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PENCIRIAN ANGKA HINGAR
ATAS-WAFER UNTUK LITAR BERSEPADU

FREKUENSI RADIO

ABSTRAK

Kaedah nyah-benaman pengukuran Angka Hingar (AH) atas-wafer untuk Litar

Bersepadu Frekuensi Radio (LBFR) dibentangkan dalam tesis ini. Ini diikuti den-

gan analisa ketakpastian gandaan untuk menyiasat pengaruh pengukuran skalar dan

vektor terhadap AH. Dalam tesis ini, semua unsur yang terlibat ditentukan dan dikat-

egorikan sebagai sistem berbilang tahapan. Kabel dan kuar masukan serta kabel dan

kuar keluaran masing-masing dikategorikan sebagai tahapan masukan dan keluaran.

Kemudian, parameter-S untuk setiap tahapan tersebut diukur dengan menggunakan

pendekatan kaedah pengukuran parameter-S satu liang. Seterusnya, persamaan Fri-

is yang terkenal diaplikasi untuk membetulkan sumbangan hingar yang datang dari

setiap tahapan tersebut. Dalam erti kata untuk mengesahkan kaedah yang dicadan-

gkan ini, prosedur nyah-benaman tersebut diaplikasikan pada rekabentuk rujukan, di-

mana Penguat Hingar Rendah (PHR) model MAX2654 dari Maxim Integrated Prod-

ucts digunakan. MAX2654 mempunyai spesifikasi AH sebanyak 1.5 dB pada 1.575

GHz. Pada frekuensi operasi, perbezaan sebanyak 0.17 dB diperoleh dengan mem-

bandingkan AH yang tercatat dalam spesifikasi rekabentuk rujukan dengan keputusan

pengukuran menggunakan prosedur nyah-benaman. Berlawanan dengan perbezaan

sebanyak 1.8 dB diperolehi tanpa prosedur nyah-benaman, proses pengesahan terse-

xix



but telah membuktikan kaedah yang dicadangkan ini boleh menyumbang kepada pen-

gukuran AH atas-wafer yang lebih jitu. Prosedur nyah-benaman tersebut kemudian-

nya diaplikasikan pada sumber induktif ternyahjana PHR yang direkabentuk untuk

aplikasi Sistem Kedudukan Global (SKG) dengan frekuensi operasi pada 1.44 GHz.

AH 3.8 dB diperoleh dengan prosedur nyah-benaman, yang mana lebih rendah dari

6.06 dB yang diperoleh tanpa menggunakan prosedur nyah-benaman. Untuk anali-

sis ketakpastian, AH yang diperoleh dengan pengukuran skalar melalui penggunaan

gandaan sisipan (Gi) dibandingkan dengan AH yang diperoleh dengan gandaan boleh

dapat (Ga) menerusi pengukuran vektor. Berlainan pengukuran skalar, keadaan pe-

madanan Peranti Dibawah Ujian (PDU) akan dipertimbangkan dengan penggunaan

pengukuran vektor. Keputusan pengukuran AH menerusi Ga menunjukkan pembaikan

sebanyak 0.18 dB jika dibandingkan dengan pengukuran AH menggunakan Gi, yang

mana menunjukkan pemadanan mempunyai pengaruh besar pada pengukuran AH.

Akhir sekali, kesan pemadanan terhadap AH dianalisa. Analisa ini dibuat dengan

memperkenalkan tiga galangan piawai keatas PDU untuk memberikan keadaan pe-

madanan yang berbeza. Untuk situasi tersebut, AH diukur pada 5.63 dB, 5.76 dB, dan

4.75 dB yang mana masing-masing adalah untuk galangan ‘PINTAS’, ‘BUKA’, dan

‘BEBAN’.

