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PENGURANGAN MASA UJIAN VERIFIKASI FUNGSI MELALUI

KELAKUAN MODEL BERFUNGSI

ABSTRAK

Proses verifikasi reka bentuk adalah satu langkah penting dalam setiap proses reka bentuk
untuk jaminan kualiti. Walau bagaimanapun, proses verifikasi sentiasa berada dalam
masalah cerutan dan mengambil 60% daripada keseluruhan tempoh penciptaan reka bentuk.
Tahap kesukaran reka bentuk semakin meningkat lalu memanjangkan masa yang
diperlukan untuk verifikasi dan kemudiannya membawa kepada kegagalan reka bentuk
untuk memasuki pasaran. Salah satu faktor utama yang melambatkan proses verifikasi reka
bentuk adalah masa simulasi yang lambat semasa ujian fungsi pra-silikon. Masa simulasi
yang lambat dapat dilihat semasa ujian dijalankan untuk verifikasi pra-silikon NAND Harta
Intelek (IP). Oleh itu dalam projek ini, model bas berfungsi (BFM) diimplimentasikan
untuk NAND IP bagi memendekkan masa simulasi ujian. BFM telah berjaya direka untuk
verifikasi NAND IP. Simulasi ujian dengan scenario verifikasi yang sama telah
dilaksanakan pada NAND IP dalam persekitaran ujian sedia ada dan verifikasi dalam
persekitaran ujian bersama BFM. Keputusannya, BFM didapati memiliki kelakuan dengan
tepat berbanding dengan aras pemindahan daftar (RTL) yang sedia ada untuk verifikasi
NAND IP. Perbandingan masa simulasi ujian telah menunjukkan melalui persekitaran
ujian dengan BFM dengan menggunakan Verilog Compiler Simulator (VCS) telah
menunjukkan purata peningkatan yang ketara sebanyak 92.8%. Oleh itu, BFM yang

diimplementasi adalah sesuai digunakan untuk verifikasi NAND IP.



FUNCTIONAL VERIFICATION TEST TIME REDUCTION

THROUGH BEHAVIORAL FUNCTIONAL MODEL

ABSTRACT

Design verification is an essential step in every design development process for quality
assurance. However, the verification portion is the bottleneck in most of design
development which takes up 60% of the overall design development period. As the
complexity of the design increases, it increases the verification lead time which will then
lead to potential failure of the design to meet market on time. One of the key factor in
slowing down the design verification flow is the long simulation time during the pre-silicon
functional testing. The long test simulation time issue is seen in NAND Intellectual
Property (IP) pre-silicon validation. Therefore in this project, a behavioral Bus Functional
Model (BFM) is implemented for NAND IP to improve the test simulation time. The BFM
has been successfully implemented to validate NAND IP. Simulation of test with similar
functional testing scenarios have been exercised on NAND IP in existing verification
environment and in verification environment with BFM integrated. As a result, the BFM
is found to have behaved accurately comparing with the existing functional Register
Transfer Level (RTL) to validate NAND IP. Comparison has also shown the test simulation
time through the environment with BFM integrated using Verilog Compiler Simulator
(VCS) had shown significant average improvement of 92.8%. Therefore the implemented

BFM is justified to be a suitable use on NAND IP validation.

xi



CHAPTER 1

INTRODUCTION

1.1 Introduction

The fast growth of technology and the increasing complexity of system-on-chips
(SoCs) and also with the pressure coming from time to market, circuit level simulation is
way too slow to be used for functional verification (Gaj et al., 1997). Moreover, most of
the cost spent is on the verification process and the verification of the register transfer level
(RTL) could take up to 60% work of the entire design cycle (Song, 2007). This is because
testing design to ensure a bug free operation is a very complex and effort-consuming task
(Lahti & Wilson, 1999).

Today, a single chip could probably have several different Intellectual Properties (IPs)
and each block would have specific bus protocols to communicate with each other (Song,
2007). This shows that there will be multiple different bus protocols to control each block
of the circuit within the chip which increase the difficulty to verify the result of RTL
verification (Becker, 1996).

