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SIFAT-SIFAT MEKANIKAL STATIK DAN DINAMIK DAN KEPEKAAN 

KADAR TERIKAN BAGI POLIMER BERASASKAN THERMOPLASTIK 

DAN KOMPOSIT MENGGUNAKAN ALAT PECAHAN HOPKINSON 

TEKANAN BAR  

 

ABSTRAK 

 

Dalam kajian ini, teknik eksperimen, berasaskan pemampatan pecahan 

Hopkinson tekanan bar (SHPB), telah diperkenalkan untuk menjalankan ujian 

mampatan dinamik manakala mesin ujian konvensional sejagat telah digunakan 

untuk menjalankan ujian mampatan statik. Kedua-dua teknik digunakan untuk secara 

eksperimennya menyiasat kesan interaktif kadar terikan terhadap sifat-sifat 

mampatan pelbagai bahan berasaskan termoplastik. Semua bahan-bahan berasaskan 

termoplastik yang digunakan dalam kajian ini telah dihasilkan menggunakan proses 

penekanan panas. Keputusan SHPB pada awalnya telah disahkan dan ditentukur. 

Hasil kajian menunjukkan bahawa semua spesimen termoplastik yang diuji (iaitu PP, 

PE, dan PC) mempamerkan pergantungan besar pada kadar terikan yang dikenakan; 

dimana tegasan alah, modulus mampatan dan kekuatan mampatan, semuanya telah 

meningkat dengan peningkatan kadar terikan. Menariknya, kedua-dua persamaan 

Eyring dan persamaan hukum kuasa asas hampir selari dengan keputusan uji kaji 

bagi keseluruhan kadar terikan yang disiasat. Kesan struktur molekul, terhadap sifat-

sifat mekanikal statik dan dinamik bagi termoplastik polimer, juga telah ditentukan 

menggunakan spesimen polietilena dengan struktur molekul yang berbeza (iaitu 

LDPE, LLDPE and HDPE). Keputusan menunjukkan bahawa struktur molekul 

polietilena telah memberi kesan kepada sifat-sifat mekanikal dari segi takat alah, 

kekakuan, kekuatan, kadar kepekaan, isipadu pengaktifan, dan tenaga yang diserap. 
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Bagi komposit berasaskan termoplastik, dua jenis partikel pengisi telah ditambah ke 

dalam matrik polipropilena; iaitu zink oksida dan mika. Ia boleh dilihat secara jelas 

bahawa pengenalan pengisi meningkatkan sifat-sifat mampatan komposit, termasuk 

modulus mampatan, serta kekuatan alahnya. Kajian juga telah mendapati bahawa 

kandungan partikel mempamerkan hubungan yang tidak ketara dengan sensitiviti 

kadar tekanan dan isipadu haba pengaktifan, bagi kedua-dua polipropilena diperkuat 

sistem komposit. Bagi kesan ciri-ciri partikel-matrik, serbuk partikel silika telah 

dimanipulasi untuk menyiasat secara eksperimen mengenai hubungan antara saiz 

partikel dan sifat-sifat mekanikal komposit di bawah pelbagai kadar terikan yang di 

kenakan. Menariknya, saiz partikel-partikel silika  memberikan kesan yang jelas ke 

atas sifat-sifat mampatan komposit berasaskan polipropilena. Secara kuantitatifnya, 

komposit dengan silika bersaiz nano mencatatkan sifat-sifat mampatan yang lebih 

tinggi, dari segi kekuatan alah, kekuatan muktamad dan kekakuan berbanding 

komposit dengan silika besaiz mikro, untuk semua kadar terikan yang di siasat. 
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STATIC AND DYNAMIC MECHANICAL PROPERTIES AND STRAIN 

RATE SENSITIVITY OF THERMOPLASTIC BASED POLYMERS AND 

COMPOSITES USING SPLIT HOPKINSON PRESSURE BAR APPARATUS  

 

ABSTRACT  

 

In this study, an experimental technique, based on the compression Split 

Hopkinson Pressure Bar (SHPB), was introduced to perform dynamic compression 

testing whereas a conventional universal testing machine was used to perform static 

compression testing. These two techniques were used to experimentally investigate 

the interactive effect of strain rates towards the compressive properties of various 

thermoplastic-based materials. All of the thermoplastic-based materials used in this 

study were fabricated using a hot press process. The SHPB results were initially 

verified and calibrated. The results indicated that all tested thermoplastic specimens 

