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NEURAL NETWORK MODELING AND OPTIMIZATION FOR 

ENZYMATIC HYDROLYSIS OF XYLOSE FROM RICE STRAW 

 

 

ABSTRACT 

 

In this thesis, enzymatic hydrolysis was utilized in the production of xylose 

from rice straw. The process model was developed by the modeling techniques using 

feed-forward artificial neural network (FANN) and optimized using both particle 

swarm optimization (PSO) and genetic algorithm (GA). The parameters studied such 

as temperature, agitation speed and concentration of enzyme in the process were 

investigated in order to get an optimum yield of xylose during enzymatic hydrolysis 

process. Data collected from an experimental design using response surface 

methodology (RSM) were used to develop the FANN modeling. The data samples 

has been split into training, testing and validation data set before re-sampling with 

bootstrap re-sampling method. Then, the FANN model was used to predict the model 

performance with one hidden layer and the PSO and GA were used to predict the 

optimum conditions of the process. The number of nodes in the hidden layer 

obtained is six where the performance on the model is satisfactory with the 

architecture of FANN, 3-6-1. The correlation coefficient of training and testing set 

were indicated at 0.9970 and 0.9975 respectively though the correlation coefficient 

of validation obtained was 0.8501. The optimization of xylose production using the 

GA method obtained conditions of 50.3˚C, 154 rpm and 1.6944 g/l. The optimum 

xylose production was predicted as 0.1845 g/l at optimal condition obtained by using 

GA. Meanwhile with PSO, the optimum temperature observed was at 50 °C, 132 



xviii 
 

rpm for optimum value of agitation speed and 1.6474 g/l optimum xylanase 

concentration respectively. The optimal yield of xylose predicted was 0.1845 g/l 

using PSO for the enzymatic hydrolysis process. The laboratory experiment was 

carried out to validate the prediction of optimization result. It is shown from the 

experiment that the concentration of xylose obtained by using prediction optimum 

parameters for both PSO and GA are 0.2331 g/l and 0.2398 g/l respectively. The 

average error for the prediction and experimental values for the optimization are 

29.97% and 26.34% for GA and PSO respectively. Therefore, the enzymatic 

hydrolysis on the production of xylose has been enhanced by predicting the optimum 

conditions utilizing the developed model that fits the experimental data. 
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PEMODELAN RANGKAIAN NEURAL DAN PENGOPTIMUMAN 

HIDROLISIS ENZIM DARIPADA XILOSA DARI JERAMI PADI 

 

 

ABSTRAK 

 

 Tesis ini merangkumi kajian terhadap hidrolisis enzim yang telah digunakan 

dalam penghasilan xilosa daripada jerami padi. Proses hidrolisis enzim terhadap 

pengeluaran xilosa ini telah dikaji penghasilannya dengan menggunakan teknik 

permodelan seperti model suap-depan jaringan rangkaian neural (FANN) dan 

pengoptimuman proses dengan menggunakan kaedah perkumpulan zarah (PSO) dan 

algoritma genetik (GA). Parameter-parameter yang diuji ketika melakukan proses 

hidrolisis enzim adalah suhu, kelajuan pengadukan dan kepekatan enzim untuk 

mendapatkan hasil xilosa yang optima. Data-data yang diperolehi dari rekabentuk 

eksperimen yang dihasilkan dengan mengunakan kaedah permukaan sambutan 

(RSM) adalah diperlukan untuk membina model rangkaian neural. Sampel-sampel 

data telah dibahagikan kepada set latihan, set pengujian dan set pengesahan sebelum 

data di sampel semula dengan menggunakan kaedah ikat-but sampel semula. 

Lanjutan itu, model FANN telah digunakan untuk meramalkan prestasi model 

dengan hanya menggunakan satu lapisan terlindung dalam rangkaiannya manakala 

kedua-dua PSO dan GA telah digunakan untuk meramalkan keadaan proses yang 

optimum. Bilangan nod yang didapati dalam lapisan terselindung adalah sebanyak 

enam nod di mana ramalan keputusan prestasi adalah memuaskan untuk pemodelan, 

justeru itu, seni bina untuk rangkaian ialah 3-6-1. Pekali sekaitan untuk set latihan 

dan set pengujian masing-masing adalah 0.997 dan 0.9975, manakala pekali sekaitan 
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untuk set pengesahan adalah 0.8501. Pengoptimuman penghasilan xilosa dengan 

menggunakan kaedah GA telah dicatat pada 50.3˚C, 153.5 rpm dan 1.6944 g/l. 