There are several types of verification methodologies which can be divided into two
major groups. The two groups are verification with and without simulation. Formal

verification belongs to the verification without simulation group while simulation-based



verification, functional verification, assertion-based verification and symbolic-based
verification belong to the other group (Song, 2007).

In doing the verification with simulation, one of the most important parts of the
testing process is the simulation time. Under pre-silicon testing environment, simulation of
fully functional RTL which contain all the internal structures of actual device will consume
much more simulation time and it is less efficient in driving stimulus (Pesavento & Privett,
1999).

One of the methods to reduce the simulation time and maintaining the testing
coverage is by implementing a transaction-level model (TLM) where the details of
communication of the blocks are separated and modeled (Yeh et al., 2011). This TLM can
speed up simulation time and is a design validation alternative at the higher level of
abstraction (Cai & Gajski, 2003) and (Velev & Gao, 2011). One of the TLMs that can be
used for design validation which is the bus-functional model (BFM). This project will show
the reduction of NAND IP pre-silicon validation simulation time using BFM. Figure 1.1
shows the existing testing environment which consists of multiple blocks of RTL and
NAND IP RTL while Figure 1.2 shows the proposed validation environment for NAND

IP.



UNIT 1 NAND

UNIT 2

UNIT 3

Figure 1.1 Existing testing environment which consists of multiple blocks of RTL
and NAND IP RTL

Proposed BFM NAND

Figure 1.2 Proposed validation environment for NAND IP

1.2 Problem Statement

In producing a healthy design, design validation plays a very important role. The

validation process has to be started during the front part of design. It will be too late to



check on the complex design blocks at system level (Pesavento & Privett, 1999). Quality
simulation has to be done at the unit level design.

However, the functionality verification of a single unit will require other design block
as well during the test simulation. By having multiple design blocks in a simulation will
cause the simulator to process more logic. This will lead to the need of more memory used
to do the simulation. Hence the simulation of these multiple functional RTLs will consume
a very long simulation time (Stehr & Eckmuuller, 2010).

One method to verify the functionality of a particular unit block design with shorter
simulation time is by validating that unit design using a BFM. In (Gaj et al., 1997), the
simulation time for a circuit using a BFM is found to be shorter. Therefore in this project,
a BFM for NAND IP will be developed to shorten the test simulation time for NAND IP

validation.

1.3 Objectives

The objectives of this project are as follows:

1. To reduce the NAND IP pre-silicon validation test simulation time.
2. To implement a BFM for NAND and integrate into the testing environment for
validation.



1.4 Project Scopes

The scopes of this project are:
1. Design and development of a BFM for NAND IP where the NAND IP is already
exist.
2. Integration of the BFM into the existing NAND testing environment.
3. NAND IP validation is performed by using the developed BFM.
4. Evaluation of pre-silicon test simulation time of NAND in the existing testing

environment compared to the proposed testing environment.

1.5  Project Contribution

The completion of this project has brought to the pre-silicon test time reduction of
NAND IP. Large portion of test time is consumed during the NAND model compilation
and it is due to the existing of other multiple blocks RTL. With the implementation of the
BFM for NAND IP to replace the other RTL blocks that are linked to NAND, the
compilation and simulation time can be reduced. More time can be saved by then giving

more time to develop more tests to increase the coverage.



1.6 Thesis Outline

This thesis consists of five chapters:

In chapter one, some research background and problems that are aimed to be solved
by this project are highlighted here. The objectives and research scopes of this project are
stated as well.

Chapter two gives a literature review on several main research areas related to this
dissertation, such design validation methodologies, implementation of BFMs of other IPs,
and numerous methods used for BFM implementations. Open Verification Methodology
(OVM) and System Verilog (SV) are explained briefly so that readers can have a better
understanding on the methods to develop the BFM. Information on various BFMs that were
implemented by other researchers in the verification process of certain designs are
discussed here and also how these BFMs are being developed in different methods by the
researchers.

Chapter three consists on the development flow of this research. This project has
been divided into three development phases. The first phase of this project is the
development of the BFM for NAND IP functional verification. Second phase of the project
is the integration of the BFM into the existing NAND IP test environment. Next phase is
the validation process of the NAND IP using the BFM. Test simulation is carried out and

evaluation is performed between the before and after the usage of the BFM.