(i.e. PP, PE, and PC) showed a great dependency on the strain rate applied; where the 

yield stress, compression modulus, and compressive strength, were all proportionally 

increased as the strain rate was increased. Interestingly, both Eyring and basic power 

law equations were almost agreed with the experimental results over a wide range of 

strain rates investigated. The effect of molecular structure, on the static and dynamic 

mechanical properties of thermoplastic polymer, was also determined using 

polyethylene specimens with different molecular structures (i.e. LDPE, LLDPE, and 

HDPE). The results indicated that the molecular structure of polyethylene did affect 

its mechanical properties in terms of yield behaviour, stiffness, strength, rate 

sensitivity, activation volume, and absorbed energy. For thermoplastic based 

reinforced composites, two types of particulate fillers were added into the 

polypropylene matrix namely zinc oxide and mica. It can be clearly seen that the 
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introduction of filler increased the composites’ compressive properties, including 

their compression modulus, as well as their yield strength. It was also found that the 

particle content showed an insignificant relationship with strain rate sensitivity and 

thermal activation volume, for both polypropylene reinforced composite systems. As 

for the effect of particle-matrix characteristics, silica particles were manipulated to 

experimentally investigate the correlation between particle size and the mechanical 

properties of composites under a wide range of strain rates investigated. 

Interestingly, the size of the silica particles gave significant effects on the 

compressive properties of the polypropylene-based composites. Quantitatively, 

composites with nano-sized silica recorded higher compressive properties, in terms 

of yield strength, ultimate strength and stiffness as compared to composites with 

micro-sized, for all strain rates investigated.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Static and dynamic mechanical properties of materials 

 

The mechanical performance of materials is determined by their static and 

dynamic mechanical characteristics. Unfortunately, the majority of scientists only 

focus on the static rather than on the dynamic mechanical behaviour of materials. 

This is attributed to the limited number of dynamic facilities, as well as the difficulty 

in performing dynamic testing. Intensive efforts should be carried out in the future in 

order to gain a better understanding of the dynamic perspective of the behaviour of 

materials.  

 

1.2 Development of dynamic  testing 

 

The knowledge of the characteristics of a material at dynamic loading is 

becoming ever more essential with the desire to produce products or structures that 

are capable of withstanding high velocity impacts. Based on this, several 

conventional mechanical tests have been developed over the years to obtain the 

mechanical characteristics of materials at high strain rates, using screw or hydraulic 

loading systems (Hamouda and Hashmi, 1998; Field et al., 2004). For example, a 

pendulum impact machine, such as the Charpy or Izod, can yield a strain rate of up to 

100 s
-1

, but only provide the absorbed energy information up to fracture. Meanwhile, 

other common high strain rate facilities are the drop-weight impact and the servo-

hydraulic tester. Although a drop-weight impact test can give both impressive and 
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convenient results, but the test is still limited by several factors, such as the 

sensitivity towards contact conditions between the impactor and the specimen (Hsiao 

et al., 1999). In addition, the drop-weight test is also restricted to lower strain rate 

conditions (i.e. between 1 to 10 ms
-1

) (Richardson and Wisheart, 1996). On the other 

hand, the servo-hydraulic test also has a similar restriction with the drop-weight 

impact test, where it is only credible for intermediate strain rates (Othman et al., 

2009).  

 

A desire to scrutinize the characteristics of materials at very high strain rates 

revealed a most promising technique, namely the Split Hopkinson Pressure Bar 

(SHPB) technique. The SHPB technique was initiated by Kolsky (1949) and 

developed by Hauser (1966), where a stress pulse travelled through an elastic input 

bar, through a short sample, and finally into an elastic output bar. The important 

characterisation of the SHPB technique is that it is highly dependent on the capability 

of the technique to obtain a stress–strain curve as the output, which holds useful 

information as to the characteristics of materials. Even though Kolsky introduced this 

technique almost five decades ago, it was only intensively used by researchers during 

the early 1970s. More recently, the SHPB technique has become the standard method 

for measuring the dynamic mechanical properties of materials in the range of 10
2
 s

-1 

to 10
4
 s

-1
 strain rates. (Evora and Shukla, 2003; Field et al., 2004). In the SHPB set-

up, a semiconductor strain gauge is mounted on each Hopkinson bar. Meanwhile, the 

stress and strain within the specimen are obtained from an analysis of the signals 

from these two gauges. One of the basic and fundamental assumptions of the SHPB 

technique is the stress homogeneity within the sample. The technique assumes that 

the stress field is homogenous within the sample and that the propagating waves in 
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the bar have a negligible attenuation and dispersion. However, a conventional SHPB 

is not suitable for low impedance materials, such as polymers, polymeric foams and 

rubbers, because the transmitted signal is too small to be captured by the strain gauge 

mounted on the transmitter bar (Song and Chen, 2005; Van Sligtenhorst et al., 2006). 