Penghasilan xilosa optima yang diramalkan adalah sebanyak 0.1845 g/l iaitu pada 

keadaan yang optima seperti yang diramalkan oleh GA. Sementara itu, suhu 

optimum dicerap pada 50 °C manakala 132 rpm adalah untuk kelajuan pengadukan 

yang optimum dan kepekatan enzim yang optimum adalah 1.6474 g/l seperti yang 

telah dioptimumkan oleh PSO. Penghasilan xilosa yang optimum telah diramalkan 

sebanyak 0.1845 g/l dengan menggunakan PSO untuk proses hidrolisis enzim. 

Keputusan ramalan pengoptimuman telah disahkan dengan melakukan ujikaji 

makmal terhadap proses hidrolisis enzim, di mana kepekatan xilosa telah diperolehi 

sebanyak 0.2331 g/l dan 0.2398 g/l masing – masing dengan menggunakan PSO dan 

GA. Purata kesalahan untuk nilai-nilai yang diramalkan dan nilai-nilai yang didapati 

melalui eksperimen untuk perngoptimuman adalah masing-masing sebanyak 29.97 

% dan 26.34% terhadap GA dan PSO. Sehubungan itu, hidrolisis enzim ke atas 

penghasilan xilosa telah ditingkatkan dengan penemuan keadaan yang optimum dan 

model yang dibina sesuai dengan data eksperimen.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

 

This research studies the bioprocess production of xylose from rice straw, a 

topic which normally grabs the attention of researchers due to the complexity of the 

process, thus it is quite challenging in implementing process modeling and 

optimization of the process itself. In this study, the research has been separated into 2 

major studies which are process modeling and optimization for the enzymatic 

hydrolysis of xylose from rice straw. The first part of the research is basically the 

model development of the enzymatic hydrolysis by utilizing the capability of feed-

forward artificial neural network (FANN) which is known as one of the artificial 

intelligence tools. Then, the second part of the research is an optimization of the 

process by using the particle swarm optimization (PSO) and genetic algorithm (GA) 

to find the optimum condition of the enzymatic hydrolysis process using the model 

developed by FANN and its comparison with the conventional optimization method 

using response surface methodology (RSM). The result obtained by the successful 

performance of the model developed will give the optimum values for the process. 

 

1.2 Enzymatic Hydrolysis Process 

 

The industries nowadays strive toward inventing new techniques to increase 

the production capacity and efficiency instead of only focusing on producing high 

capacity or throughput products especially in the biotechnology field. Therefore, new 
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process mechanisms such as enzymatic hydrolysis are proposed to enhance the 

production of bioprocess as it does not affect the quality of the product itself but 

increases the process yield. The enzymatic hydrolysis works by adding certain or 

particular enzymes which be able to increase the efficiency of hydrolysis in terms of 

yield and selectivity. This idea is aligned with the principle of ‘lock and key’ which 

represents the enzyme and substrate during the process (Koshland Jr, 1995). The 

hydrolysis which involves enzyme beneficially reduces the time of the process and 

also reduces the energy consumption. 

 

The production of xylose (known as simple sugar or fermentable sugar) from 

biomass or waste such as rice straw has gained attention amongst researchers as a 

bio-nature product. In brief, rice straw is a residue after harvesting and removing the 

rice seed and husk. On the other hand, xylose is the major component of the 

hemicellulose fractions and the hydrolysates from pretreatment of acid while glucose 

and galactose are present in smaller amounts which can be considered undesired 

product at the end of the process (Brodeur et al., 2011). 

  

The pretreatment process is essential for removing the lignin compound 

which exists in any agriculture crop or residue. This is because by removing the 

lignin the hydrolysis process can easily react with other compounds hemicelluloses 

and cellulose of the substrate. Moreover, the hydrolysis may react through the fastest 

route by adding the specific enzyme which is able to enhance the conversion of 

substrate to simple sugar. 
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The enzymatic hydrolysis process is utilized in the production of simple 

sugar in order to increase the efficiency of the biomass conversion into the desired 

product. The enzyme used in the process is xylanase which is known to help increase 

converted hemicelluloses into xylose. The xylanase enzyme can catalyze the random 

endohydrolysis of β-1,4-xylosidic linkages in xylan to produce xylooligosaccharides 

and xylose (Zheng et al., 2009). However, the complexity of the enzymatic 

hydrolysis of lignocellulosic wastes come from the fact that they are heterogeneous 

insoluble substrates and thus, their enzymatic hydrolysis is always limited (Carrillo 

et al., 2005). Due to that concern, this study explored the ability and efficiency of the 

process and utilizing the capability of the process in the industry.  