In chapter four, several types of tests are carried out and comparison is made
between the original testing environment and the one with the BFM integrated. Simulation
time and results are compared and discussed.

Finally is chapter five which gives the overall conclusion regarding this research.
Possible problems and issues in this research are being discussed in this chapter and some

recommendations for future works are also being stated as well.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

After development of a design, a verification environment will be implemented. The
main idea of the verification environment is to verify the correctness design under test of
the design functionality (Ke et al., 2007). With the complexity of current SoCs design keep
increasing and time to market is shorten, the functional verification is a bottleneck
(Falconeri et al., 2005) and (Abraham, 1998). Functional verification of such complex
design starts with the definition of verification test plan which consists of the set of events
that the validation team are expecting from the design (Fine & Ziv, 2003) and then proceed
with the implementation of the tests according to the test plan. Hence many ways and
methods have been introduced by many research to improve the verification bottleneck.
This chapter will discuss a few improvement methods in enhancing design verification
process and the most suitable way for this project will be discussed further. In addition, the
chosen method to be used in this project will be implemented in OVM approach. A brief

explanation of the NAND IP architecture will be given before concluding this chapter.



2.2 Methods of Enhancing Design Verification Time

The functional verification has been the bottleneck for most of the design
development flow. (Shen & Abraham, 2000) has mentioned that the current validation
capabilities have to be improved to sustain with the rapid growth of semiconductor industry.
There are a number of ways or efforts that have been proposed and implemented to improve

the verification methodology and environment for certain design.

2.2.1 Coverage Directed Test Generation using Bayesian Networks for Functional

Verification

A new way for generating coverage test is proposed by (Fine & Ziv, 2003).
Coverage events or called as testing requirements is a major part in a verification plan of
certain design. Coverage directed test generation (CDG) is defined as a technique to
automate the feedback from coverage analysis to test generation. CDG can help to improve
the coverage progress rate, reaching uncovered tasks and have multiple ways to reach given
coverage tasks. Figure 2.1 shows the basic idea of verification process with CDG. It can
be seen from Figure 2.1 that the tests are random generated through CDG will provide a

coverage analysis which then will be feedback to the test generator.
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Figure 2.1 Verification process with CDG (Fine & Ziv, 2003)

The main goal of the approach is to model the relationship between the coverage
information and the directives to the test generator using Bayesian networks. Bayesian
network is a directed graph whose nodes are random variables and whose edges represent
direct dependency between their sink and source nodes (Heckerman, 1998). A set of
parameters representing its conditional probability given the state of its parent are linked
to each node of the Bayesian network. In short, coverage directed test generation process
is done in two steps. The first step is the learning of the Bayesian network parameters that
models the relationship of coverage information and test directives through a training set.
Then proceed to the second step where Bayesian network is used to provide most probable
directives that lead to a given coverage. Figure 2.2 illustrates a simple Bayesian network
which includes a small part of CDG setup. The network shows the relationship between
the directives that affect the type of command generated (cp_cmd_type), active cores
(cp_core_enable), coverage attribute command (cmd), its response (resp) and the core

generated (core).
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cp_cmd_type =
{// val weight
{read, 20},
{write, 20}, Resp
{RMW, 5}, ;
}i
cp_core_enable = Cmd
{// val weight
Core 0, 10},
Core 1, 10},
{Both, 100} Core
Test Generator Covearge
Directives Variables

Figure 2.2 Bayesian Network of CDG (Fine & Ziv, 2003)

(Fine & Ziv, 2003) has concluded that CDG using Bayesian networks shows that
hard coverage cases can be reached easier and also reduced coverage test development time.
However it did not show any improvement on test simulation time which is the main focus

of this project.

2.2.2 Matlab and Simulink in a SystemC Verification Environment

A verification framework which is based on SystemC verification standard that uses
Simulink and also MATLAB to speed up the testbench development is proposed by
(Boland et al., 2005). The MATLAB and SystemC verification framework can be seen in
Figure 2.3. (Boland et al., 2005) put the focus on digital signal processing (DSP)
applications verification using algorithmic modeling in MATLAB and Simulink

environment. The verification specification is first written and then the algorithm is

11



implemented with MATLAB and Simulink. A variety of algorithm optimization can be
done at this stage. The result of this step will then be the main reference for the system

level verification modeling with SystemC and C++ languages.