xx



ON-WAFER NOISE FIGURE
CHARACTERIZATION FOR RADIO

FREQUENCY INTEGRATED CIRCUITS

ABSTRACT

A de-embedding method of an on-wafer Noise Figure (NF) measurement for Ra-

dio Frequency Integrated Circuit (RFIC) is presented in this thesis. This is then fol-

lowed by gain uncertainty analysis to investigate the influences of scalar and vector

measurements on the NF. As implemented in this thesis, all elements involved in the

setup were determined and classified as a multi-stage system. Input cable and probe

as well as output cable and probe were both grouped into input and output stages, re-

spectively. Then, S-parameter for these input and output stages were measured using

one-port S-parameter measurement approach. Next, a well known Friis equation was

applied to correct the noise contributions coming from these stages. In order to val-

idate the proposed method, the de-embedding procedure was applied on a reference

design, where Low-Noise Amplifier (LNA) modeled MAX2654 from Maxim Inte-

grated Products was used. MAX2654 has the specification of 1.5 dB NF at 1.575 GHz.

At the frequency of operation, a difference of 0.17 dB attained by comparing Noise

Figure (NF) specification of reference design and the result of measurement that us-

ing the de-embedding procedure. As opposed to 1.8 dB difference obtained without

the de-embedding method, the validation process has proven that the proposed method

contributes to a more accurate on-wafer NF measurement. The de-embedding proce-
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dure is then applied on the inductively source degenerated LNA designed for Global

Positioning System (GPS) application with the frequency of operation at 1.44 GHz. NF

of 3.8 dB achieved using the de-embedding procedure, which is lower than the 6.06

dB without the de-embedding procedure. As for the uncertainty analyses, NF obtained

with a scalar measurement through the use of an insertion gain (Gi) was compared to

the NF obtained with an available gain (Ga), utilizing a vector measurement. Unlike

scalar measurement, matching conditions of the DUT were encountered by utilizing

the vector measurement instead. Results for the NF measurement using Ga shows

0.18 dB improvement as compared to the NF measurement using Gi, which shows that

matching has great influences on the NF measurement. Lastly, the matching effects

on the NF were analyzed. This analysis was done by introducing three impedance

standards on the DUT to create different matching conditions. Under these circum-

stances, NF was measured at 5.63 dB, 5.76 dB, and 4.75 dB for ‘SHORT’, ‘OPEN’

and ‘LOAD’ impedance standards, respectively.
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CHAPTER 1

INTRODUCTION

The evolution of wireless mobile communication from the 3rd generation to the 4th

generation system creates strong demand for on-chip circuitry. Furthermore, the in-

creasing pressure for lower power, higher integration and lower production cost in

wireless communication market is another reason that drives the industry to move to

on-chip solutions. Besides that, the current trend of Radio Frequency (RF) commu-

nication system is to produce smaller and low-noise wireless receiver circuitry, which

necessitate an accurate NF measurement (Mohd. Noh and Zulkifli, 2006), (Mustaffa

et al., 2008a), (Ramiah and Zulkifli, 2006). The NF performance of this wireless

receiver is highly dependent on its components. In the architecture of the wireless

receiver, the industry uses parallel components such as RF filters and Low-Noise

Amplifier (LNA) at the front end of the receiver circuit, which shows that LNA is

actually the backbone of the wireless receiver since it is the first gain stage in the re-

ceiver path. The main function of an LNA is to increase the level of input signal while

minimizing the Signal-to-Noise Ratio (SNR) of the whole system at the same time

(Mohd. Noh and Zulkifli, 2007), (Mustaffa et al., 2008b). Therefore, by considering

the important function of an LNA, NF is one of the crucial parameters that need to be

measured accurately.

Noise, is usually referred to as excitations of undesired signals affecting overall
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system performance (Goo, 2001). On the other hand, NF (a measure of noise generated

by a device) is one of the system parameters that characterize an ability of a system to

process low level signals (Maury Microwave, 1999). One option for improving NF is

to increase the transmitter power, which is very costly. Another option is to improve

the LNA performance, which requires NF characterization. It is always more practical

and easier to improve the LNA performance than to increase the transmitter power

(Agilent, 2006).