Besides that, the equilibrium state is reached slowly when testing soft materials. 

Based on this limitation, the conventional theory of the SHPB technique will be 

invalid, and other solutions must be found. Lately, two common approaches have 

emerged to overcome this dilemma. In the first method, the application of a pulse 

shaper was used to induce a faster dynamic equilibrium achievement (Frew et al., 

2005; Vecchio and Jiang, 2007). On the other hand, the second method was to use a 

low-impedance pressure bar, e.g. a polymer bar, which has an impedance value 

closer to that of the materials being tested (Johnson et al., 2010). It is believed that a 

closer impedance mismatch will significantly enhance the propagation of the 

transmitted pulse. Based on this concern, it is convenient to say that the SHPB test is 

still reliable for the performance of dynamic testing on soft specimens, especially 

polymeric based materials. 

 

1.3 Static and dynamic mechanical behaviour of thermoplastic polymers  

 

Thermoplastic polymers have been extensively used as engineering 

components that are purposefully designed to resist impact, ranging from bottles and 

pipes to helmets and body armours. Among the many types of thermoplastic 

polymers, polyethylene (PE), polypropylene (PP) and polycarbonate (PC) have 

attracted much interest from scientists as well as industry sectors. Based on this, 

many studies have been conducted to investigate their overall characteristics, 
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especially their mechanical performances (Li et al., 1995; Karian, 2003; Nitta and 

Maeda, 2010). Unfortunately, most of the previous researches were only focused on 

their static mechanical behaviour. Since the applications of these thermoplastic 

polymers have been extended from conservative to various engineering applications, 

the strain rate factor should not be neglected and requires extra precaution from the 

researcher.  

 

Based on this consideration, some of the researchers have taken the initiative 

to experimentally investigate the mechanical properties of PE, PP, as well as PC at 

various levels of strain rates (Walley and Field, 1994; Mulliken and Boyce, 2006; 

Cao and Wang, 2012). Walley and Field (1994) reported that PE and PP show 

different patterns in terms of the rate sensitivity (i.e. maximum stress) as a function 

of the applied strain rate. It was experimentally proven that the PP specimen exhibits 

a bilinear relationship, where the rate sensitivity of stress increases sharply at a strain 

rate of about 10
3
 s

-1
. Conversely, the PE specimen does not unambiguously show a 

change of slope over a wide range of strain rates. Apart from that, Mulliken and 

Boyce (2006) found that the PC specimen shows a different magnitude of increment 

in terms of yield stress under both static and dynamic loading. They also reported 

that the slope of the yield stress increment is much greater under dynamic loading 

than that of static loading. Based on the recorded results, it is believed that the 

knowledge of the dynamic mechanical characteristic of these thermoplastic polymers 

(i.e. PE, PP, and PC) is still presently unclear. Therefore, it is believed that a more 

detailed and systematic study should be carried out in the future in order to achieve a 

conclusive explanation on the highlighted issues. 
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1.4 Static and dynamic mechanical behaviour of polypropylene based composites 

 

In general, polypropylene (PP) is renowned as a high volume commodity 

plastic, with a remarkable cost/performance balance, which has contributed to its 

commercial success. Regrettably, this thermoplastic polymer is still referred to as a 

low cost engineering plastic and is inappropriate for crucial engineering applications. 

It is widely accepted that the incorporation of fillers into a PP matrix has shown great 

potential in increasing the longevity and durability of PP, fulfilling various 

requirements of engineering applications. For the past few years, many studies have 

been carried out on polypropylene-based composites using micro and nano-sized 

particulate reinforcement (Balasuriya et al., 2001; Alcock et al., 2007). They found 

that PP composites that are reinforced with nano-sized particles exhibit greater 

properties compared to their micro-scale reinforced counterparts (Jeong et al., 2005; 

Thostenson et al., 2005). Furthermore, it was also found that nanocomposites, with a 

good dispersion of fillers, show significant improvements in terms of their 

mechanical, thermal, electrical, optical, and physical-chemical properties, even at 

relatively low filler contents (Javni et al., 2002; Friedrich et al., 2005; Cho et al., 

2006).  