— > MATLAB and Simulink

27 / - Algorithmic development
/ : 2
/ / - Data visualization
/ | - Numerical computation
/ \ - Multidomain simulation
A W
' Simulink !
| |
! | Golden ! d
5% »
o : Reference : 0
S| N
= : > Data. : =
< | | Analysis | ! <
2 : | 2
|
: Data ' J
; Generator : i
| |
MATLAB
Co-Simulation
Interface
SystemC
O & UM = Ei— O
E .SC E
O [0}
» »
> | e || DUV Jo L >
DPEr hd [F[ P
Design Under [/
I Verification /
\ \
\ \
A SystemC Language Transactor
- Multi-abtraction level - High level testbench
- Transaction-based verification - Test code reuse
- Verification library
- C++ flexibility

Figure 2.3 MATLAB and SystemC Verification Framework (Boland et al., 2005)
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The proposed framework by (Boland et al., 2005) has shown that the hardware
verification bottleneck has been greatly improved where a more complete testbench can be
developed in a shorter period of time than with the traditional HDL. With the framework,
verification environment can be connected to multiple levels of abstraction and verification
can be started at early stage of development cycle. However, there are no improvement on
test coverage and also no reduction on test simulation time by using the proposed

framework.

2.2.3 Common Reusable Verification Environment for Bus Cycle Accurate (BCA)

Model and RTL

The common verification methodology and environment can be used for RTL and
BCA models are shown by (Falconeri et al., 2005). BCA model is one type of BFM (Cai
& Gajski, 2003) and the fast simulation of BCA model compared to RTL model allows
fast finding on optimized configuration in terms of bandwidth, area and power
consumption (Falconeri et al., 2005) with the BCA model functionality constraints have to

be similar as the RTL model.

Since BCA and RTL models has the similar functionality, therefore the
requirements for functional verification have to be similar as well. (Falconeri et al., 2005)
proposed to use a common verification environment for both BCA and RTL model and it

can save effort by not duplicating work in developing the verification environment for the

13



two different models. Figure 2.4 shows the complete verification flow from functional

specification to bus accurate comparison.

Functional
Specifications

Stable
functional spec

Venfication

=

ETL model BCA model -+
verification verification

Full coverage Low jaligmnent

rate

Bus accurate comparison

Figure 2.4 Complete verification flow (Falconeri et al., 2005)

Having the common verification environment is not a new idea (Vaumorin &
Romanteau, 2004) and this strategy has shown high gain in terms of development time and
improved verification accuracy. It is also shown that the simulation time with the BCA

model is faster compare to the simulation time of the RTL model.

14



2.2.4 BFM in Verification Environment

As mentioned by (Yu et al., 2004) and (Song, 2007), time to write testbench can be
reduced and functional coverage can be increased using the system level verification
methodology. Modern design flow is moving at a higher pace which made traditional
simulation-based verification method cannot keep track with the flow (Song et al., 2005).
A system level function will be partitioned into several parts, and be implemented at the

same time (Sayinta et al., 2003).

BFM is also one of the transaction-based verification methodology strategy to
improve functional verification efficiency of RTL using simulation (Labs et al., 2000).
BFM basically is a model of bus interface of certain design units (Pesavento & Privett,
1999). The bus interface signals of interconnect between the DUT and BFM will be
captured by the BFM. Behavior of the BFM data can be scheduled and captured in a relax
manner so that computation of data can be grouped and incremented in chunks with time
rather than on a per-transaction basis (Pasricha et al., 2010). This relax scheduling permits
the capture of only required data details which means reduction in details of data captured.
Correspondingly it will reduce the modeling time and also improve on the simulation speed.
BFM in general needs about one-fifth to one-tenth of the effort required for RTL modeling
and BFM is one hundred to five hundred times faster than RTL simulation (Pasricha et al.,

2010).