1.1 Motivation

The ever-increasing demand for high frequency system and on-chip RF circuitry has

brought about the need to measure a component directly on-wafer (Marzuki et al.,

2005), (Beland et al., 1998). On-wafer NF measurement is essential for RF chips

screening and design verification. Access to the device is normally done physically

through a probe. However, parasitic associated with cables, connectors and probes

contributes to inaccurate on-wafer NF measurement (Chen and Deen, 2001). There-

fore, proper correction to eliminate these parasitic is crucial for a reliable NF result

(Weng, 1995).

Several groups have reported their approaches to obtain an accurate on-wafer noise

measurement. (Kantanen et al., 2003) and (Vaha-Heikkila et al., 2003) using a mea-

surement system, which is based on cold-source method and computer controlled soft-

ware to extract noise parameters. On the other hand, (Long et al., 2003), (Tiemeijer

et al., 2005), (Chen et al., 2008) using a Y-factor method as a basis of on-wafer noise

measurement system. However, the similarity of them is that they had used an expen-
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sive tuner in the measurement setup to generate various source impedance. Several

points of noise parameters were measured from these source impedance generated

(Escotte et al., 1993). Optimization technique was then adopted to extract the four

noise parameters based on method of least squares fit (Hu and Weinreb, 2004). The

four noise parameters are the minimum NF, NFmin, noise resistance, Rn, and optimum

impedance, Zopt , or source admittance, Yopt (Asgaran et al., 2007). These noise pa-

rameters are the function of source impedance and require measured NF data in order

to form several linear equations. A minimum of four independent measurements are

required to form the equations. However, more measurement will increase the accu-

racy of the results (Asgaran et al., 2006). From here, NF is then calculated using the

noise parameters obtained based on the optimization techniques. This method is very

time-consuming and requires an expensive tuner (Xiong et al., 2007). Furthermore, it

is not a direct method to measure NF, where it needs to measure noise parameters first.

Therefore, an accurate, tunerless, and direct method of NF measurement needs to be

developed.

There are several methods available for measuring NF and the most common one is

the classical Y-factor technique (Victor and Steer, 2005). The classical Y-factor tech-

nique is implemented in some high-end commercial NF characterization systems, in

which only noise power measurements are involved (Tiemeijer et al., 2005), (Otegi

et al., 2005b). However, because of the use of scalar noise power measurements alone,

mismatch conditions in evaluating the noise performance of a device were ignored

(Engen, 1973). The existence of mismatch in the measurement path would result in

an error of the NF measurement (Adamski, 2000). A corrected Y-factor technique was

proposed by combining the classical Y-factor method with scattering parameter mea-
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surements (Collantes et al., 2002). Corrected Y-factor technique utilized an available

gain (Ga) in the NF calculation through the use of vector measurement whereas clas-

sical Y-factor technique used an insertion gain (Gi) in NF calculations through the use

of scalar measurement (Adamski, 2002). However, the comparison between Ga and Gi

has never been discussed and as of now, the best gain definition to be used for the NF

measurement is ambiguous.

At present, automated systems that perform NF and gain measurements are com-

mercially available. Gain is measured by taking the ratio of noise output power as the

device is being inserted and removed. Then, NF is calculated based on this ratio. It is

an accurate NF measurement provided that all the elements involved are well matched,

however, less concern was given to the mismatch associated with cables, connectors,

probes, and noise sources (Di Paola and Sannino, 1999). Lack of knowledge on how

the mismatch conditions influence NF is one of the reasons that contribute to an error

during NF characterization.

1.2 Overview

This work focuses on the accurate method of on-wafer NF measurement. To achieve its

goal, this thesis tackles several approaches to NF measurement such as tuner-less setup

of on-wafer NF de-embedding procedures, gain uncertainty analysis, and the influence

of impedance mismatch to the NF measurement. Chapter 1 in this thesis, deals with

the introduction of this work and motivation for the thesis.

An overview about NF is given in Chapter 2. A brief explanation about NF theory
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is presented, and the discussions are elaborated to the concept of NF and NF calculation

for a multi-stage system. The fundamental principles on the NF measurement and

standard method to measure NF are also covered in this chapter. The dependence of

NF measurements on the noise linearity principle is shown together with an example

of a simple NF measurement. Overall, Chapter 2 is about the fundamental of on-wafer

NF measurement as it is important to understand the fundamental parts before going

to the subsequent stages.