 

Zinc oxide (ZnO) and mica particles are promising fillers for reinforcing the 

PP matrix due to their outstanding properties as compared to other conventional 

fillers of a similar nature (Chiang et al., 2005; Cheng et al., 2007; Rashid et al., 2008; 

Rashid et al., 2011). Apart from that, it is believed that both composite systems have 

great potential as engineering products due to their capability to provide a good 

balance between impact resistance, production cost, and weight. Typically, the 
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majority of engineering products are mainly subjected to dynamic loading and 

therefore it is critical to investigate the dynamic behaviours of these two composite 

systems in order to avoid any mishaps during service. As with virgin polymers, 

existing works are highly focused on their static mechanical behaviour (i.e. PP 

reinforced with ZnO and mica particles). Unfortunately, the influence of fillers on 

strain rate sensitivity and the dynamic behaviour of both composite systems have 

often not been considered. This phenomenon might be attributed to the nature of the 

composite, which can complicate the specimen’s geometrical design for dynamic 

testing (Hamouda and Hashmi, 1998). Nevertheless, several researchers have come 

out with an optimised specimen’s geometry to overcome this drawback and claim 

that the dynamic facilities are also suitable and reliable for composite materials, 

especially polymer matrix composites (PMCs) (Hao et al., 2005; Guo and Li, 2007). 

Therefore, this is a great opportunity to discover the capabilities and possibilities of 

these composites to replace conventional materials, especially in dynamic loading 

applications. 

 

1.5 Problem statements 

 

It is generally acknowledged that the applications of thermoplastic-based 

products have been extended from conservative to more challenging applications like 

engineering components, constructions, load-bearing applications, etc. Hence, the 

strain rate effect should be the first priority factor to be investigated, since almost all 

of the highlighted applications are mainly involved with both static and dynamic 

conditions. In addition, the knowledge of rate sensitivity is also important during 

material selection in order to estimate the magnitude of changes in material’s 
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properties. Without this knowledge, it is almost impossible to predict and prevent the 

unexpected failure during service. Recently, there is a very limited number of works 

that are concerned with the dynamic behaviour as well as the rate sensitivity of 

thermoplastic-based materials. In addition, numerical studies on the dynamic 

mechanical properties of these composites are also infrequently reported and need an 

additional effort to further clarify the relationship between the experimental and 

numerical results, which is important for engineering design and simulation 

purposes. Based on the highlighted issues, we believe that a systematic study is 

necessary to fulfil the lack of information in this area. 

 

 Apart from external factors like the strain rate effect, it was also believed that 

the internal structures of polymer (Liu and Baker, 1992; Wood-Adams et al., 2000; 

Wood-Adams, 2001) and the filler-matrix related characteristics of the polymer 

composites (i.e. as particle size, particle–matrix interface adhesion, particle shape 

and geometry) may also influence the mechanical properties of the polymeric 

specimens.  However, we recognize that a similar kind of study under a dynamic 

range of strain rates has never been reported in the past and remains a major 

challenge in the development of a better understanding on the mechanical behaviour 

of thermoplastic-based products under various loading conditions.  

 

1.6 Objectives of study 

The objectives of this study are: 

 

1) To compare the static and dynamic mechanical properties of several 

thermoplastic polymers  
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2) To examine the effect of molecular structures on the static and dynamic 

compressive properties of thermoplastic polymers. 

3) To measure the static and dynamic mechanical properties of polypropylene 

based composites using nano and micro fillers. 

4) To investigate the effect of particle size on the static and dynamic 

compressive properties of polypropylene-based composites. 

 

1.7 Organisation of thesis 

 

 This thesis has been divided into altogether nine chapters. Each chapter gives 

the information about the research interest as mentioned in the objectives earlier. 

 
 

 Chapter 1 covers the introduction of the thesis. It contains a general 

overview on the development of static and dynamic testing and a brief 

introduction about dynamic studies on polymeric materials, a problem 

statement, objectives of the project and organisation of the thesis.  

 

 Chapter 2 contains some fundamental concepts of the split Hopkinson 

pressure bar technique, together with some reviews of related works reported 

in previous literature.  

 

 Chapter 3 explains the material specifications, research methodology, and 

experimental procedures which are carried out in this study.  

 

 Chapter 4 discusses the calibrations and verifications of the SHPB results. 
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 Chapter 5 discusses the effect of the strain rate on several thermoplastic 

polymers (i.e. PE, PP and PC). In addition, in this chapter, the experimental 

results were also compared with two established equations namely the Eyring 

and power basic equations. 

 

 Chapter 6 discusses the effect of molecular structure on the static and 

dynamic compressive properties of the thermoplastic polymer, PE. As with 

Chapter 5, both the experimental and numerical results were validated using 

two established equations namely the Eyring and power basic equations. 