(Song, 2007) and (Falconeri et al., 2005) uses the BFM as one of the verification
tools used in the system level assertion based verification environment. The BFM used is

for the Peripheral Component Interconnect (PCI). As mentioned in (Yu et al., 2004), with

15



the usage of BFM and also other verification tools in the verification environment, the
design under test (DUT) can be tested completely in more complex situations which is
useful to validate the robustness of the DUT protocol. In addition, the test simulation time
also has been shown to be reduced with the usage of BFM in the test environment (Song,

2007).

In (Schirner & Rainer, 2006), an abstract communication modelling study had been
done on Advanced Microprocessors Bus Architecture (AMBA) Advanced High
Performance Bus (AHB). Three models were implemented: BFM, arbitrated transaction
level model (ATLM) and transaction level model (TLM). BFM shows the best accuracy in
both operating modes of AHB while TLM and ATLM shows errors in one of the operating
mode of AHB. It is also shown that all three models had improvement in test simulation

time.

Implementation of a BFM for the Pentium Processor is proposed by (Hunt et al.,
1993). The BFM that were implemented had provided an accurate representation and can
be represented in behavioral simulation which is useful for Pentium processor based
platforms and system validation and design. While in (Petkov et al., 2005), BFM of a
Multiprocessor System on Chip (MPSoC) had been developed in accelerating the hardware
or software prototype generation for MPSoC. By using the BFM, (Petkov et al., 2005)

shows a time reduction in systematic design process and software integration.

Implementation of USB BFM has been shown in (Chonnad & Needamangalam,
2000). The USB BFM implemented is inherently reusable and it is easier to maintain as it
contains the Object Oriented Programming (OOP) features. Randomization of tests has

increased the functional coverage. This is possible if and only the BFM is coded using the

16



modern verification language that supports randomization and the implementation of the
BFM has shown reduction in simulation time (Chonnad & Needamangalam, 2000). Figure
2.5 shows the typical architecture for verification of bus interfaces. The BFM in Figure 2.5

will be connected to the device under test and the connection bus will be monitored by a

bus monitor.
E Fun?:iinal BUS Davice
BFM Model [ - U.Ifldﬂf
Commands (BFM) l asl
Bus
Monitor
Monitor Log

Figure 2.5 Typical architecture for verification of bus interfaces (Chonnad &

Needamangalam, 2000)

2.3  BFM Implementation

Usage of BFM is found to be the most suitable in reducing test simulation time and
therefore BFM is implemented. There are multiple methods of coding the BFM in the
validation environment. BFM can be coded using many types of HDLs such as VHDL,
Verilog, System Verilog, C++, System C and etc. The purpose of BFM implementation
not only will improve the verification flow in term of reduced simulation time but also
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capability to debug, randomization testing, and overall of improved total validation time
(Sudhish et al., 2011). The focus in this project is on validation simulation time reduction
hence only the key features of HDL on verification process will give an advantage. Only

VHDL, Verilog and System Verilog language capabilities will be discussed in this chapter.

2.3.1 Very High Speed Integrated Circuit Hardware Description Language

(VHDL)

VHDL is a general purpose digital design language which is supported by multiple
verification and synthesis tools. (Smith et al., 1996) has discussed on the comparison on
VHDL and Verilog and it is shown that VHDL can do concurrent procedure calls and also
design reusability where functions and tasks can be placed in a package to be reused.
VHDL also support user-defined types and enumerated types (Maginot, 1992) which is
suitable in defining verification data types.

One disadvantages of using VHDL is that it has no simulation control or monitoring
capabilities (Bailey, 2003) where this capability is an important feature in verification
process and hence VHDL is very dependent on tool environment for debugging activities.
VHDL also does not support name based events which is useful in validation. Class

inheritance feature (reusable class module) is also not supported by VHDL.
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2.3.2 Verilog

Verilog is a HDL used design and verification of digital circuit design at the RTL.
(Gordon, 1995) mentioned that Verilog is widely used to model the behavior of digital
systems building blocks to complete systems. Verilog can support continuous assignments
with delay which makes the verification more realistic and it also has the blocking and non-
blocking statements which is able to control the transport delay of certain behavior.
Concurrent tasks and functions are also supported by Verilog. A set of basic simulation

control capabilities or the system tasks are defined within Verilog.