 

1.3 Feed forward Artificial Neural Network (FANN)  

 

The study has pursued process modeling as well as the optimization process 

which is known as another step towards the development in the industry widely. In 

this research, Feed Forward Artificial Neural Network (FANN) modeling is chosen 

as a tool to model the enzymatic hydrolysis. One of the advantages of the FANN 

advantages is, it is able to function as an estimator since it performs the correlation 

without requiring a mathematical description of how the output depends on input 

(O'Dwyer et al., 2008).  The FANN is effective in approximating nonlinear 

functions, pattern recognitions and classification problems (Ebrahimpour et al., 

2008). In addition, FANN acts directly by transferring the data information from 

input towards output. Then FANN will stimulate the process model and proceed to 

the model prediction of the process.  
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However, modeling without optimization is a waste of the model developed. 

Therefore, other than modeling, FANN was utilized in optimizing the enzymatic 

hydrolysis process for the production of xylose from rice straw. Two optimization 

methods which are particle swarm optimization (PSO) and genetic algorithm (GA) 

were applied in this study. The optimum yield of xylose by using enzymatic 

hydrolysis was predicted at optimum condition by utilizing these two approaches.  

 

In brief, the particle swarm optimization is widely known as one of the 

modern heuristic algorithms under the evolutionary algorithms (Eberhart and 

Kennedy, 1995). The particle swarm algorithm is known to be simple, 

computationally efficient and easy to implement because it requires only primitive 

mathematical operators but also has a cognitive component (Skolpap et al., 2008). 

PSO algorithm can be combined with chaotic theory and employed to model the data 

of biochemical systems (Shoseyov et al., 2006). In addition, PSO is the imitation and 

simulation of the natural intelligence according to the survival behavior of living 

beings.  

 

On the other hand, genetic algorithm (GA) was used for estimating the 

variables of the enzymatic hydrolysis process. GA is known as one of the heuristic 

search algorithm by evolutionary natural selection based on genetic itself. GA would 

attempt to optimize the objective function which was done in an optimization of corn 

malt drying that estimated the time and temperature parameters (Scardi and Harding 

Jr, 1999). GA has the biological background (basic genetics) which exploits 

historical information to direct the search towards the region of better performance 
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within the search space even if it works in randomized pattern (Sivaraj and 

Ravichandran, 2011).  

 

1.4 Problem Statement 

 

Enzymatic hydrolysis is widely used as a biochemical process especially in 

food and beverages industries. The major concern of the enzymatic hydrolysis is to 

reduce the time consumption as well as the cost of chemical usage for the production 

process. Moreover, generally the hydrolysis process is demanded as one of the 

methods that are implemented for producing bio-products such simple sugar or 

alcohol compound, where the enzymatic hydrolysis progress directly and specifically 

while work at mild process conditions. The process conditions are considered mild as 

the process was conducted at lower temperature and agitation speed while the usage 

of enzyme is less than normal. Regardless of this matter, there are several factors that 

need to be considered for enzyme usage in hydrolysis as enzyme is literally unstable 

in certain physical or biological conditions. The physical conditions include 

temperature and agitation speed of instrument or incubator while the biological 

conditions include the concentration of enzyme added into the hydrolysis process.  

Therefore, a study on these conditions has been performed in order to obtain a better 

value of temperature and agitation speed of incubator in which enzyme concentration 

is added during the hydrolysis process. 

 

In this case, rice straw used in enzymatic hydrolysis was implemented on the 

production of xylose. Currently, Malaysia supplies about 65% of the country’s rice 

while another 35% is imported from other countries such Thailand and Vietnam 
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(Asian Biomass Handbook, 2008). Therefore, the rice residue during harvest and 

milling process generates a large amount of rice straw and rice husk. The problem 

arises as the rice straw or biomass residues become a source of pollution as rice 

straw is usually burnt by open burning. The burnt rice straw may lose its nutrient 

although it is a cost-effective method for straw disposal. Moreover, the 

bioconversion of rice waste (biomass waste) is convincing as one of raw material to 

be processed as renewable resource for complementing from waste to wealth 

ideology.   

 

The enzymatic hydrolysis may enhance the production of xylose process, 

however, there is no certain model that could explain every process because it is a 

nonlinear process. The efficiency of the enzymatic hydrolysis process is necessary 

for discussion to prove that the process performs well. The parameters correlation 

brings up several questions about its relevance and significance to enhance the 

production for enzymatic hydrolysis.  

 

In modeling, it is often necessary to provide some complex description or 

information. Instead, the feed-forward artificial neural network (FANN) which is 

proposed in this research has the capability to represent the complex relationship 

without needing much information. As a nonlinear data analyzer, FANN is a useful 

tool in advanced technology to investigate the efficiency of predicted data. This is 

because the FANN is robustness enough to predict the provided process data 

especially for modeling nonlinear bioprocess such enzymatic hydrolysis. The 

information is directly transfer from input data to output data, and the training 

algorithm used in the FANN model to avoid overfit the data.  FANN modeling was 
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implemented by using one hidden layer for enzymatic hydrolysis of the production of 

xylose from rice straw in this study. Furthermore, one hidden layer is often used as 

the information interconnect with the input and output data which this number of 

hidden layer may provide a good neural network modeling.  