 

 Chapter 7 discusses the effect of the strain rate and particle content on the 

static and dynamic compressive properties of polypropylene-based 

composites (i.e. PP/nano-ZnO composites and PP/micro-Mica composites). 

 

 Chapter 8 discusses the effect of particle size on the static and dynamic 

compressive properties of polypropylene-based composites (i.e. PP/SiO2 

composites). 

 

 Chapter 9 concludes the findings of the project and the evaluation that has 

been made in order to assess the achievements of the objectives. Some of the 

suggestions for further study have been explained. 
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CHAPTER 2 

LITERATURE REVIEWS 

 

2.1 Introduction 

 

This chapter summarises the principle of thermoplastic polymers followed by 

a brief overview of thermoplastic-based composites, explaining their increasing use 

in a wide range of engineering applications. In addition, a literature survey was 

carried out on the development of the dynamic facilities, especially a Split-

Hopkinson pressure bar apparatus (SHPBA). Works on the static and dynamic 

behaviours of thermoplastic polymers and their composites were also extensively 

reviewed. 

 

2.2 Polymers 

 

Basically, the word polymer is derived from two different Greek roots which 

are ‘poly-‘, meaning many, and ‘mer’, meaning part or segment. Therefore, a 

polymer can be defined as the repetition of many similar segments (i.e. mer) that are 

connected together to form a long chain. In general, polymers are classified into three 

different classes which are thermoplastics, thermosets and elastomers (Harper, 2002). 

Among those classes, thermoplastic polymers have been widely used in both 

conservative and extreme applications. 

 

2.2.1 Thermoplastic polymers 

2.2.1.1 Characteristics of thermoplastics 
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A thermoplastic polymer usually begins in the form of a pellet, and then 

becomes softer (i.e. pliable and plastic) with increasing heat. As it cools, it will 

reversely transform back to the solid state without any cross-linked formation. This 

process (i.e. heating and cooling) can be repeated over and over, though continual 

recycling will ultimately degrade the polymer. In general, a thermoplastic polymer is 

subdivided into two distinct classes of molecular arrangement, which are semi-

crystalline and amorphous as can be seen in Figure 2.1. These differences will 

significantly affect the behaviour of the thermoplastic material, especially during 

processing. 

 

Figure 2.1: Molecular arrangement of amorphous and semi-crystalline thermoplastics 

(http://www.azom.com/article.aspx?ArticleID=83)  

 

2.2.1.2 Semi-crystalline versus amorphous thermoplastics 

 

Thermoplastic polymers like polypropylene (PP), polyethylene (PE), nylons 

(PA), polyacetal (POM), and thermoplastic polyesters (PET) are referred to as semi-

crystalline thermoplastics where in the solid state, a great proportion of their 

molecular chains are structurally ordered and closely packed in certain specific 
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alignments. Meanwhile, polycarbonates (PC), polystyrene (PS), polyvinyl chloride 

(PVC) and acrylics (PMMA) are examples of amorphous thermoplastics. This 

indicates that in the solid state, their molecular chains are randomly arranged and this 

is attributed to the complex entanglement. It should be noted that at very high 

temperatures (i.e. melting state), both types of thermoplastic polymers will portray 

similar features of amorphous molecular structures. The key characteristics of semi-

crystalline thermoplastics are translucent or opaque white colour, sharp melting 

point, good resistance to stress cracking and good fatigue resistance. Meanwhile, 

most amorphous thermoplastics tend to be naturally transparent, soften over a broad 

range of temperatures, prone to stress cracking and poor fatigue resistance. Table 2.1 

shows the common examples for both types of thermoplastic polymers and their 

specific characteristics. 

 

Table 2.1: Example of both semi-crystalline thermoplastics and amorphous 

thermoplastics and their characteristics 

(http://www.slideshare.net/Annie05/amorphous-and-semi-crystalline-presentation) 
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2.3 Composite material 

 

A composite material is a material system that consists of two or more 

constituent materials with significant differences in terms of their physical or 

chemical properties, and which remain separate at the macroscopic or microscopic 

scale within the finished structure. The history of composite materials started in the 

early 20
th

 century. During that time, fibreglass was first introduced to reinforce 

several high performance thermoset resins, such as polyester and epoxy resins. After 

a few years, the composites industry evolved from thermosets to plastic resins in 

order to fulfil a wide range of light weight applications. It was reported that the 

earliest applications of glass fibre reinforced composite (GFRC) products were in the 

marine industry (Strong, 2002). In 1943, the first plane with a GFRC fuse ledge was 

flown at the Wright-Patterson Air Force base. Although this composite system was 

introduced almost seven decades ago but the GFRCs still dominate the recent 

composites market (i.e. covering approximately 90% of the composites market).  