However, Verilog has its disadvantages too. It does not support user defined data
types and enumerated types unlike VHDL and System Verilog. This will be a limitation in
improving the validation process. Interface abstraction is also not supported which reduces
flexibility in port mapping. In general, (Bailey, 2003) stated that Verilog has limited

verification targeted capabilities.

2.3.3 System Verilog

Parenting from Verilog, SV benefited its advantages and adding user defined data
types (Bailey, 2003) as well as strong data typing capabilities (Fitzpatrick, 2004). SV is
backward compatible with Verilog by retaining weak data typing for the built in Verilog
types (Bailey, 2003). The OOP feature of SV can greatly enhance the reusability of the
verification environment components (Ke et al., 2007). There are a few more verification

features which SV can provide such as dynamic memory, constrained random data
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generation, dynamic processes and also assertions to improve the quality of verification. It
is concluded in (Fitzpatrick, 2004) that SV is built on the Verilog language with many
features were derived from proven VHDL features and extended to be more powerful.
Figure 2.7, Figure 2.8, and Figure 2.9 show the overall comparison of VHDL, Verilog and

System Verilog.

2.3.4 Open Verification Methodology (OVM)

In (Cadenas & Todorovich, 2009), OVM is described as a framework for functional
verification of digital hardware using System Verilog in simulating environment. OVM is
defined as a library of verification components (Glasser, 2009). OVM offers TLM
interfaces, a class factory for dynamic selection of instantiated object type, verification
components classes such as drivers, monitors, and scoreboards and also mechanism for the
construction of complex stimulus for a DUT using sequencers and sequences (Poikela et
al., 2012). The library also includes its own first in first out (FIFO) which can be directly
connected to the TLM ports. These OVM components are written as System Verilog

classes.

(Cadenas & Todorovich, 2009) has mentioned that the idea of OVM is to replace
the conventional HDL approach in testbench writing and by OVM, it is a more robust
methodology based on reusable verification environment. Figure 2.6 shows the simple

OVM verification environment.
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Figure 2.6 Simple OVM verification environment (Cadenas & Todorovich, 2009)
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Strong typing Yes

User-defined types Yes
Dynamic memory allocation Yes
(pointer types)

Physical types Yes
Named events No
Enumerated types Yes

(FSM modeling)

Records/structs Yes

Variant/unions No
Associative/sparse arrays

Partial
(But can be modeled using

VHDL

access types)

Class/inheritance No
Data packing No

Bit (vector) / integer Partial
equivalence

Not built-in but standard

package supporis

User defined signal/net Yes
resolution

Subprograms (procedural)  Yes

Function & procedure

always automatic

Subprograms (concurrent) Yes
aka tasks

Methods No

Separate packaging Yes

Packages

Concurrent procedure calls

Verilog (2001)

No

- Bit

= bit-vector

- wire

- reg)

= unsigned

- signed

- integer

- real

= String in certain contexts only

No
No

No

Yes
No

No

No
No

No

No
Yes

No

Yes
Static and automatic functions
and tasks

Yes
Static tasks

No

Yes
Include files

SystemVerilog

Partial
Mot strongly typed in areas back-
ward compatible with Verilog

Yes
Enhanced type system is strongly
typed (but not as strong as VHDL)

Yes

Partial

Class objects can be dynamically
created/destroyed, but via handles
(“safe pointers™)

No

Yes
Yes

Yes

Yes
Yes

Yes
(single inheritance)

Yes
Yes

No

Yes
Same as Verilog plus void
functions (procedures)

Yes
Static tasks

Yes
(goes hand-in-hand with classes)

Yes
Include files

Figure 2.7 Feature by feature comparison between VHDL, Verilog and System Verilog
(Bailey, 2003)

22



Other hierarchy

All-read sensitivity

Reactive region processes

Dynamic process
creation/deletion

Conditional statements

Iteration

Operators & expressions

Gate level modeling

Interface abstraction

VHDL

Yes
Separate entity / architecture
(Interface / implementation)

No

Yes
Postponed processes

No

Yes

+ |f-then-elsefelsif (priority)

+ Case (mux)

+ Selected assign (mux)

- Conditional assign (priority)

= No “don’'t care” matching capability

Yes

+ Loop

+ while-loop

+ for-loop

- exit

- next

Can name the loop to exit or
continue with next

Yes
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= arithmetic

+ logical

+ bit-wise

= shift

= concatenation
Overloadable (polymorphism).
Mo unary reduction.