Besides modeling, an optimization method is widely applied among 

researchers and is also normally compulsory for implementation in their study. 

Optimization is utilized since this method is able to optimize the yield and the able to 

reduce the duration time of the experimental work. The study on the bioprocess 

process modeling requires plenty of time especially on the enzymatic hydrolysis. In 

addition to that, some of the experimental work need to be done more than one with 

different parameters and condition.. Therefore, in order to reduce the amount of time 

and cost for conducting the process, process modeling and the optimization is 

needed. 

 

 The optimization method used in this research is based on the methods of 

evolution techniques which are genetic algorithm (GA) and particle swarm 

optimization (PSO) methods. The genetic algorithm is implemented to reduce the 

searching area of local optima in order to determine the optimum value of parameters 

in the study. The relationship of parameters of the enzymatic hydrolysis is known to 

be nonlinear or it is difficult to predict the optimal value. Hence, the GA method is 

used for the generation of possible solutions through crossover, mutation and 

evaluation of objective function. On the other hand, the PSO method approach is 

slightly different than the GA method where the prediction of best solution is done 

by selecting among the best solutions’ search areas to find where the particle swarm 

is located. The particle swarm and converge toward the next best solution in the 
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search space to find the best particle before sending out the information to others in 

the optimization problem. This method uses minimum computation time while 

generating the best solution. This optimization tool is a robust technique for solving 

nonlinear problems such enzymatic hydrolysis.  

 

1.5 Research objectives 

 

The research basically focuses on modeling and optimizing the enzymatic 

hydrolysis process. The aims of this research are: 

 

1. To develop a model of enzymatic hydrolysis by xylanase enzyme to 

produce xylose from rice straw by using feed-forward artificial neural 

network (FANN).  

2. To optimize the enzymatic hydrolysis process using particle swarm 

optimization (PSO) and genetic algorithm (GA) and compare with the 

conventional RSM approach.  

3. To validate the predicted optimum condition from the model with the 

experimental work. 

 

1.6 Organization of Thesis 

 

This thesis is organized into five chapters, where Chapter One introduces the 

current overview of modeling and optimization on enzymatic hydrolysis. The 

objectives of research and the scope of study are pointed out.  
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Chapter Two provides reviews on enzymatic hydrolysis process for the 

production of simple sugar, modeling using neural network and optimization of the 

parameters studied during enzymatic hydrolysis process.  

 

Chapter Three describes the case study of enzymatic hydrolysis for the 

production of xylose. This chapter also elaborates on the stages of the research 

conducted on modeling using neural network and optimization using particle swarm 

optimization (PSO) and genetic algorithm (GA). It also describes the validation for 

optimization of enzymatic hydrolysis.  

 

Chapter Four presents the performance evaluation of the model developed for 

enzymatic hydrolysis process. The optimum values of the conditions for enzymatic 

hydrolysis obtained were presented and discussed in this chapter. 

 

 Last but not least, Chapter 5 concludes the finding of the research and the 

achievement of the objectives. This chapter includes the recommendations for the 

future study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Production of Xylose   

 

Xylose is known as reducing sugar of monosaccharide group. Xylose can be 

extracted from polysaccharide with a several methods such as hydrolysis (Zhang et 

al., 2014). Since few years ago, the production of xylose was recovered from 

biomass waste which one of reducing sugar that has many beneficial towards 

mankind. One of the application of xylose, it can converse into xylitol in vitro as in 

many yeast strain produce high yield of xylitol from xylose (Milessi et al., 2011). 

Hence, throughout this idea the production of xylose was proposed and recovered 

from biomass waste as a raw material for this study.  

     

2.1.1 Rice Straw as Biomass  

 

Rice straw is considered the largest portion of available biomass feedstock in 

the world at about 7.31 x 1014 of dry rice straw per year and Asia is responsible for 

90% of the annual global production (Kim and Dale, 2004). Rice straw is attractive 

as a fuel because it is renewable and is considered to be carbon dioxide neutral 

(Atchison, 1996) but has not yet been commerciallized. The nature of rice straw is 

limited by the great bulk of material, slow degradation in the field, harboring of rice 

diseases and high mineral content. However, the straw must be disposed of in order 

to make way for the next crop (Alexander et al., 2002). Rice straw has been utilized 

in many bioconversion processes. 
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Therefore, rice straw have been investigated for its potential as the sole 

feedstock to produce biogas because it contains a high percentage of polysaccharides 

and lignin (He et al.., 2008). In recent years, a lot of attention have been focused on 

the biotechnological process for production of several useful feedstock and food 

products from agro-forest residues and agriculture residues such as rice straw (Roult 

et al., 2008). However, lignocellulose such as rice straw is difficult to hydrolyze 

using only enzyme due to its recalcitrant and heterogeneous structure, which 

primarily consists of cellulose, hemicelluloses and lignin (Chandra et al., 2007).  