Chapter 3 highlights the methodology of on-wafer NF measurement. At the begin-

ning of this chapter, basic elements involved in NF measurement experimental setup

are discussed. Then, the chapter addresses the issue of on-wafer NF measurements

and discusses the de-embedding method proposed. Besides that, other issues that in-

fluence the NF such as gain uncertainty and matching conditions are also covered in

this chapter.

In Chapter 4, the implementation of the experimental procedures carried out are

included. Detailed procedures as well as all the mathematical equations are provided.

As for the comparative study, measurement procedures for the commercial LNA is

also outlined. The measurement procedure for the de-embedding method as well as

gain uncertainty analysis method is shown, which rely on the use of the conventional

Noise Figure Analyzer (NFA) and Vector Network Analyzer (VNA). Semiconductor

Parameter Analyzer (SPA) is used to supply and monitor Direct Current (DC) of a

device.

Next, results and discussions are discussed in Chapter 5. Results of measurement
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between the on-wafer NF measurement without the de-embedding and by including

the de-embedding procedures are placed in comparison. The analysis of NF sensitivity

to the gain uncertainty and the effect of NF to the device measured under various

conditions have also been shown. Discussions on each observations are also conducted.

Finally, Chapter 6 concludes finding of this work. This chapter clearly specifies the

accomplishment of this work. It also includes the future work that can be performed

in order to further develop the research.

Additional to the seven chapters, MATLABr programme and derivation of the

equations used are included in the appendices. Besides that, some photos and an exam-

ple of on-wafer measurement are also provided. These materials may help researchers

of similar studies in doing the measurements and to further enhance their research.
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CHAPTER 2

OVERVIEW OF NOISE FIGURE

The general definition of the word ‘noise’ in Oxford dictionary includes "pleasant and

unpleasant sound" or "irregular fluctuations accompanying transmitted signals but not

relevant to it" (Jewell, 2006). In the context of electronic circuitry, the second part of

the definition above would be more relevant.

Noise is usually referred to as any undesired excitations to the system. In other

words, noise is "everything except for the desired signal" (Goo, 2001). Sources of

noise can either be internally or externally. There are various sources of external noise,

which include: human voices, broadcasting signals that induce electromagnetic field,

electric motors used in the industrial sector and home appliances, and also sources

from nature such as lightning. Proper shielding is adequate in order to avoid these

external noises from affecting the performance of an electronic circuits and devices.

A noise phenomenon generated within a device is known as an internal noise

(Rogers and Plett, 2003), (Demir, 1997). Depending only on the shield protection

is not sufficient enough to reduce the effect of the internal noise since the noise is

inherent to a system or a device. Main sources of internal noise that are associated

with Integrated Circuits (IC) are thermal noise, shot noise, flicker noise, burst noise

and avalanche noise (Gray, 2001), (Refer to Appendix A for overview of these noises)

(Carlson et al., 2002).
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NF is a measure of noise generated by two-port devices. In other words, NF is

also known as a parameter that characterizes the ability of a receiver to process low

level signals. Once it is known, the sensitivity of the receiver can be estimated (Demir,

1997). In the context of spectrum analysis, the presence of noise in a wireless system

is sometimes labeled as noise floor. The amplitude of a transmitted signal data must be

higher than this noise floor for a successful wireless communication. Therefore, one

option to improve NF is to increase the transmitter power, which is very expensive to

implement and may even perhaps be illegal according to the law of the local govern-

ment. The other approach is to lower the NF of an LNA considering it is the first gain

stage in a receiver path as shown in Figure 2.1. LNA is a key component which is

often positioned at the front-end of a receiver to ensure the received signals are quality

enough for further processing (Au, 1998). Its main function is to provide gain amplifi-

cation of the received signals, while at the same time minimizing overall NF attributed

by the receiver stage. Due to this fact, LNA is one of the most important stages to be

designed and hence, an accurate NF measurement becomes crucial (Mohd Noh, 2009),

(Marzuki et al., 2004).