No logical scalar/vector.

Yes
WVITAL.
Very good FPGA library support.

Partial

Component abstracts interface
from specific module.

Two layer binding allows flexibility
in generic/port mapping.

Verilog (2001)
No

Yes

@(’)

No

Yes
Forkijoin. Blockiask disable.

Yes

« if-else (priority)

+ case (mux)

* Casex (mux)

= 7 (conditional used in
concurrent assignments)

Yes
+ repeat
= for
+ while

Yes

All expected:

= arithmetic

« logical

+ bit-wise

= shift

- concatenation

= unary reduction
- logical scalarfvector
= case (in)eguality.
- conditional (?:)
No rotate left/right

Yes

Builtin primitives.

UDPs.

Better availability of ASIC library
support

No

SystemVerilog

Yes
Programs, Clocking domains,
Interfaces

Yes

Same as Verilog.

Plus: always comb

Yes

Programs, Clocking domains,

Final blocks
Yes
Same as Verilog.

Yes

Same as Verilog.

Adds priarity and unique keywords
to infer priority encoding/mux
implementation

Yes

Same as Verilog, Plus:

+ do-while

+ break

= continue

Only closest enclosing loop can
be break or continue

Yes

Same as Verilog.

Plus:

= wild (in)equality

= increment

- decrement

- assignment (+=, -=, |=, etc.)
MNo rotate left/right

Yes

Same as Verilog.

Except, library support yet to be
qualified as vendors won't assume
Verilog sign-off = SystemVerilog
sign-off

Yes

Interfaces are a separate
construct in language.
Supports multiple abstraction
level and eases interface reuse.
Can reduce coding.

Figure 2.8 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003)
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Configuration & Binding

Conditional & iterative
generation

Attributes

Verification targeted
capabilities

Assertions

Foreign interfaces

VHDL

Yes

Control of instance or component
binding to entity.

Incremental (re)binding of
generics and ports.

Yes
= If {conditional)
- For (iterative)

Yes

Attributes are typed.

Attribute values can be specified.
Attribute values can be referenced.
Anything labeled with a name can
be attributed.

Groups allow attributes to relate
fwo or more named entities in the
design.

Partial

- Access types

+ Recursive subprograms

« Extensive File /O

- Postponed processes

+ Standard package for random
number generation

Partial

+ Combinatorial (Boolean)
assertions

« User-defined severity and
message control

Limited

- Standard ‘Foreign attribute

= VhPI defined, but not yet
standardized

Verilog (2001)
Partial

Control of module to instance

binding.

Yes
« If

+ if-alse (mutually exclusive)

* case
« for

Partial

Not-typed.

Can be placed virtually
anywhere.

What is attributed is determined

by lexical proximity.

Attribute values cannot be

referenced.

Limited

= File /O

+ Random number generation
- Recursive subprograms

- Forkfjoin

No

Yes
Standard C API (if, acc, vpi)

SystemVerilog

Partial
Same as Verilog.

Yes
Same as Verilog.

Partial
Same as Verilog.

Yes

Same as Verilog.

Plus:

= Random and constrained
random value generation
Programs

Clocking domains
Associative arrays
Semaphores

Mailboxes

Classes

Yes

Combinatorial and sequential
(concurrent) asserions.
Sequence (temporal) expres-
sion.

Sequence-local variables.
User-defined severity and
message control.

API extensions for assertions
and coverage information for
assertions

Yes

Same as Verilog.

Plus:

+ Extensions to API for assertions
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+ Direct C language interface

Figure 2.9 Feature by feature comparison between VHDL, Verilog and System Verilog
(Bailey, 2003)
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