 

2.1.2 Pretreatment Process   

 

Pretreatment of the rice straw has proved to increase both its physical and 

chemical properties, thereby minimizing the costs of transport, handling and storage. 

These applications are concerned with improving combustion efficiency and 

reducing pollution emission. Acid hydrolysis has been investigated as a possible 

process for treating lignocellulosic materials such as wood chips, rice straw 

(Almeida, 1991), sugar beet pulp (Chamy et al., 1994) and wheat straw (Fanta et al., 

1984).  

 

Rice straw can be hydrolyzed using dilute acid to obtain a mixture of sugars 

with xylose as the major component. However, in the hydrolyzate some by-products 

generated in the hydrolysis, such as acetic acid, furfural, phenolic compounds or 

lignin degradation products, can be present. These are potential inhibitors of a 

microbiological utilization of this hydrolyzate (Dominguez et al., 1996). Treatment 

with dilute sulphuric acid at moderate temperatures in the first stage of acid 
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hydrolysis has proven to be an efficient means of producing xylose from 

hemicellulose (Roberto et al., 1994; Silva 1996). 

 On the other hand, the pretreatment used to remove lignin which known as 

forms one of the part of three the cell wall. They are insoluble in water and is 

partially soluble in organic solvent because of the hydrogen bonds between 

polysaccharides and the linkage of lignin to polysaccharides. Thus, the pretreatment 

have been proven to be one of the most simple and effective methods to improve 

biodegradability and biogas production of lignocelluloses materials (He et al., 2008). 

The biodegradable part of lignocelluloses materials may be converted into reducing 

sugar.  

 

 There are chemical pretreatments such as alkaline hydrolysis that decreased 

the lignin content while enhance the enzymatic saccharification. The chemical 

processes are based on cellulose hydrolysis of acids or cellulose solvents such as 

alkaline hydrogen peroxide (Mosier et al., 2005). The release of sugars from 

lignocelluloses biomass was facilitated by pretreatment process. 

 

The lignocelluloses pretreatment uses other chemicals such as ionic liquids to 

dissolve cellulose in biomass. Ionic liquids can be reused after treatment and are 

easily applied to enhance the enzymatic hydrolysis and efficiently recover 

fermentable sugars such as glucose and xylose from lignocellulosic biomass source 

(Li et al., 2006). Therefore, Nguyen et al. (2010) had studied the pretreatment 

method using ammonia and ionic liquid for the recovery of bio-digestible cellulose 

from lignocellulosic by-product which effect on the enzymatic glucose conversion. 
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Lignocellulosic biomass cannot be saccharified by enzyme to obtain high 

yield without a pretreatment procedure because the lignin in the cell wall is a barrier 

to enzyme action (Sewalt et al., 1997).  Rice straw was selected as a substrate for 

saccharification in a research done by Jeya et al. (2009). The lignin components were 

decreased to 37% in pretreated rice straw with 2% sodium hydroxyide.  

     

2.1.3 Enzymatic Hydrolysis  

 

The hemicellulosic fraction formed after pretreatment process can then be 

enzymatically hydrolyzed to xylose. Enzymatic hydrolysis of biomass hemicellulose 

does not produce toxic products. The hydrolysis of hemicellulose is accelerated at 

elevated temperatures owing to relatively high activation energy in the solid-liquid 

phase reaction. At high temperatures part of the xylose released from hemicellulose 

degrades rapidly and cellulose in the amorphous region can yield glucose (Banerjee, 

1989). The enzymes that are involved in degradation of hemicelluloses are listed in 

Table 2.1 (Selinger et al., 1996). 

 

Table 2.1: Enzyme involved in the hydrolysis of complex hemicelluloses 

Enzyme  Mode of action  

Endo-xylanase Hydrolyzes mainly interior β-1,4-xylose 
linkages of the xylan backbone 

Exo-xylanase Hydrolyzes β-1,4-xylose linkages 
releasing xylobiose 

β-Xylosidase Releases xylose from xylobiose and short 
chain xylooligosaccharides 

α-Arabinofuranosidase Hydrolyzes terminal nonreducing α-
arabinofuranose from arabinoxylans 

α-Glucuronidase Releases glucuronic acid from 
glucuronoxylans 

Acetylxylan esterase  Hydrolyzes acetylester bonds in acetyl 
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xylans  
Ferulic acid esterase Hydrolyzes feruloylester bonds in xylans 
γ-Coumaric acid esterase  Hydrolyzes γ-coumaryl ester bonds in 

xylans 
Endo-xylanases are much more common than β-xylosidases, but the latter are 

necessary in order to produce xylose. Activity was optimum at pH 3.3 and 52 °C. β-