Antenna

Low-noise Amplifier 
(LNA)

Analog-Digital/
Digital-Analog

 Converter 
(ADC/DAC)

A-D

D-A

Digital Signal 
Processing (DSP)

Coder-Decoder
 (CODEC)

Output

Figure 2.1: Ideal receiver.
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2.1 Concept of Noise Figure

NF is a quantity used as a ’figure of merit’ to describe the noise performance of a

device. It came into popular use in 1944, when Harold Friis defined the terms. Noise

Factor (F) is a numerical ratio of NF, where NF is expressed in dB. Hence,

NF = 10logF. (2.1)

F is defined as SNR at the input (Si/Ni) to the SNR at the output (So/No). The available

signal power at the input (Si) and available noise power at the input of a device (Ni),

represent signal and noise at the input, whereas available signal power at the output (So)

and available noise power at the output of a device (No), represent signal and noise at

the output, respectively (Friis, 1944). Basically in a wireless receiver, a perfect am-

plifier would amplify both the received signals as well as the noise, while maintaining

the SNR at its input and output at the same time. However, in any real characterization

setup, the amplifier itself would also add some extra noises of its own. These extra

noises are actually the NF of the amplifier. Refer to the following explanations, which

are based on illustrations shown in Figure 2.2 and 2.3 to best describe the above

statement (Agilent, 2006).

Figure 2.2 shows an example of input signal of an amplifier, which indicates about

40 dB above noise floor. On the other hand, Figure 2.3 shows an example of output

signal of the amplifier, which has been amplified by 20 dB. However, the amplifier

has also added its own noise, which is about 10 dB more. Therefore, the output signal

observed is only 30 dB above the noise floor. In this case, the degradation in signal-to-
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Figure 2.2: Example of amplifier input power.

noise ratio is 10 dB. The 10 dB is actually the NF of the amplifier.

2.1.1 Noise Figure of a Two-Port Device

An example of a linear two-port device is shown in Figure 2.4.

Based on the definition of F from Section 2.1, the NF equation of a two-port device

is written as (Engberg and Larsen, 1995),

F =
Si/Ni

So/No
. (2.2)

In Figure 2.4,

So = GSi, (2.3)

and,

No = Na +GNi, (2.4)
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Figure 2.3: Example of amplifier output power.

Si

Ni

G

So=GSi

No=GNi+Na

Na

Figure 2.4: Linear two-port device.

where noise power added by a device (Na) and gain (G), are the noise added and gain

of a two-port device, respectively. Substituting Equation 2.3 and 2.4 into Equation

2.2,

F =
Si/Ni

GSi/(Na +GNi)
. (2.5)

Leading to,

F =
Na +GNi

GNi
, (2.6)
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Ni is actually a thermally available noise power at the input and is referred to by,

Ni = kT ∆ f , (2.7)

where k is Boltzmann’s constant and is equal to (1.38×10−23)(J/K), ∆ f is the change

of bandwidth and T is the temperature expressed in Kelvin.

Therefore, Equation 2.6 can be written as,

F =
Na + kT ∆ f G

kT ∆ f G
, (2.8)

2.1.2 Noise Figure of a Multi-Stage System

Multi-stage system is an arrangement of several individual stages in series. An example

of multistage system is a receiver module, which consists of an antenna, LNA and other

components as illustrated in Figure 2.1. The NF of a multi-stage system can be best

explained using a diagram shown in Figure 2.5.

Noise Source

First Stage Second Stage

NiG1

Na1

Na1G2

Na2

No2No1Ni

Figure 2.5: Example of multiple-stage system.
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Information about the NF of a multi-stage system relies on the knowledge of the

NF of each individual stage. It is based on the cascade equation, which is derived

below. In Figure 2.5, a multi-stage system can be treated as a black box, which is

illustrated as a dotted box. Therefore, a derivation can be made by making a reference

to Section 2.1.1. Overall noise factor of all the stages (Fall) is then obtained by solving

all the unknown in the equation.