 

The rapid development of composite systems has revealed numerous types of 

newer and stronger reinforcements. Not only that, the alternative materials from 

metals and ceramics have also been manipulated as competitive matrix materials. To 

avoid confusion, composite families are divided into three distinct classes depending 

on the nature of their matrix. The most promising composites in recent industries is 

polymer matrix reinforced composites (PMCs). This composites system is based on 

the polymer matrix in either thermosets or thermoplastics. Although most of the 

PMCs are reinforced with fibre, but recently particulate fillers have started to gain 

much attention from researchers as well as industries. Other types of composites 

http://en.wikipedia.org/wiki/Physical_property
http://en.wikipedia.org/wiki/Chemical_property
http://en.wikipedia.org/wiki/Macroscopic_scale
http://en.wikipedia.org/wiki/Microscopic_scale
http://en.wikipedia.org/wiki/Microscopic_scale
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systems are called metal matrix composites (MMCs) and ceramic matrix composites 

(CMCs) (Callister Jr, 1994). 

 

2.4 Polymer matrix reinforced composites (PMCs) 

 

 According to Othman (2007), PMCs are classified into two major groups 

which are thermoplastics and thermosets. The thermoplastic group is subdivided into 

four other groups, i.e. glass mat, fibre reinforced, natural fibre thermoplastic 

composites and mineral reinforced thermoplastics. Meanwhile, the thermoset group 

is subdivided into two groups, i.e. carbon reinforced and natural/synthetic fibre 

reinforced. The detailed classifications of the polymer matrix composites are 

depicted in Figure 2.2. 

 

A different classification of PMCs was made by Alger (1997). He classified 

PMCs into three major groups which are: 

 

 Polymer-polymer combinations (i.e. polymer blends),  

 Polymer-gas combination (i.e. expended, cellular or foamed 

polymers), 

 Polymer-stiff filler combinations (i.e. polymer-fibre or polymer 

particulate composites). 

 

Among these highlighted PMCs, the polymer-stiff filler combinations have 

attracted much attention from both researchers and industries due to their outstanding 

end properties.  
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Figure 2.2: The classification of PMCs (Othman, 2007) 
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2.4.1 Benefits and drawbacks of PMCs 

 

Polymer matrix composites (PMCs) offer a range of potential benefits over 

conventional neat polymers especially for high-end applications. The most common 

reason why PMCs are implemented in many critical applications like structural 

components is related with their capability to provide outstanding stiffness at lower 

weight than that of neat polymers (Callister Jr, 1994). Apart from that, other 

additional benefits offered by PMCs can be summarised as follows: 

 

 Mechanical properties are outstanding 

 Processing of PMCs does not involve high pressure and high 

temperature 

 High abrasion resistance can be achieved 

 Corrosion resistance is remarkable 

 Low thermal expansion can be achieved 

 Impact and damage tolerance characteristics are excellent 

 Low production cost 

 

However, it is important to realise that these highlighted benefits can be only 

achieved with the proper selection of the constituent materials and manufacturing 

techniques. Otherwise, the end results might be different or lesser. It is easy to be 

impressed with the potential benefits offered by PMCs but their drawbacks must also 

be considered. Normally, PMCs that contain natural fillers tend to absorb moisture, 

thus decreasing their overall performance, especially their mechanical properties 

(Dhakal et al., 2007; Mazuki et al., 2010). Apart from that, PMCs may also 
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encounter obscurity with a high coefficient of thermal expansion characteristic which 

results in dimensional instability. The anisotropic nature of PMCs may also 

contribute to difficulties in the design process (Mallick, 1993).  In terms of their 

thermal resistance ability, PMCs show inferior performance at elevated temperatures. 

These disadvantages might restrict their utilization in some fields of application. 

 

2.5 Particulate-filled polymer composites 

 

As defined by the word “particulate”, the reinforcing phase for this kind of 

composites are normally spherical or at least has dimensions of similar order in all 

directions (Lin, 2010). The introduction of particulate fillers into polymer matrices 

will significantly improve nearly every property of the virgin polymers, including 

their processing ability, dimensional stability, chemical resistance, strength, stiffness, 

etc. However, to achieve optimum properties, several factors should be considered 

carefully at the beginning stage of the filler selection. According to Rothon (2003), 

important filler characteristics such as cost, particle size, particle shape and geometry 

are the main elements that require extra consideration during the implementation of 

particulate fillers into a polymer matrix. Therefore, brief descriptions of each factor 

will be discussed in the following subtopics.  