Glucuronidase acts in synergism with xylanases and β-xylosidases to hydrolyze 

glucuronoxylan. The yield of xylose greatly increases in the presence of this enzyme 

(Puls et al., 1980). Thus, Wang and Zhang (2006) produced xylose from corncobs by 

xylanase through hydrolysis under concentrated ultrafiltration with polyamide (PA) 

capillary fibres. Most importantly is endoxylanase cleaves β-1,4-xylose backbone in 

hydrolysis (Sharma et al., 2010). In the process, the enzyme (xylanase) is used to 

increase the surface contact with the substrate (treated rice straw) for incremented 

productivity of simple sugar (xylose). 

 

 Therefore, it is necessary to develop enzymes and microorganisms that are 

resistant to such inhibitory substances or to employ additional steps to remove the 

inhibitor. The pretreatment and enzymatic hydrolysis steps to achieve fermentable 

sugar are currently known to provide much more room for reducing processing cost 

than other processes (Lynd et al., 2008). The enzymatic hydrolysis is utilized on 

recovery of reducing sugar. The crystalline structure of cellulose has been 

hydrolyzed by cellulase during enzymatic hydrolysis (Jeoh et al., 2007). The loading 

of cellulase increases the production of glucose (Bak et al., 2009). 

 

 Furthermore, the enzyme enhances conversions of pretreated substrate. Thus, 

Kovacs et al.. (2009) have studied enzymatic hydrolysis of steam-pretreated 

lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. In 
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the research claimed that supplementation of Trichoderma atroviride with xylanase 

enzyme resulted in an increase of 40% in the xylose level and an improvement of 

21% in the glucose concentration.  

      

2.1.4 Independent Variables Affecting the Enzymatic Hydrolysis   

 

The enzymatic hydrolysis has been studied for many years especially in 

bioprocess, and the researcher is interested to enhance and to recover the production 

of the process. In addition, the enzymatic hydrolysis is one of way to produce 

reducing sugar in mild operating condition such pH and temperature (Carrillo et. al., 

2005). There are several factors that affecting the production process such as 

mechanical or physical effect and chemical effect such as substrate concentration, 

enzyme concentration, temperature, agitation speed, pH and time for the enzymatic 

hydrolysis process. However, the main focus in this study are on the effect of 

temperature, agitation speed and enzyme concentration for the enzymatic hydrolysis 

process in the production of xylose. These three parameters chosen as it is significant 

toward the enzymatic hydrolysis.  

 

2.1.4.1 Temperature  

  

  Temperature is a vital condition for every process, so is the case for the 

enzymatic hydrolysis. Thus the effects of temperature towards the bioprocess 

production have been studied in various ways, both either in large scale and flask 

scale. The study on this effect have been reported by Srivastava and Tyagi (2003) for 

investigating the temperature effects on the juice from apple fruit during the 
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enzymatic hydrolysis. They studied the effects of temperature within the range of 35 

– 55 °C of the enzymatic hydrolysis. 

  

 The temperature of the enzymatic hydrolysis was investigated for obtaining 

the suitable value for perfectly operates on the process. Mild conditions are known to 

give the best production results whenever an enzyme is involved during the process. 

The study on the temperature is of vital significance for example in the enzymatic 

hydrolysis of breadfruit starch which has been studied in the case study with its 

utilization for gluconic acid production by Betiku and Ajala (2010). The temperature 

was studied on both liquefaction and saccharification in order to determine the 

biomass concentration. The measurement of the dextrose equivalent (DE) at certain 

readings indicated that the glucoamylase operates effectively for the hydrolysis of 

the breadfruit starch.  

 

2.1.4.2 Agitation Speed  

 

 Study on the effect of agitation speed has the potential to observe the mixture 

effect on the homogenous solution for the production of bioprocess. The agitation 

speed has been studied for the fermentation process on the biotransformation of 

fenofibrate which looks for maximum metabolite production and cell dry weight 

(Vidyavathi et al., 2013).  Therefore, the study on the agitation speed for bioprocess 

have been studied widely in different areas and also for different productions.  

 

 The study on this effect is believed to have contributed to the better 

performance of bioprocess production, specifically in the enzymatic hydrolysis. This 

is due to the fact that the agitation speed enhances the interaction within the substrate 
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and enzyme literally without interfering with the enzyme activity during the 

enzymatic hydrolysis (Inggeson et al., 2001). This effect makes its study for 

enzymatic hydrolysis significant as it is able to increase the production with a certain 

time.  