In Figure 2.5, Fall can be attained by the knowledge of available noise power at

the output for the second stage (No2). No2 is derived using the method shown in (Davis

and Agarwal, 2001). However, it is started by having the knowledge of available noise

power at the output for the first stage (No1). In Figure 2.5, Na1 is the noise power

added by a device in the first stage, Na2 is the noise added by a device in the second

stage, G1 is the gain of the first stage and G2 is the gain of the second stage. From

Equation 2.4 and 2.7, No1 can be written as,

No1 = Na1 +G1Ni = kT ∆ f G1(F1−1)+G1kT ∆ f . (2.9)

No2 is then calculated by multiplying No1 and gain of the second stage (G2), which

gives,

No2 = Na2 +G2No1 (2.10)

Therefore, by adopting Equation 2.9 to the Equation 2.10 the equation reads,

No2 = Na2 +Na1G2 +G1G2Ni, (2.11)
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Rearranging Equation 2.8 and substituting it into Equation 2.11 gives,

No2 = kT ∆ f G2(F2−1)+ kT ∆ f G1G2(F1−1)+ kT ∆ f G1G2, (2.12)

leading to,

No2 = kT ∆ f G1G2(F1 +
F2−1

G1
). (2.13)

From here, Fall is obtained by adopting Equation 2.6, 2.4 and 2.13, since GNi is equal

to kT ∆ f G1G2,

Fall =
kT ∆ f G1G2(F1 +

F2−1
G1

)

kT ∆ f G1G2
= F1 +

F2−1
G1

. (2.14)

Equation 2.14 is known as the cascade equation. By performing the same method-

ology, the cascade equation can be further extended up to several stages, as long as the

components composed in the multi-stage system are in series. The observation made

from this cascade equation is that whenever the gain of the first stage is high, noise

contributions from the second stage and so on will be small. Therefore, in any wire-

less communication system, gain of the first stage must be high in order to reduce the

overall NF of the system.

2.2 Fundamentals of Noise Figure Measurement

This section gives an insight regarding the fundamentals of the NF measurement. The

NF measurement relies on the principle of noise linearity. In noise linearity, No of

a device is dependent on the amount of Ni, which has been stimulated to the input

port of the device. No is proportional to Ni as shown in Figure 2.6. Na on the other
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hand, is not influenced by Ni or No. Na comes solely from the device. Therefore,

no matter how much the amount of noise is stimulated to a device, Na remains the

same. By manipulating this kind of behavior, NF of a device can be obtained. Ni is

actually thermally available noise power at the input, which is generated by a noise

source. In Figure 2.6, a larger amount of noise power at the input Ni, is generated as

the temperature of noise source increases.
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Slope = kGΔf

Noise Source Temperature (K)

Power, P (W)

Temperature, T (K)

Equivalent to available noise power at the input, Ni

Na

Figure 2.6: Graph plot to represent noise linearity (Agilent, 2004).

From Figure 2.6, the NF is obtained by adopting a well-known straight line equa-

tion, y = mx+ c. In this case, the slope of the graph (m) represents kG∆ f , whereas the

intercept points at y-axis (c), y-axis (y) and x-axis (x) represent Na, No and temperature

(K) (T ), respectively. The substitution of the straight line equation with the equivalent

NF representation gives,

No = kG∆ f T +Na, (2.15)
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which corresponds to Equations 2.4 and 2.7. From here, Equation 2.15 is substi-

tuted into Equation 2.6, which finally leads to NF after applying Equation 2.1. The

advantage of using the noise linearity principle in NF measurement is that, by having

two levels of Ni, two levels of No can be produced. Then, noise linearity graph plot is

realized. Therefore, one simple mechanism to have these two levels of Ni is by turning

‘ON’ and ‘OFF’ the noise source. Noise source generates a small amount of noise

during its ‘OFF’ state, which is always referred as the temperature of noise source dur-

ing the ‘COLD’ state (K) (Tc) since there is no voltage that turn on the diode located

inside the noise source. Then, larger amount of noise during its ‘ON’ state, which is

referred as the temperature of noise source during the ‘HOT’ state (K) (Th), since there

is voltage that turn on the diode this time.

