of active and 

passive devices that to be assembled and interconnected via a printed wiring board. 

The motherboard is next used to connect several pieces of printed wiring boards and 

functions to provide an integration of entire system; this is typically referred to as 

third-level of electronic packaging (Tummala, 2001). 
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Figure 2.1: Hierarchy of electronic packaging (Tummala, 2001). 

 

2.5 Materials for level-one electronic packaging 

 

 Currently, the development of high-temperature electronic device has 

focused on two broad areas, which are semiconductor device fabrication and its 

packaging. A substantial research effort has been spent on the development of 

electronic device that based on SiC semiconductor which aims for high-temperature 

applications. This is owned to its intrinsic wide band gap semiconductor with 

excellent physical and mechanical properties. Various electronic devices have been 

successfully produced by SiC semiconductor, such as the metal-oxide-

semiconductor (MOS) field effect device that is designed for gas sensor applications 

(Soo et al., 2010). The SiC-based sensor has displayed a high sensitivity and 

selectivity for sensing a variety of gases, namely hydrogen, oxygen, and 

hydrocarbon. Table 2.3 provides a summary of various gases that can be sensed by 
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current SiC-based gas sensors, in which the operating temperature of those sensors 

can be ranged up to 1000°C.  

 

Table 2.3: A summary of various gases sensed by SiC-based gas sensors. 

Gas sensed by SiC 

sensor 

Maximum operating 

temperature (°C) 
Reference 

H2 150-800 (Ghosh and Tobias, 2005) 

O2 300-800 (Ghosh and Tobias, 2005) 

CO 650 (Baranzahi et al., 1997) 

H2S 325 (Weng et al., 2008) 

CH4 350 (Soo et al., 2010) 

C2H6 650 (Baranzahi et al., 1995) 

C3H6 350-700 (Kandasamy et al., 2005) 

C4H10 650 (Baranzahi et al., 1995) 

CxHy 500-1000 (Werner and Fahrner, 2001) 

 

 Although the SiC-based electronic devices, such as gas sensors, have been 

well designed for high-temperature applications, but these devices cannot be worked 

without a proper electronic packaging that acts to transmit the signal from a device 

to other computerized systems, as well as, to provide a protection for the device in 

against of its surrounding harsh environments (Kirschman, 1999). For device level 

packaging (level-one of electronic packaging), there are four main areas need to be 

concerned for high-temperature applications, namely die-attach material, substrate 

material, wire bonding material, and encapsulation material. These electronic 

packaging materials must be properly designed, where their properties must also be 

properly addressed in fulfillment of the requirements for high-temperature 

applications. In this thesis, the primary focus is on die-attach material that serves to 

attach an electronic device or die on a substrate. The die-attach material is actually 

an integral part of electronic package, as it acts as an interface layer between a die 