 

2.1.4.3 Enzyme Concentration  

 

 Independent variables, especially such as the enzyme concentration is an 

interesting factor for study since it is widely utilized in industrial chemical process. 

Studies have been done to observe the enzyme treatment effect on different situations 

such as in pressing operation of borage seed oil extraction (Soto et al., 2006). The 

enzymatic hydrolysis was evaluated on the oil extraction from different kinds of 

oilseed and the production qualities for this treatment has also been studied. The 

moisture of enzyme was analyzed to find better enzyme activity whenever there is 

water bonding to compare to the total water of the systems. 

  

 On the other hand, the enzyme concentration such xylanase has been studied 

by Normah et al. (2012) in order to determine the enzyme activity during enzymatic 

hydrolysis. The enzyme concentration was varied at 2, 4 and 6 units/ml to optimize 

the process of hydrolysis in order to enhance the production of xylooligosaccharides. 

It was determined in the study that the lowest concentration contributed to higher 

yield of the xylooligosaccharides production at reaction time periods. 
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2.1.5 Experimental Design on the Production of xylose 

 

The production of xylose from biomass or rice straw has reviewed on used of 

the experimental design during the enzymatic hydrolysis process. The experimental 

design by using different kinds of tool which used for analysis the experimental 

result or even arrange the experimental work that includes the independent variables 

study. There several tools applicable for design the experimental of the process such 

response surface methodology (RSM), design of experiment (DOE) and other 

statistical tools as Minitab.   

 

2.1.5.1 Response Surface Methodology 

 

The design of experiment (DOE) tool using response surface methodology 

(RSM) is implemented in order to obtain the optimum conditions of production. 

RSM is a collection of statistical techniques for designing experiments, building 

models, evaluating the effects of parameters and searching for the optimum 

conditions, and has successfully been used in the optimization of bioprocesses (Hao 

et al., 2006). In order to optimize the xylose production by hydrolyzing sugarcane 

bagasse, RSM was used to maximize the temperature and sulphuric acid 

concentration of the samples (Paiva et al., 2002). Based on the principle of DOE, the 

methodology encompasses the use of various types of design such as experimental 

designs, generation of polynomial equations and mapping of the response over the 

experimental domain to determine the optimum product (Box and Draper, 1987).  
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Statistical experimental design was used in order to optimize hydrolysis 

parameters such as pH, temperature, and concentrations of substrates and enzymes to 

achieve the highest saccharification yield. Enzyme concentration was identified as 

the limiting factor for saccharification of rice straw (Jeya et al., 2009). On the other 

hand, Silva and Roberto (2001) have used RSM in order to optimize their production 

of xylitol by Candida guilliermondii FTI 20037 based on the effect of initial xylose 

concentration and inoculums level.  

 

Response Surface Methodology is able to evaluate multiple parameters and 

their interactions while at the same time reducing the number of experimental trials. 

Thus, the process conditions such as pressure, temperature, camel hump fat ratio, 

water content and incubation time can be optimized at five different levels using 

RSM as done by Shekarchizadeh et al. (2009). A second order polynomial response 

surface equation was developed indicating the effect of the mentioned variables on 

cocoa butter analog yield.  

 

2.1.5.2 Regression Analysis 

 

There are several regression analysis tools that are widely used in research 

studies such as minitab software, design of experts, polymath, statisca software and 

other analysis tools. Bioprocess or specifically the biotechnology field often uses 

RSM designed by experts to demonstrate the mathematical and statistical analysis 

equation. This is also known as regression analysis where the mathematical equation 

used to express the relationship of process variables such as pH, temperature, 
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substrate concentration, inoculum size, and agitation speed on xylitol yield (Ramesh 

et al., 2013).  

  

 Regression analysis may also help to study modeling and optimization 

process. The regression analysis was performed based on the experimental data and 

expressed as an empirical model second order polynomial equation (Long et.al, 

2010) such as in Equation 2.1.   

 𝑌 =  ∑ 𝐴𝑖𝑋𝑖3
𝑖=1 +  ∑ 𝐴𝑖𝑖𝑋𝑖23

𝑖=1 + ∑ ∑ 𝐴𝑖𝑗𝑋𝑗3
𝑗=𝑖+1

2
𝑖=1           (2.1) 

  

Whereby Y is represents the response variable, while Ao, Ai, Aii, Aij refer to 

regression coefficients of variables for intercept, linear quadratic and interaction 

terms respectively. Xi and Xj noted independent variables that are studied.  

  

 In normal cases, the statistical analysis is performed in the form of variance 

known as analysis of variance (ANOVA). The analysis comes out with the result of 

correlation coefficient (R), Fisher’s F-Test, determination coefficient (R2) for 

measuring the proportion of variance obtained (Paiva et al., 2008). The fit model of 

second order polynomial model equation is verified by the determination coefficient 

and the regression coefficient significance needs to be checked by Fisher’s F-Test 

(Long et al., 2010).  