2.2.1 The Y-Factor Method

Y-factor method is the most widely used procedure for the NF measurement (Collantes

et al., 2002). The Y-factor method requires measuring the two levels of No for the two

levels of Ni stimulated. The ratio of these two Nos is called as the Y-factor (Geens and

Rolain, 2001). Y-factor can be represented by, (Garelli et al., 2009)

Y =
N2

N1
, (2.16)

where noise output power during the ‘COLD’ state (N1) and noise output power during

the ‘HOT’ state (N2) are the two levels of the measured No. The derivation of Y-factor

methodology that leads to NF is best explained using the illustration shown in Figure

2.7 (Jasper, 2010).
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Figure 2.7: Graph plot for the y-factor method.

N1 and N2 are measured while stimulating small amount of thermal noise during

the ‘COLD’ state (Ni1), and large amount of thermal noise during the ‘HOT’ state (Ni2).

Based on these values, the noise linearity as in Figure 2.7 is plotted. The slope which

is kG∆ f , is calculated as follows:

N2−N1

Th−Tc
= kG∆ f . (2.17)

Combining Equation 2.15 and Equation 2.6 give,

F =
No

GNi
. (2.18)

Substituting Equation 2.7 and by the assumption that No is represented by N1 and N2,

Equation 2.18 becomes,

F =
N2

kGTh∆ f
=

N1

kGTc∆ f
. (2.19)
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Then, by combining Equation 2.17 with Equation 2.19 this leads to,

F =
N1

Tc
(

Th−Tc

N2−N1
) = (

Th−Tc

Tc
)(

N1

N2−N1
). (2.20)

Adopting Equation 2.16,

1
Y −1

=
N1

N2−N1
, (2.21)

and,

ENR =
Th−Tc

Tc
, (2.22)

where will be explained in the next chapter. Therefore, the F equation that leading to

NF based on Y-factor method can be written as

F =
ENR
Y −1

. (2.23)

Noted that in the Y-factor method, only scalar power measurements are involved.

2.2.2 Overview of Noise Figure Measurement

An example of a simple NF measurement setup is shown in Figure 2.8. It is a two-

stage cascaded system, which is composed of Device Under Test (DUT) and NFA.

Utilizing Equation 2.14 and assume that DUT is the first stage of the system whereas

NFA is the second stage, Equation 2.14 is now written as,

Fall = FDUT +
FNFA−1

GDUT
. (2.24)
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In Equation 2.24, the noise factor of the device under test (FDUT ) and gain of the

device under test (GDUT ) represents the noise factor of the first stage (F1), and gain

of the first stage (G1), whereas the noise factor of the noise figure analyzer (FNFA)

represents the noise factor of the second stage (F2), respectively.

Noise Figure 
AnalyzerDUTNi Fall

Figure 2.8: The block diagram of the NF measurement system.

To get FDUT , Equation 2.24 needs to be rearranged as follows:

FDUT = Fall−
FNFA−1

GDUT
. (2.25)

In Equation 2.25, FDUT is equal to Fall only if the GDUT is large enough in order to

eliminate the second term. Otherwise, the knowledge of FNFA is required to accurately

calculate FDUT . FNFA in Equation 2.25 can be measured by directly connecting the

noise source to the NFA as shown in Figure 2.9. Figure 2.10 shows a block diagram

for such a connection. It is the same as the calibration setup. After calibration, NFA

holds the FNFA value. During the actual measurement, NFA will automatically subtract

FNFA and only displays the value of FDUT .

Fall and GDUT , are measured using the illustration shown in Figure 2.11, which is

based on the Y-factor method. The NF of the DUT can be calculated by substituting

FNFA, Fall , and GDUT into Equation 2.25.
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Noise Figure Analyzer

Noise Source 

28V

Noise ReceiverGenerates DC 
to Noise Source

Figure 2.9: Connecting noise source to the NFA directly.

Noise Figure 
AnalyzerNi FNFA

Figure 2.10: The NF of the NFA’s determination.

Noise Figure Analyzer

Noise Source 

DUT

Noise ReceiverGenerates DC to 
Noise Source

28V

Figure 2.11: The NF measurement of the DUT.
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