 

2.5.1 Cost 

 

Initially, the main reason for using filled composites is to reduce the cost of 

the raw materials. It is generally known that the polymer is more expensive than the 

particulate filler. However, it is inappropriate to directly compare filled composites 
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with their raw materials in terms of cost saving criteria due to several principal 

reasons. Firstly, filled composites undergo more complex fabrication stages like the 

compounding process, which requires a bigger capital investment, more manpower 

as well as energy. Secondly, the prices of the raw materials (i.e. the filler and matrix) 

are normally quoted according to their weight, whilst those of their composites are 

based on their volume. Therefore, it will be more suitable if the comparison is made 

based on their cost-property performance, where the composite will definitely beat 

the original material (i.e. the filler and matrix). 

 

2.5.2 Particle size 

 

Particulate size is another factor that affects the end properties of filled 

composites. For synthetic fillers, the particulate size is highly dependent on the 

conditions during the synthesis process (i.e. precipitation) and possibly by any 

additional coating process. Meanwhile, for natural fillers, the particulate size is 

determined by the extraction process from the raw deposits, including the mining and 

separation stages. Until recently, numerous methods have been implemented to 

measure the particle size including optical scattering, diffraction from particulate 

suspensions and sieving.  

 

Theoretically, particle size can be divided into three distinct categories 

namely primary particles, agglomerates and aggregates. The term “agglomerates” 

refers to a collection of weakly bonded particles, whereas the term “aggregates” 

refers to a collection of strongly bonded particles. For a better understanding of the 
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highlighted issues, Rothon (2003) has suggested an idealised view of particle types 

and their breakdown during the composite formation as illustrated in Figure 2.3. 

 

 

Figure 2.3: Idealised view of the way filler particles disperse and of the different 

forms of particle types that might be encountered (Rothon, 2003) 

 

 

In most cases, filler systems do not follow the trend shown in Figure 2.3 

where the steps shown are often less sharp and overlap. The majority of them exhibit 

more complicated profiles as depicted in Figure 2.4. From the recorded profile in 

Figure 2.4, it can be seen that those agglomerates, sometimes referred to as flocs, can 

arise due to the loss of colloidal stability in the polymerising systems, or to 

reticulation (filler network formation) above the glass transition, especially in cured 

elastomers, an effect often observed with carbon blacks. This phenomenon becomes 

more difficult and serious for synthetic products, especially those formed by 
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precipitation. For this kind of filler system, strong and complex aggregates are 

present. Normally, these aggregates will break down slowly and thus alter the ideal 

particle dispersion profile in Figure 2.3 

 

 

Figure 2.4: Complex particle dispersion behaviour, as often encountered with fine, 

precipitated fillers (Rothon, 2003) 

 

2.5.3 Particle shape  

 

As with particle size, the particle shape is an additional factor that influences 

the properties of the final product. The shape of the particle is often determined by 

the genesis of the filler, the crystal structure and processes it has undergone. Previous 

researchers have proposed several terms that describe the shape of a particle 

including spherical, flaky, platy, blocky, irregular, acicular, needle, etc. Therefore, 
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some typical particle shapes that are likely to be found in most particulate-filled 

composites are illustrated in Figure 2.5. 

 

Figure 2.5: Some types of common particle shapes in particulate-filled composites 

(Rothon, 2003) 

 

For synthetic fillers, their shape depends on both the production conditions 

and the chemical composition. For example, precipitated calcium carbonate (CaCO3) 

can be produced in various forms including aragonite, calcite or vaterite by merely 

changing the precipitation conditions. These precipitation conditions can be 

manipulated (i.e. during drying and milling) to either produce single crystals or 

complicated aggregates. Meanwhile, the external shape of the mineral fillers is 

determined by their crystal structures as well as by the environmental conditions in 

which the mineral was formed. If permitted to grow without restraint, then the 

particle will be bounded by crystal faces in a regular way which is derived from 



22 

 

regular atomic arrangement. Nevertheless, under certain critical circumstances like 

under pressure, temperature or the effects of impurities, the crystal may adopt 

different shapes or habits such as cubic, fibrous (i.e. fine, long, needles), acicular (i.e. 

needle-like), lamellar (i.e. plate-like) and prismatic. Although, it is almost impossible 

to form perfect crystals, but even poorly formed ones will always show evidence of 

their intrinsic symmetry.   