  

2.2 Empirical Model for Enzymatic Hydrolysis Process 

 

There are two types of modelling approaches which are empirical and 

mechanistic modelling (Peri et al., 2007). According to Peri et al. (2007) the 
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empirical models relate the factors using mathematical correlations without 

underlying mechanisms. These define models that are easy to develop and are useful 

in enzyme characterizations and substrate preparation. Meanwhile, the mechanistic 

model is developed from the reaction mechanisms, mass transfer considerations and 

other physical parameters that affect the extent of hydrolysis. 

 

An empirical model develops for certain process without mechanistic 

consideration within the process. The model had been studied for prediction of drugs 

skin permeability  where the approach was based on the selection of molecular or 

structural descriptors (Yamashita and Hashida, 2003). The study mentions that an 

artificial neural network have been used as tool for non-linear modeling of complex 

causal-effect relationship. 

      

2.2.1 Artificial Neural Network (ANN) 

 

Modeling using neural network has been practiced in many areas such as in 

chemical and biotechnology processes and even in the pharmacological field. The 

neural network is robust in solving some complex problems by the linking of inputs 

with the predicted dependent variables with either linear or nonlinear model 

(Szaleniec, 2012). The report discussed the input variables selection which a must in 

the neural network modeling, data set division and model validation while also 

reviewing the optimization of network internal structure.  

 

The neural network was literally inspired by the human brain which works as 

biological model and building blocks, where the neurons are combined and 
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connected into layers for transferring the information data (Li et al., 2006). The 

development of the artificial neural network (ANN) model or known as one of types 

of artificial intelligence was initially made to understand how the brain works and to 

construct a mechanism that functions or mimics the same way (Cheng and 

Titterington, 1994). Figure 2.1 illustrates the neuron system in human brain. 

 

 

Figure 2.1: Schematic diagram of real neuron systems in the human brain by 

Cheng and Titterington (1994). 

  

 The neural network model selection is based on weight and bias that is 

employed in the neurons of network. The weight and bias is calculated as in 

Equation 2.2 as an example for a single neuron (Murad et al., 2010). 

𝑦𝑝𝑖 𝑙 = ∑ �𝑤𝑖𝑗𝑎𝑖𝑗�𝑛
𝑖=1 + 𝑏𝑗                 (2.2) 

 where  wij, aij and bj represent as weight, input and bias respectively. i and j 

denotes the row and layer of the neuron in the network. The number of nodes is 

calculated and then passed to the transfer function which is then employed in the 
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neural network for the simulation. The transfer function using log- sigmoidal transfer 

function and purelin transfer function are expressed as in Equation 2.3 and Equation 

2.4.  

𝑓(𝑦) =  1
1+𝑒−𝑦

                  (2.3) 

𝑓(𝑦) = 𝑦                  (2.4) 

 

2.2.2 Type of Neural Network Model  

 

The neural network model has numerous types of model which can be used in 

the process modeling. Several of model are known as feed-forward neural network 

(FANN), radial basis function (RBF) and recurrent neural network (RCNN) which 

normally implemented in the process for modeling. One of the popular artificial 

neural network architecture is feed forward neural network (FANN) where the 

neurons of the network are grouped in layers and connect together with forward 

connection thus the connection can learn any kind of continuous nonlinear mapping 

applications (Mendes et al., 2002). The feed-forward networks training using 

Levernberg-Marquardt algorithm was used in the optimization the network 

parameters due to its quadratic approximation accuracy and converges faster than 

gradient descent method (Ismail et al., 2013). 

 

The neural network model is usually known as multilayer perceptron (MLP) 

which consists of several layers that are connected to each other. MLP interconnects 

the neurons that are arranged in layers corresponding to the input layer hidden layer 

and output layer (Nodeh, 2012). The study was investigated on two layers with 
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different neurons in which the neural network was applied for modelling the 

saccharification of biomass by concentrated acid hydrolysis.  

 

The MLP is the most common architecture of artificial neural network which 

is normally applied for model development whereby complex or nonlinear 

relationship is involved in certain processes. The processing units in the input layer 

and output layer of the MLP is referred to as number nodes which is determined by 

the independent variables and dependent variables (Masoumi, et al., 2011). The MLP 

diagram which consists of an input layer, one hidden layer and one output layer 

(Kana et al., 2012) is shown as in Figure 2.2.  

 

Figure 2.2: The diagram of MLP that consists of input layer, hidden layer and 

output layer. 

  

 The neural network that learns directly from input data set and output data set 

is called a feed-forward neural network. The principle of learning the input and 

output data without the requirement of the phenomenological description of how the 