 

2.6 Particulate-filled thermoplastic composites (PFTCs) 

 

As discussed in the previous section, thermoplastic polymers tend to soften 

appreciably as they are heated, thus decreasing their mechanical performance. Even 

worse, they start to lose their shape at elevated temperatures. Therefore, for the past 

few years, rapid and progressive efforts have been developed to overcome this 

dilemma. This can be seen in the early work on reinforced thermoplastic matrices by 

Leong  and his co-workers  (Leong et al., 2004b). Surprisingly, they found that the 

addition of mineral fillers (i.e. talc and CaCO3) increases the modulus and 

crystallization temperature of unfilled thermoplastics.  

 

The incorporation of mineral fillers including kaolin, talc, calcium carbonate 

and mica into thermoplastic polymers has become a common practice in the plastic 

industry. The main purpose for this kind of action is related to the cost reduction of 

moulded products. Apart from the cost reduction, fillers are also used to improve the 

mechanical properties of thermoplastics, such as strength, rigidity, hardness and 

durability (Katz and Milewski, 1987; Rusu et al., 2001; Chan et al., 2002). However, 

the optimum filler loading should be determined carefully since excessive fillers may 
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adversely affect the ductility, processability and strength properties of composites 

(Premalal et al., 2002; Fu et al., 2008). Lately, PE and PP are the most popular semi-

crystalline thermoplastic polymers to be used as matrices in compounding with 

fillers. Meanwhile, polystyrene (PS) and polycarbonates (PC) have recorded a 

similar popularity trend for amorphous thermoplastic polymers.  

 

Many studies have been demonstrated on particulate-filled polyethylene 

composites in order to fully characterise their overall performance. As pointed out by 

Zhao et al. (2005),  the strength and modulus of PE/clay composites have been found 

to increase perpendicularly with increasing clay loading, whereas the notched impact 

strength shows a contrary trend. In addition, the thermal stability of PE/clay 

composites is far better than that of unfilled PE up to certain clay loadings. It is 

believed that organoclay can play two conflicting functions in the thermal stability of 

polymer/clay nanocomposites. At low clay loading, the clay layers become effective 

barriers, thus significantly increasing the thermal stability of the PE/clay composites. 

However, with increasing clay loading, the catalysing effect rapidly rises and 

becomes dominant, so that the thermal stability is decreased. The addition of metallic 

filler into the PE matrix is believed to increase the thermal conductivity properties of 

the neat PE as previously reported by Kumlutas et al. (2003). They proved that the 

addition of conductive particles (i.e. aluminium) into the HDPE matrix gradually 

increased the thermal conductivity of the composites as compared to unfilled HDPE. 

 

Another common commodity plastic is PP. Progressive attention has been 

specifically made in order to extend its applications from conservative to more 

challenging applications. For this reason, several researchers have been intensively 
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involved in works that are related with reinforced PP. For example, Svoboda et al. 

(2001), reported that the presence of clay filler increases the tensile modulus but 

decreases the elongation up to a certain extent. Typically, the pure PP and the 

PP/clay composites with a low clay content exhibit yielding behaviour in the stress-

strain characteristic with a maximum elongation of up to 200%. Meanwhile, PP/clay 

composites that had been reinforced with a clay content higher than 7% did not show 

any yielding behaviour, where samples were immediately broken after reaching the 

maximum loading (i.e. stress). More recently, a study by Manchado et al. (2005) 

investigated the effect of different fillers (i.e. single-walled carbon nanotubes and 

carbon black) on both the thermal and mechanical properties of reinforced PP 

composites. Initially, it was found that the introduction of both reinforcements 

significantly increased the Young’s modulus of the composites up to a certain extent. 

However, the increment trend was somehow different between these two fillers. 

They mentioned that a further increase in single-wall carbon nanotubes proportion in 

the composites (i.e. 1 wt %) provided a marked decrease in the tensile modulus, 

whereas carbon black fillers recorded an increment pattern with increasing filler 

content. The difference is mainly attributed to the morphology of both fillers. For a 

similar interface area, carbon blacks with more isometric particles may induce a 

significant difference in their aspect ratio, meaning that the former are able to 

entangle and interconnect more easily and more often than that of the latter. 

Meanwhile, increasing the single-walled carbon nanotubes concentration in the 

composites may encourage the formation of aggregates. It is assumed that the 

aggregates of nanotube ropes will significantly reduce the aspect ratio 

(length/diameter) of the reinforcement, hence reducing the rigidity of the composites. 

 


